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PREFACE

The Purpose and Prerequisites of this Book
Mathematical Statistics with Applications was written for use with an undergraduate
1-year sequence of courses (9 quarter- or 6 semester-hours) on mathematical statistics.
The intent of the text is to present a solid undergraduate foundation in statistical
theory while providing an indication of the relevance and importance of the theory
in solving practical problems in the real world. We think a course of this type is
suitable for most undergraduate disciplines, including mathematics, where contact
with applications may provide a refreshing and motivating experience. The only
mathematical prerequisite is a thorough knowledge of first-year college calculus—
including sums of infinite series, differentiation, and single and double integration.

Our Approach
Talking with students taking or having completed a beginning course in mathematical
statistics reveals a major flaw in many courses. Students can take the course and leave
it without a clear understanding of the nature of statistics. Many see the theory as a
collection of topics, weakly or strongly related, but fail to see that statistics is a theory
of information with inference as its goal. Further, they may leave the course without
an understanding of the important role played by statistics in scientific investigations.

These considerations led us to develop a text that differs from others in three ways:

• First, the presentation of probability is preceded by a clear statement of the
objective of statistics—statistical inference—and its role in scientific research.
As students proceed through the theory of probability (Chapters 2 through 7),
they are reminded frequently of the role that major topics play in statistical
inference. The cumulative effect is that statistical inference is the dominating
theme of the course.

• The second feature of the text is connectivity. We explain not only how major
topics play a role in statistical inference, but also how the topics are related to

xiii
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xiv Preface

one another. These integrating discussions appear most frequently in chapter
introductions and conclusions.

• Finally, the text is unique in its practical emphasis, both in exercises throughout
the text and in the useful statistical methodological topics contained in Chap-
ters 11–15, whose goal is to reinforce the elementary but sound theoretical
foundation developed in the initial chapters.

The book can be used in a variety of ways and adapted to the tastes of students and
instructors. The difficulty of the material can be increased or decreased by controlling
the assignment of exercises, by eliminating some topics, and by varying the amount of
time devoted to each topic. A stronger applied flavor can be added by the elimination
of some topics—for example, some sections of Chapters 6 and 7—and by devoting
more time to the applied chapters at the end.

Changes in the Seventh Edition
Many students are visual learners who can profit from visual reinforcement of con-
cepts and results. New to this edition is the inclusion of computer applets, all available
for on line use at the Cengage Learning website, academic.cengage.com/statistics/
wackerly. Some of these applets are used to demonstrate statistical concepts, other
applets permit users to assess the impact of parameter choices on the shapes of density
functions, and the remainder of applets can be used to find exact probabilities and
quantiles associated with gamma-, beta-, normal-, χ2-, t-, and F-distributed random
variables—information of importance when constructing confidence intervals or per-
forming tests of hypotheses. Some of the applets provide information available via
the use of other software. Notably, the R language and environment for statistical
computation and graphics (available free at http://www.r-project.org/) can be used to
provide the quantiles and probabilities associated with the discrete and continuous
distributions previously mentioned. The appropriate R commands are given in the
respective sections of Chapters 3 and 4. The advantage of the applets is that they are
“point and shoot,” provide accompanying graphics, and are considerably easier to
use. However, R is vastly more powerful than the applets and can be used for many
other statistical purposes. We leave other applications of R to the interested user or
instructor.

Chapter 2 introduces the first applet, Bayes’ Rule as a Tree, a demonstration that
allows users to see why sometimes surprising results occur when Bayes’ rule is applied
(see Figure 1). As in the sixth edition, maximum-likelihood estimates are introduced in
Chapter 3 via examples for the estimates of the parameters of the binomial, geometric,
and negative binomial distributions based on specific observed numerical values of
random variables that possess these distributions. Follow-up problems at the end of
the respective sections expand on these examples.

In Chapter 4, the applet Normal Probabilities is used to compute the probability
that any user-specified, normally distributed random variable falls in any specified
interval. It also provides a graph of the selected normal density function and a visual
reinforcement of the fact that probabilities associated with any normally distributed
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Preface xv

F I G U R E 1
Applet illustration of

Bayes’ rule

random variable are equivalent to probabilities associated with the standard normal
distribution. The applet Normal Probabilities (One Tail) provides upper-tail areas as-
sociated with any user-specified, normal distribution and can also be used to establish
the value that cuts off a user-specified area in the upper tail for any normally distributed
random variable. Probabilities and quantiles associated with standard normal random
variables are obtained by selecting the parameter values mean = 0 and standard de-
viation = 1. The beta and gamma distributions are more thoroughly explored in this
chapter. Users can simultaneously graph three gamma (or beta) densities (all with user
selected parameter values) and assess the impact that the parameter values have on
the shapes of gamma (or beta) density functions (see Figure 2). This is accomplished

F I G U R E 2
Applet comparison of

three beta densities
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xvi Preface

using the applets Comparison of Gamma Density Functions and Comparison of
Beta Density Functions, respectively. Probabilities and quantiles associated with
gamma- and beta-distributed random variables are obtained using the applets Gamma
Probabilities and Quantiles or Beta Probabilities and Quantiles. Sets of Applet Ex-
ercises are provided to guide the user to discover interesting and informative re-
sults associated with normal-, beta-, and gamma- (including exponential and χ2)
distributed random variables. We maintain emphasis on the χ2 distribution, including
some theoretical results that are useful in the subsequent development of the t and F
distributions.

In Chapter 5, it is made clear that conditional densities are undefined for values of
the conditioning variable where the marginal density is zero. We have also retained
the discussion of the “conditional variance” and its use in finding the variance of
a random variable. Hierarchical models are briefly discussed. As in the previous
edition, Chapter 6 introduces the concept of the support of a density and emphasizes
that a transformation method can be used when the transformation is monotone on the
region of support. The Jacobian method is included for implementation of a bivariate
transformation.

In Chapter 7, the applet Comparison of Student’s t and Normal Distributions per-
mits visualization of similarities and differences in t and standard normal density func-
tions, and the applets Chi-Square Probabilities and Quantiles, Student’s t Probabili-
ties and Quantiles, and F-Ratio Probabilities and Quantiles provide probabilites and
quantiles associated with the respective distributions, all with user-specified degrees
of freedom. The applet DiceSample uses the familiar die-tossing example to intro-
duce the concept of a sampling distribution. The results for different sample sizes
permit the user to assess the impact of sample size on the sampling distribution of the
sample mean. The applet also permits visualization of how the sampling distribution
is affected if the die is not balanced. Under the general heading of “Sampling Dis-
tributions and the Central Limit Theorem,” four different applets illustrate different
concepts:

• Basic illustrates that, when sampling from a normally distributed population,
the sample mean is itself normally distributed.

• SampleSize exhibits the effect of the sample size on the sampling distribution of
the sample mean. The sampling distribution for two (user-selected) sample sizes
are simultaneously generated and displayed side by side. Similarities and differ-
ences of the sampling distributions become apparent. Samples can be generated
from populations with “normal,” uniform, U-shaped, and skewed distributions.
The associated approximating normal sampling distributions can be overlayed
on the resulting simulated distributions, permitting immediate visual assessment
of the quality of the normal approximation (see Figure 3).

• Variance simulates the sampling distribution of the sample variance when sam-
pling from a population with a “normal” distribution. The theoretical (propor-
tional to that of a χ2 random variable) distribution can be overlayed with the
click of a button, again providing visual confirmation that theory really works.

• VarianceSize allows a comparison of the effect of the sample size on the distri-
bution of the sample variance (again, sampling from a normal population). The
associated theoretical density can be overlayed to see that the theory actually
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F I G U R E 3
Applet illustration of

the central limit
theorem.

works. In addition, it is seen that for large sample sizes the sample variance has
an approximate normal distribution.

The applet Normal Approximation to the Binomial permits the user to assess the quality
of the the (continuous) normal approximation for (discrete) binomial probabilities.
As in previous chapters, a sequence of Applet Exercises leads the user to discover
important and interesting answers and concepts. From a more theoretical perspective,
we establish the independence of the sample mean and sample variance for a sample
of size 2 from a normal distribution. As before, the proof of this result for general
n is contained in an optional exercise. Exercises provide step-by-step derivations of
the mean and variance for random variables with t and F distributions.

Throughout Chapter 8, we have stressed the assumptions associated with confi-
dence intervals based on the t distributions. We have also included a brief discussion
of the robustness of the t procedures and the lack of such for the intervals based
on the χ2 and F distributions. The applet ConfidenceIntervalP illustrates properties
of large-sample confidence intervals for a population proportion. In Chapter 9, the
applets PointSingle, PointbyPoint, and PointEstimation ultimately lead to a very nice
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illustration of convergence in probability. In Chapter 10, the applet Hypothesis Testing
(for Proportions) illustrates important concepts associated with test of hypotheses
including the following:

• What does α really mean?
• Tests based on larger-sample sizes typically have smaller probabilities of type

II errors if the level of the tests stays fixed.
• For a fixed sample size, the power function increases as the value of the parameter

moves further from the values specified by the null hypothesis.

Once users visualize these concepts, the subsequent theoretical developments are
more relevant and meaningful. Applets for the χ2, t , F distributions are used to
obtain exact p-values for associated tests of hypotheses. We also illustrate explicitly
that the power of a uniformly most powerful test can be smaller (although the largest
possible) than desired.

In Chapter 11, the simple linear regression model is thoroughly discussed (including
confidence intervals, prediction intervals, and correlation) before the matrix approach
to multiple linear regression model is introduced. The applets Fitting a Line Using
Least Squares and Removing Points from Regression illustrate what the least-squares
criterion accomplishes and that a few unusual data points can have considerable
impact on the fitted regression line. The coefficients of determination and multiple
determination are introduced, discussed, and related to the relevant t and F statistics.
Exercises demonstrate that high (low) coefficients of (multiple) determination values
do not necessarily correspond to statistically significant (insignificant) results.

Chapter 12 includes a separate section on the matched-pairs experiment. Although
many possible sets of dummy variables can be used to cast the analysis of variance
into a regression context, in Chapter 13 we focus on the dummy variables typically
used by SAS and other statistical analysis computing packages. The text still focuses
primarily on the randomized block design with fixed (nonrandom) block effects. If
an instructor wishes, a series of supplemental exercises dealing with the randomized
block design with random block effects can be used to illustrate the similarities and
differences of these two versions of the randomized block design.

The new Chapter 16 provides a brief introduction to Bayesian methods of statistical
inference. The chapter focuses on using the data and the prior distribution to obtain
the posterior and using the posterior to produce estimates, credible intervals, and hy-
pothesis tests for parameters. The applet Binomial Revision facilitates understanding
of the process by which data are used to update the prior and obtain the posterior.
Many of the posterior distributions are beta or gamma distributions, and previously
discussed applets are instrumental in obtaining credible intervals or computing the
probability of various hypotheses.

The Exercises
This edition contains more than 350 new exercises. Many of the new exercises use the
applets previously mentioned to guide the user through a series of steps that lead to
more thorough understanding of important concepts. Others use the applets to provide
confidence intervals or p-values that could only be approximated by using tables in the
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Preface xix

appendix. As in previous editions, some of the new exercises are theoretical whereas
others contain data from documented sources that deal with research in a variety of
fields. We continue to believe that exercises based on real data or actual experimental
scenarios permit students to see the practical uses of the various statistical and proba-
bilistic methods presented in the text. As they work through these exercises, students
gain insight into the real-life applications of the theoretical results developed in the
text. This insight makes learning the necessary theory more enjoyable and produces
a deeper understanding of the theoretical methods. As in previous editions, the more
challenging exercises are marked with an asterisk (*). Answers to the odd-numbered
exercises are provided in the back of the book.

Tables and Appendices
We have maintained the use of the upper-tail normal tables because the users of the
text find them to be more convenient. We have also maintained the format of the table
of the F distributions that we introduced in previous editions. This table of the F
distributions provides critical values corresponding to upper-tail areas of .100, .050,
.025, .010, and .005 in a single table. Because tests based on statistics possessing
the F distribution occur quite often, this table facilitates the computation of attained
significance levels, or p-values, associated with observed values of these statistics.

We have also maintained our practice of providing easy access to often-used
information. Because the normal and t tables are the most frequently used statis-
tical tables in the text, copies of these tables are given in Appendix 3 and inside the
front cover of the text. Users of previous editions have often remarked favorably about
the utility of tables of the common probability distributions, means, variances, and
moment-generating functions provided in Appendix 2 and inside the back cover of
the text. In addition, we have included some frequently used mathematical results in a
supplement to Appendix 1. These results include the binomial expansion of (x + y)n ,
the series expansion of ex , sums of geometric series, definitions of the gamma and
beta functions, and so on. As before, each chapter begins with an outline containing
the titles of the major sections in that chapter.
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NOTE TO THE STUDENT

As the title Mathematical Statistics with Applications implies, this text is concerned
with statistics, in both theory and application, and only deals with mathematics as a
necessary tool to give you a firm understanding of statistical techniques. The following
suggestions for using the text will increase your learning and save your time.

The connectivity of the book is provided by the introductions and summaries in
each chapter. These sections explain how each chapter fits into the overall picture of
statistical inference and how each chapter relates to the preceding ones.

F I G U R E 4
Applet calculation of
the probability that a

gamma–distributed
random variable

exceeds its mean

xxi
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xxii Note to the Student

Within the chapters, important concepts are set off as definitions. These should be
read and reread until they are clearly understood because they form the framework
on which everything else is built. The main theoretical results are set off as theo-
rems. Although it is not necessary to understand the proof of each theorem, a clear
understanding of the meaning and implications of the theorems is essential.

It is also essential that you work many of the exercises—for at least four reasons:

• You can be certain that you understand what you have read only by putting your
knowledge to the test of working problems.

• Many of the exercises are of a practical nature and shed light on the applications
of probability and statistics.

• Some of the exercises present new concepts and thus extend the material covered
in the chapter.

• Many of the applet exercises help build intuition, facilitate understanding of
concepts, and provide answers that cannot (practically) be obtained using tables
in the appendices (see Figure 4).

D. D. W.

W. M.

R. L. S.
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CHAPTER 1

What Is Statistics?
1.1 Introduction

1.2 Characterizing a Set of Measurements: Graphical Methods

1.3 Characterizing a Set of Measurements: Numerical Methods

1.4 How Inferences Are Made

1.5 Theory and Reality

1.6 Summary

References and Further Readings

1.1 Introduction
Statistical techniques are employed in almost every phase of life. Surveys are de-
signed to collect early returns on election day and forecast the outcome of an election.
Consumers are sampled to provide information for predicting product preferences.
Research physicians conduct experiments to determine the effect of various drugs and
controlled environmental conditions on humans in order to infer the appropriate treat-
ment for various illnesses. Engineers sample a product quality characteristic and var-
ious controllable process variables to identify key variables related to product quality.
Newly manufactured electronic devices are sampled before shipping to decide whether
to ship or hold individual lots. Economists observe various indices of economic health
over a period of time and use the information to forecast the condition of the economy
in the future. Statistical techniques play an important role in achieving the objective
of each of these practical situations. The development of the theory underlying these
techniques is the focus of this text.

A prerequisite to a discussion of the theory of statistics is a definition of statis-
tics and a statement of its objectives. Webster’s New Collegiate Dictionary defines
statistics as “a branch of mathematics dealing with the collection, analysis, interpre-
tation, and presentation of masses of numerical data.” Stuart and Ord (1991) state:
“Statistics is the branch of the scientific method which deals with the data obtained by
counting or measuring the properties of populations.” Rice (1995), commenting on
experimentation and statistical applications, states that statistics is “essentially con-
cerned with procedures for analyzing data, especially data that in some vague sense
have a random character.” Freund and Walpole (1987), among others, view statistics
as encompassing “the science of basing inferences on observed data and the entire

1
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2 Chapter 1 What Is Statistics?

problem of making decisions in the face of uncertainty.” And Mood, Graybill, and
Boes (1974) define statistics as “the technology of the scientific method” and add
that statistics is concerned with “(1) the design of experiments and investigations,
(2) statistical inference.” A superficial examination of these definitions suggests a
substantial lack of agreement, but all possess common elements. Each description
implies that data are collected, with inference as the objective. Each requires select-
ing a subset of a large collection of data, either existent or conceptual, in order to
infer the characteristics of the complete set. All the authors imply that statistics is a
theory of information, with inference making as its objective.

The large body of data that is the target of our interest is called the population, and
the subset selected from it is a sample. The preferences of voters for a gubernatorial
candidate, Jones, expressed in quantitative form (1 for “prefer” and 0 for “do not
prefer”) provide a real, finite, and existing population of great interest to Jones. To
determine the true fraction who favor his election, Jones would need to interview
all eligible voters—a task that is practically impossible. The voltage at a particular
point in the guidance system for a spacecraft may be tested in the only three sys-
tems that have been built. The resulting data could be used to estimate the voltage
characteristics for other systems that might be manufactured some time in the future.
In this case, the population is conceptual. We think of the sample of three as being
representative of a large population of guidance systems that could be built using the
same method. Presumably, this population would possess characteristics similar to
the three systems in the sample. Analogously, measurements on patients in a medical
experiment represent a sample from a conceptual population consisting of all patients
similarly afflicted today, as well as those who will be afflicted in the near future. You
will find it useful to clearly define the populations of interest for each of the scenarios
described earlier in this section and to clarify the inferential objective for each.

It is interesting to note that billions of dollars are spent each year by U.S. indus-
try and government for data from experimentation, sample surveys, and other data
collection procedures. This money is expended solely to obtain information about
phenomena susceptible to measurement in areas of business, science, or the arts. The
implications of this statement provide keys to the nature of the very valuable contri-
bution that the discipline of statistics makes to research and development in all areas
of society. Information useful in inferring some characteristic of a population (either
existing or conceptual) is purchased in a specified quantity and results in an inference
(estimation or decision) with an associated degree of goodness. For example, if Jones
arranges for a sample of voters to be interviewed, the information in the sample can be
used to estimate the true fraction of all voters who favor Jones’s election. In addition
to the estimate itself, Jones should also be concerned with the likelihood (chance)
that the estimate provided is close to the true fraction of eligible voters who favor his
election. Intuitively, the larger the number of eligible voters in the sample, the higher
will be the likelihood of an accurate estimate. Similarly, if a decision is made regarding
the relative merits of two manufacturing processes based on examination of samples
of products from both processes, we should be interested in the decision regarding
which is better and the likelihood that the decision is correct. In general, the study of
statistics is concerned with the design of experiments or sample surveys to obtain a
specified quantity of information at minimum cost and the optimum use of this infor-
mation in making an inference about a population. The objective of statistics is to make

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.2 Characterizing a Set of Measurements: Graphical Methods 3

an inference about a population based on information contained in a sample from
that population and to provide an associated measure of goodness for the inference.

Exercises
1.1 For each of the following situations, identify the population of interest, the inferential objective,

and how you might go about collecting a sample.

a A university researcher wants to estimate the proportion of U.S. citizens from
“Generation X” who are interested in starting their own businesses.

b For more than a century, normal body temperature for humans has been accepted to be
98.6◦ Fahrenheit. Is it really? Researchers want to estimate the average temperature of
healthy adults in the United States.

c A city engineer wants to estimate the average weekly water consumption for single-family
dwelling units in the city.

d The National Highway Safety Council wants to estimate the proportion of automobile tires
with unsafe tread among all tires manufactured by a specific company during the current
production year.

e A political scientist wants to determine whether a majority of adult residents of a state favor
a unicameral legislature.

f A medical scientist wants to estimate the average length of time until the recurrence of a
certain disease.

g An electrical engineer wants to determine whether the average length of life of transistors
of a certain type is greater than 500 hours.

1.2 Characterizing a Set of Measurements:
Graphical Methods
In the broadest sense, making an inference implies partially or completely describing
a phenomenon or physical object. Little difficulty is encountered when appropriate
and meaningful descriptive measures are available, but this is not always the case.
For example, we might characterize a person by using height, weight, color of hair
and eyes, and other descriptive measures of the person’s physiognomy. Identifying a
set of descriptive measures to characterize an oil painting would be a comparatively
more difficult task. Characterizing a population that consists of a set of measurements
is equally challenging. Consequently, a necessary prelude to a discussion of inference
making is the acquisition of a method for characterizing a set of numbers. The charac-
terizations must be meaningful so that knowledge of the descriptive measures enables
us to clearly visualize the set of numbers. In addition, we require that the characteriza-
tions possess practical significance so that knowledge of the descriptive measures for
a population can be used to solve a practical, nonstatistical problem. We will develop
our ideas on this subject by examining a process that generates a population.

Consider a study to determine important variables affecting profit in a business that
manufactures custom-made machined devices. Some of these variables might be the
dollar size of the contract, the type of industry with which the contract is negotiated,
the degree of competition in acquiring contracts, the salesperson who estimates the
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4 Chapter 1 What Is Statistics?

contract, fixed dollar costs, and the supervisor who is assigned the task of organizing
and conducting the manufacturing operation. The statistician will wish to measure the
response or dependent variable, profit per contract, for several jobs (the sample). Along
with recording the profit, the statistician will obtain measurements on the variables
that might be related to profit—the independent variables. His or her objective is to
use information in the sample to infer the approximate relationship of the independent
variables just described to the dependent variable, profit, and to measure the strength
of this relationship. The manufacturer’s objective is to determine optimum conditions
for maximizing profit.

The population of interest in the manufacturing problem is conceptual and consists
of all measurements of profit (per unit of capital and labor invested) that might be
made on contracts, now and in the future, for fixed values of the independent variables
(size of the contract, measure of competition, etc.). The profit measurements will vary
from contract to contract in a seemingly random manner as a result of variations in
materials, time needed to complete individual segments of the work, and other uncon-
trollable variables affecting the job. Consequently, we view the population as being
represented by a distribution of profit measurements, with the form of the distribution
depending on specific values of the independent variables. Our wish to determine the
relationship between the dependent variable, profit, and a set of independent variables
is therefore translated into a desire to determine the effect of the independent variables
on the conceptual distribution of population measurements.

An individual population (or any set of measurements) can be characterized by
a relative frequency distribution, which can be represented by a relative frequency
histogram. A graph is constructed by subdividing the axis of measurement into inter-
vals of equal width. A rectangle is constructed over each interval, such that the height
of the rectangle is proportional to the fraction of the total number of measurements
falling in each cell. For example, to characterize the ten measurements 2.1, 2.4, 2.2,
2.3, 2.7, 2.5, 2.4, 2.6, 2.6, and 2.9, we could divide the axis of measurement into in-
tervals of equal width (say, .2 unit), commencing with 2.05. The relative frequencies
(fraction of total number of measurements), calculated for each interval, are shown
in Figure 1.1. Notice that the figure gives a clear pictorial description of the entire set
of ten measurements.

Observe that we have not given precise rules for selecting the number, widths,
or locations of the intervals used in constructing a histogram. This is because the
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1.2 Characterizing a Set of Measurements: Graphical Methods 5

selection of these items is somewhat at the discretion of the person who is involved
in the construction.

Although they are arbitrary, a few guidelines can be very helpful in selecting the
intervals. Points of subdivision of the axis of measurement should be chosen so that it is
impossible for a measurement to fall on a point of division. This eliminates a source of
confusion and is easily accomplished, as indicated in Figure 1.1. The second guideline
involves the width of each interval and consequently, the minimum number of intervals
needed to describe the data. Generally speaking, we wish to obtain information on the
form of the distribution of the data. Many times the form will be mound-shaped, as
illustrated in Figure 1.2. (Others prefer to refer to distributions such as these as bell-
shaped, or normal.) Using many intervals with a small amount of data results in little
summarization and presents a picture very similar to the data in their original form.
The larger the amount of data, the greater the number of included intervals can be while
still presenting a satisfactory picture of the data. We suggest spanning the range of the
data with from 5 to 20 intervals and using the larger number of intervals for larger
quantities of data. In most real-life applications, computer software (Minitab, SAS,
R, S+, JMP, etc.) is used to obtain any desired histograms. These computer packages
all produce histograms satisfying widely agreed-upon constraints on scaling, number
of intervals used, widths of intervals, and the like.

Some people feel that the description of data is an end in itself. Histograms are
often used for this purpose, but there are many other graphical methods that provide
meaningful summaries of the information contained in a set of data. Some excellent
references for the general topic of graphical descriptive methods are given in the
references at the end of this chapter. Keep in mind, however, that the usual objective
of statistics is to make inferences. The relative frequency distribution associated with a
data set and the accompanying histogram are sufficient for our objectives in developing
the material in this text. This is primarily due to the probabilistic interpretation that
can be derived from the frequency histogram, Figure 1.1. We have already stated that
the area of a rectangle over a given interval is proportional to the fraction of the total
number of measurements falling in that interval. Let’s extend this idea one step further.

If a measurement is selected at random from the original data set, the probability
that it will fall in a given interval is proportional to the area under the histogram lying
over that interval. (At this point, we rely on the layperson’s concept of probability.
This term is discussed in greater detail in Chapter 2.) For example, for the data used
to construct Figure 1.1, the probability that a randomly selected measurement falls in
the interval from 2.05 to 2.45 is .5 because half the measurements fall in this interval.
Correspondingly, the area under the histogram in Figure 1.1 over the interval from

0
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6 Chapter 1 What Is Statistics?

2.05 to 2.45 is half of the total area under the histogram. It is clear that this interpreta-
tion applies to the distribution of any set of measurements—a population or a sample.

Suppose that Figure 1.2 gives the relative frequency distribution of profit (in mil-
lions of dollars) for a conceptual population of profit responses for contracts at spec-
ified settings of the independent variables (size of contract, measure of competition,
etc.). The probability that the next contract (at the same settings of the independent
variables) yields a profit that falls in the interval from 2.05 to 2.45 million is given by
the proportion of the area under the distribution curve that is shaded in Figure 1.2.

Exercises
1.2 Are some cities more windy than others? Does Chicago deserve to be nicknamed “The Windy

City”? Given below are the average wind speeds (in miles per hour) for 45 selected U.S. cities:

8.9 12.4 8.6 11.3 9.2 8.8 35.1 6.2 7.0
7.1 11.8 10.7 7.6 9.1 9.2 8.2 9.0 8.7
9.1 10.9 10.3 9.6 7.8 11.5 9.3 7.9 8.8
8.8 12.7 8.4 7.8 5.7 10.5 10.5 9.6 8.9

10.2 10.3 7.7 10.6 8.3 8.8 9.5 8.8 9.4

Source: The World Almanac and Book of Facts, 2004.

a Construct a relative frequency histogram for these data. (Choose the class boundaries
without including the value 35.1 in the range of values.)

b The value 35.1 was recorded at Mt. Washington, New Hampshire. Does the geography of
that city explain the magnitude of its average wind speed?

c The average wind speed for Chicago is 10.3 miles per hour. What percentage of the cities
have average wind speeds in excess of Chicago’s?

d Do you think that Chicago is unusually windy?

1.3 Of great importance to residents of central Florida is the amount of radioactive material present
in the soil of reclaimed phosphate mining areas. Measurements of the amount of 238U in 25 soil
samples were as follows (measurements in picocuries per gram):

.74 6.47 1.90 2.69 .75

.32 9.99 1.77 2.41 1.96
1.66 .70 2.42 .54 3.36
3.59 .37 1.09 8.32 4.06
4.55 .76 2.03 5.70 12.48

Construct a relative frequency histogram for these data.

1.4 The top 40 stocks on the over-the-counter (OTC) market, ranked by percentage of outstanding
shares traded on one day last year are as follows:

11.88 6.27 5.49 4.81 4.40 3.78 3.44 3.11 2.88 2.68
7.99 6.07 5.26 4.79 4.05 3.69 3.36 3.03 2.74 2.63
7.15 5.98 5.07 4.55 3.94 3.62 3.26 2.99 2.74 2.62
7.13 5.91 4.94 4.43 3.93 3.48 3.20 2.89 2.69 2.61

a Construct a relative frequency histogram to describe these data.

b What proportion of these top 40 stocks traded more than 4% of the outstanding shares?
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Exercises 7

c If one of the stocks is selected at random from the 40 for which the preceding data were
taken, what is the probability that it will have traded fewer than 5% of its outstanding shares?

1.5 Given here is the relative frequency histogram associated with grade point averages (GPAs) of
a sample of 30 students:

1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45
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a Which of the GPA categories identified on the horizontal axis are associated with the largest
proportion of students?

b What proportion of students had GPAs in each of the categories that you identified?

c What proportion of the students had GPAs less than 2.65?

1.6 The relative frequency histogram given next was constructed from data obtained from a random
sample of 25 families. Each was asked the number of quarts of milk that had been purchased
the previous week.
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a Use this relative frequency histogram to determine the number of quarts of milk purchased
by the largest proportion of the 25 families. The category associated with the largest relative
frequency is called the modal category.

b What proportion of the 25 families purchased more than 2 quarts of milk?

c What proportion purchased more than 0 but fewer than 5 quarts?
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8 Chapter 1 What Is Statistics?

1.7 The self-reported heights of 105 students in a biostatistics class were used to construct the
histogram given below.

6966
Heights

6360
0

5/105

Relative
frequency

10/105

72 75

a Describe the shape of the histogram.

b Does this histogram have an unusual feature?

c Can you think of an explanation for the two peaks in the histogram? Is there some consid-
eration other than height that results in the two separate peaks? What is it?

1.8 An article in Archaeometry presented an analysis of 26 samples of Romano–British pottery,
found at four different kiln sites in the United Kingdom. The percentage of aluminum oxide in
each of the 26 samples is given below:

Llanederyn Caldicot Island Thorns Ashley Rails
14.4 11.6 11.8 18.3 17.7
13.8 11.1 11.6 15.8 18.3
14.6 13.4 18.0 16.7
11.5 12.4 18.0 14.8
13.8 13.1 20.8 19.1
10.9 12.7
10.1 12.5

Source: A. Tubb, A. J. Parker, and G. Nickless, “The Analysis of Romano–British Pottery by Atomic
Absorption Spectrophotometry,” Archaeometry 22 (1980): 153.

a Construct a relative frequency histogram to describe the aluminum oxide content of all
26 pottery samples.

b What unusual feature do you see in this histogram? Looking at the data, can you think of
an explanation for this unusual feature?

1.3 Characterizing a Set of Measurements:
Numerical Methods
The relative frequency histograms presented in Section 1.2 provide useful informa-
tion regarding the distribution of sets of measurement, but histograms are usually
not adequate for the purpose of making inferences. Indeed, many similar histograms
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1.3 Characterizing a Set of Measurements: Numerical Methods 9

could be formed from the same set of measurements. To make inferences about a
population based on information contained in a sample and to measure the goodness
of the inferences, we need rigorously defined quantities for summarizing the infor-
mation contained in a sample. These sample quantities typically have mathematical
properties, to be developed in the following chapters, that allow us to make probability
statements regarding the goodness of our inferences.

The quantities we define are numerical descriptive measures of a set of data.
We seek some numbers that have meaningful interpretations and that can be used
to describe the frequency distribution for any set of measurements. We will confine
our attention to two types of descriptive numbers: measures of central tendency and
measures of dispersion or variation.

Probably the most common measure of central tendency used in statistics is the
arithmetic mean. (Because this is the only type of mean discussed in this text, we will
omit the word arithmetic.)

DEFINITION 1.1 The mean of a sample of n measured responses y1, y2, . . . , yn is given by

y = 1

n

n∑
i=1

yi .

The corresponding population mean is denoted μ.

The symbol y, read “y bar,” refers to a sample mean. We usually cannot measure
the value of the population mean, μ; rather, μ is an unknown constant that we may
want to estimate using sample information.

The mean of a set of measurements only locates the center of the distribution
of data; by itself, it does not provide an adequate description of a set of measure-
ments. Two sets of measurements could have widely different frequency distributions
but equal means, as pictured in Figure 1.3. The difference between distributions I
and II in the figure lies in the variation or dispersion of measurements on either
side of the mean. To describe data adequately, we must also define measures of data
variability.

The most common measure of variability used in statistics is the variance, which is a
function of the deviations (or distances) of the sample measurements from their mean.

&

" ""

&

F I G U R E 1.3
Frequency

distributions with
equal means but

different amounts
of variation

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10 Chapter 1 What Is Statistics?

DEFINITION 1.2 The variance of a sample of measurements y1, y2, . . . , yn is the sum of the
square of the differences between the measurements and their mean, divided
by n − 1. Symbolically, the sample variance is

s2 = 1

n − 1

n∑
i=1

(yi − y)2.

The corresponding population variance is denoted by the symbol σ 2.

Notice that we divided by n − 1 instead of by n in our definition of s2. The
theoretical reason for this choice of divisor is provided in Chapter 8, where we will
show that s2 defined this way provides a “better” estimator for the true population
variance, σ 2. Nevertheless, it is useful to think of s2 as “almost” the average of the
squared deviations of the observed values from their mean. The larger the variance of
a set of measurements, the greater will be the amount of variation within the set. The
variance is of value in comparing the relative variation of two sets of measurements,
but it gives information about the variation in a single set only when interpreted in
terms of the standard deviation.

DEFINITION 1.3 The standard deviation of a sample of measurements is the positive square root
of the variance; that is,

s =
√

s2.

The corresponding population standard deviation is denoted by σ =
√

σ 2.

Although it is closely related to the variance, the standard deviation can be used to
give a fairly accurate picture of data variation for a single set of measurements. It can be
interpreted using Tchebysheff’s theorem (which is discussed in Exercise 1.32 and will
be presented formally in Chapter 3) and by the empirical rule (which we now explain).

Many distributions of data in real life are mound-shaped; that is, they can be
approximated by a bell-shaped frequency distribution known as a normal curve.
Data possessing mound-shaped distributions have definite characteristics of varia-
tion, as expressed in the following statement.

Empirical Rule
For a distribution of measurements that is approximately normal (bell shaped),
it follows that the interval with end points

μ ± σ contains approximately 68% of the measurements.

μ ± 2σ contains approximately 95% of the measurements.

μ ± 3σ contains almost all of the measurements.
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68%

' '
&

F I G U R E 1.4
Normal curve

As was mentioned in Section 1.2, once the frequency distribution of a set of mea-
surements is known, probability statements regarding the measurements can be made.
These probabilities were shown as areas under a frequency histogram. Analogously,
the probabilities specified in the empirical rule are areas under the normal curve shown
in Figure 1.4.

Use of the empirical rule is illustrated by the following example. Suppose that the
scores on an achievement test given to all high school seniors in a state are known to
have, approximately, a normal distribution with mean μ = 64 and standard deviation
σ = 10. It can then be deduced that approximately 68% of the scores are between 54
and 74, that approximately 95% of the scores are between 44 and 84, and that almost
all of the scores are between 34 and 94. Thus, knowledge of the mean and the standard
deviation gives us a fairly good picture of the frequency distribution of scores.

Suppose that a single high school student is randomly selected from those who took
the test. What is the probability that his score will be between 54 and 74? Based on the
empirical rule, we find that 0.68 is a reasonable answer to this probability question.

The utility and value of the empirical rule are due to the common occurrence
of approximately normal distributions of data in nature—more so because the rule
applies to distributions that are not exactly normal but just mound-shaped. You will
find that approximately 95% of a set of measurements will be within 2σ of μ for a
variety of distributions.

Exercises
1.9 Resting breathing rates for college-age students are approximately normally distributed with

mean 12 and standard deviation 2.3 breaths per minute. What fraction of all college-age students
have breathing rates in the following intervals?

a 9.7 to 14.3 breaths per minute

b 7.4 to 16.6 breaths per minute

c 9.7 to 16.6 breaths per minute

d Less than 5.1 or more than 18.9 breaths per minute

1.10 It has been projected that the average and standard deviation of the amount of time spent online
using the Internet are, respectively, 14 and 17 hours per person per year (many do not use
the Internet at all!).

a What value is exactly 1 standard deviation below the mean?

b If the amount of time spent online using the Internet is approximately normally distributed,
what proportion of the users spend an amount of time online that is less than the value you
found in part (a)?
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12 Chapter 1 What Is Statistics?

c Is the amount of time spent online using the Internet approximately normally distributed?
Why?

1.11 The following results on summations will help us in calculating the sample variance s2. For
any constant c,

a
n∑

i=1

c = nc.

b
n∑

i=1

cyi = c
n∑

i=1

yi .

c
n∑

i=1

(xi + yi ) =
n∑

i=1

xi +
n∑

i=1

yi .

Use (a), (b), and (c) to show that

s2 = 1

n − 1

n∑
i=1

(yi − y)2 = 1

n − 1

⎡⎣ n∑
i=1

y2
i − 1

n

(
n∑

i=1

yi

)2
⎤⎦.

1.12 Use the result of Exercise 1.11 to calculate s for the n = 6 sample measurements 1, 4, 2, 1, 3,
and 3.

1.13 Refer to Exercise 1.2.

a Calculate y and s for the data given.

b Calculate the interval y ± ks for k = 1, 2, and 3. Count the number of measurements that
fall within each interval and compare this result with the number that you would expect
according to the empirical rule.

1.14 Refer to Exercise 1.3 and repeat parts (a) and (b) of Exercise 1.13.

1.15 Refer to Exercise 1.4 and repeat parts (a) and (b) of Exercise 1.13.

1.16 In Exercise 1.4, there is one extremely large value (11.88). Eliminate this value and calculate
y and s for the remaining 39 observations. Also, calculate the intervals y ± ks for k = 1,
2, and 3; count the number of measurements in each; then compare these results with those
predicted by the empirical rule. Compare the answers here to those found in Exercise 1.15.
Note the effect of a single large observation on y and s.

1.17 The range of a set of measurements is the difference between the largest and the smallest values.
The empirical rule suggests that the standard deviation of a set of measurements may be roughly
approximated by one-fourth of the range (that is, range/4). Calculate this approximation to s
for the data sets in Exercises 1.2, 1.3, and 1.4. Compare the result in each case to the actual,
calculated value of s.

1.18 The College Board’s verbal and mathematics Scholastic Aptitude Tests are scored on a scale of
200 to 800. It seems reasonable to assume that the distribution of test scores are approximately
normally distributed for both tests. Use the result from Exercise 1.17 to approximate the standard
deviation for scores on the verbal test.

1.19 According to the Environmental Protection Agency, chloroform, which in its gaseous form
is suspected to be a cancer-causing agent, is present in small quantities in all the country’s
240,000 public water sources. If the mean and standard deviation of the amounts of chloroform
present in water sources are 34 and 53 micrograms per liter (μg/L), respectively, explain why
chloroform amounts do not have a normal distribution.
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1.20 Weekly maintenance costs for a factory, recorded over a long period of time and adjusted
for inflation, tend to have an approximately normal distribution with an average of $420 and a
standard deviation of $30. If $450 is budgeted for next week, what is an approximate probability
that this budgeted figure will be exceeded?

1.21 The manufacturer of a new food additive for beef cattle claims that 80% of the animals fed a
diet including this additive should have monthly weight gains in excess of 20 pounds. A large
sample of measurements on weight gains for cattle fed this diet exhibits an approximately
normal distribution with mean 22 pounds and standard deviation 2 pounds. Do you think the
sample information contradicts the manufacturer’s claim? (Calculate the probability of a weight
gain exceeding 20 pounds.)

1.4 How Inferences Are Made
The mechanism instrumental in making inferences can be well illustrated by analyzing
our own intuitive inference-making procedures.

Suppose that two candidates are running for a public office in our community
and that we wish to determine whether our candidate, Jones, is favored to win. The
population of interest is the set of responses from all eligible voters who will vote on
election day, and we wish to determine whether the fraction favoring Jones exceeds .5.
For the sake of simplicity, suppose that all eligible voters will go to the polls and that
we randomly select a sample of 20 from the courthouse roster of voters. All 20 are
contacted and all favor Jones. What do you conclude about Jones’s prospects for
winning the election?

There is little doubt that most of us would immediately infer that Jones will win.
This is an easy inference to make, but this inference itself is not our immediate goal.
Rather, we wish to examine the mental processes that were employed in reaching this
conclusion about the prospective behavior of a large voting population based on a
sample of only 20 people.

Winning means acquiring more than 50% of the votes. Did we conclude that Jones
would win because we thought that the fraction favoring Jones in the sample was
identical to the fraction favoring Jones in the population? We know that this is prob-
ably not true. A simple experiment will verify that the fraction in the sample favoring
Jones need not be the same as the fraction of the population who favor him. If a bal-
anced coin is tossed, it is intuitively obvious that the true proportion of times it will
turn up heads is .5. Yet if we sample the outcomes for our coin by tossing it 20 times,
the proportion of heads will vary from sample to sample; that is, on one occasion
we might observe 12 heads out of 20 flips, for a sample proportion of 12/20 = .6.
On another occasion, we might observe 8 heads out of 20 flips, for a sample pro-
portion of 8/20 = .4. In fact, the sample proportion of heads could be 0, .05, .10,

. . . , 1.0.

Did we conclude that Jones would win because it would be impossible for 20 out
of 20 sample voters to favor him if in fact less than 50% of the electorate intended to
vote for him? The answer to this question is certainly no, but it provides the key to
our hidden line of logic. It is not impossible to draw 20 out of 20 favoring Jones when
less than 50% of the electorate favor him, but it is highly improbable. As a result, we
concluded that he would win.
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14 Chapter 1 What Is Statistics?

This example illustrates the potent role played by probability in making inferences.
Probabilists assume that they know the structure of the population of interest and use
the theory of probability to compute the probability of obtaining a particular sample.
Assuming that they know the structure of a population generated by random drawings
of five cards from a standard deck, probabilists compute the probability that the draw
will yield three aces and two kings. Statisticians use probability to make the trip in
reverse—from the sample to the population. Observing five aces in a sample of five
cards, they immediately infer that the deck (which generates the population) is loaded
and not standard. The probability of drawing five aces from a standard deck is zero!
This is an exaggerated case, but it makes the point. Basic to inference making is the
problem of calculating the probability of an observed sample. As a result, probability
is the mechanism used in making statistical inferences.

One final comment is in order. If you did not think that the sample justified an
inference that Jones would win, do not feel too chagrined. One can easily be misled
when making intuitive evaluations of the probabilities of events. If you decided that
the probability was very low that 20 voters out of 20 would favor Jones, assuming that
Jones would lose, you were correct. However, it is not difficult to concoct an example
in which an intuitive assessment of probability would be in error. Intuitive assessments
of probabilities are unsatisfactory, and we need a rigorous theory of probability in
order to develop methods of inference.

1.5 Theory and Reality
Theories are conjectures proposed to explain phenomena in the real world. As such,
theories are approximations or models for reality. These models or explanations of
reality are presented in verbal form in some less quantitative fields and as mathematical
relationships in others. Whereas a theory of social change might be expressed verbally
in sociology, a description of the motion of a vibrating string is presented in a precise
mathematical manner in physics. When we choose a mathematical model for a phys-
ical process, we hope that the model reflects faithfully, in mathematical terms, the
attributes of the physical process. If so, the mathematical model can be used to arrive
at conclusions about the process itself. If we could develop an equation to predict the
position of a vibrating string, the quality of the prediction would depend on how well
the equation fit the motion of the string. The process of finding a good equation is
not necessarily simple and usually requires several simplifying assumptions (uniform
string mass, no air resistance, etc.). The final criterion for deciding whether a model
is “good” is whether it yields good and useful information. The motivation for using
mathematical models lies primarily in their utility.

This text is concerned with the theory of statistics and hence with models of reality.
We will postulate theoretical frequency distributions for populations and will develop
a theory of probability and inference in a precise mathematical manner. The net result
will be a theoretical or mathematical model for acquiring and utilizing information
in real life. The model will not be an exact representation of nature, but this should
not disturb us. Its utility, like that of other theories, will be measured by its ability to
assist us in understanding nature and in solving problems in the real world.
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1.6 Summary
The objective of statistics is to make an inference about a population based on infor-
mation contained in a sample taken from that population. The theory of statistics is
a theory of information concerned with quantifying information, designing experi-
ments or procedures for data collection, and analyzing data. Our goal is to minimize
the cost of a specified quantity of information and to use this information to make in-
ferences. Most important, we have viewed making an inference about the unknown
population as a two-step procedure. First, we enlist a suitable inferential procedure
for the given situation. Second, we seek a measure of the goodness of the resulting
inference. For example, every estimate of a population characteristic based on infor-
mation contained in the sample might have associated with it a probabilistic bound
on the error of estimation.

A necessary prelude to making inferences about a population is the ability to de-
scribe a set of numbers. Frequency distributions provide a graphic and useful method
for characterizing conceptual or real populations of numbers. Numerical descriptive
measures are often more useful when we wish to make an inference and measure the
goodness of that inference.

The mechanism for making inferences is provided by the theory of probability. The
probabilist reasons from a known population to the outcome of a single experiment,
the sample. In contrast, the statistician utilizes the theory of probability to calculate
the probability of an observed sample and to infer from this the characteristics of an
unknown population. Thus, probability is the foundation of the theory of statistics.

Finally, we have noted the difference between theory and reality. In this text, we
will study the mathematical theory of statistics, which is an idealization of nature. It
is rigorous, mathematical, and subject to study in a vacuum completely isolated from
the real world. Or it can be tied very closely to reality and can be useful in making
inferences from data in all fields of science. In this text, we will be utilitarian. We will
not regard statistics as a branch of mathematics but as an area of science concerned
with developing a practical theory of information. We will consider statistics as a
separate field, analogous to physics—not as a branch of mathematics but as a theory
of information that utilizes mathematics heavily.

Subsequent chapters will expand on the topics that we have encountered in this
introduction. We will begin with a study of the mechanism employed in making
inferences, the theory of probability. This theory provides theoretical models for
generating experimental data and thereby provides the basis for our study of statistical
inference.
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Supplementary Exercises
1.22 Prove that the sum of the deviations of a set of measurements about their mean is equal to zero;

that is,
n∑

i=1

(yi − y) = 0.

1.23 The mean duration of television commercials is 75 seconds with standard deviation 20 seconds.
Assume that the durations are approximately normally distributed to answer the following.

a What percentage of commercials last longer than 95 seconds?

b What percentage of the commercials last between 35 and 115 seconds?

c Would you expect commercial to last longer than 2 minutes? Why or why not?

1.24 Aqua running has been suggested as a method of cardiovascular conditioning for injured
athletes and others who desire a low-impact aerobics program. In a study to investigate the
relationship between exercise cadence and heart rate,1 the heart rates of 20 healthy volunteers
were measured at a cadence of 48 cycles per minute (a cycle consisted of two steps). The data
are as follows:

87 109 79 80 96 95 90 92 96 98
101 91 78 112 94 98 94 107 81 96

a Use the range of the measurements to obtain an estimate of the standard deviation.

b Construct a frequency histogram for the data. Use the histogram to obtain a visual approx-
imation to y and s.

c Calculate y and s. Compare these results with the calculation checks provided by parts (a)
and (b).

d Construct the intervals y ± ks, k = 1, 2, and 3, and count the number of measurements
falling in each interval. Compare the fractions falling in the intervals with the fractions that
you would expect according to the empirical rule.

1. R. P. Wilder, D. Breenan, and D. E. Schotte,“A Standard Measure for Exercise Prescription for Aqua
Running,” American Journal of Sports Medicine 21(1) (1993): 45.
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1.25 The following data give the lengths of time to failure for n = 88 radio transmitter-receivers:

16 224 16 80 96 536 400 80
392 576 128 56 656 224 40 32
358 384 256 246 328 464 448 716
304 16 72 8 80 72 56 608
108 194 136 224 80 16 424 264
156 216 168 184 552 72 184 240
438 120 308 32 272 152 328 480

60 208 340 104 72 168 40 152
360 232 40 112 112 288 168 352

56 72 64 40 184 264 96 224
168 168 114 280 152 208 160 176

a Use the range to approximate s for the n = 88 lengths of time to failure.

b Construct a frequency histogram for the data. [Notice the tendency of the distribution to
tail outward (skew) to the right.]

c Use a calculator (or computer) to calculate y and s. (Hand calculation is much too tedious
for this exercise.)

d Calculate the intervals y ± ks, k = 1, 2, and 3, and count the number of measurements
falling in each interval. Compare your results with the empirical rule results. Note that the
empirical rule provides a rather good description of these data, even though the distribution
is highly skewed.

1.26 Compare the ratio of the range to s for the three sample sizes (n = 6, 20, and 88) for
Exercises 1.12, 1.24, and 1.25. Note that the ratio tends to increase as the amount of data
increases. The greater the amount of data, the greater will be their tendency to contain a few
extreme values that will inflate the range and have relatively little effect on s. We ignored this
phenomenon and suggested that you use 4 as the ratio for finding a guessed value of s in checking
calculations.

1.27 A set of 340 examination scores exhibiting a bell-shaped relative frequency distribution has a
mean of y = 72 and a standard deviation of s = 8. Approximately how many of the scores
would you expect to fall in the interval from 64 to 80? The interval from 56 to 88?

1.28 The discharge of suspended solids from a phosphate mine is normally distributed with mean
daily discharge 27 milligrams per liter (mg/L) and standard deviation 14 mg/L. In what pro-
portion of the days will the daily discharge be less than 13 mg/L?

1.29 A machine produces bearings with mean diameter 3.00 inches and standard deviation 0.01 inch.
Bearings with diameters in excess of 3.02 inches or less than 2.98 inches will fail to meet quality
specifications.

a Approximately what fraction of this machine’s production will fail to meet specifications?

b What assumptions did you make concerning the distribution of bearing diameters in order
to answer this question?

1.30 Compared to their stay-at-home peers, women employed outside the home have higher levels
of high-density lipoproteins (HDL), the “good” cholesterol associated with lower risk for heart
attacks. A study of cholesterol levels in 2000 women, aged 25–64, living in Augsburg, Germany,
was conducted by Ursula Haertel, Ulrigh Keil, and colleagues2 at the GSF-Medis Institut in

2. Science News 135 (June 1989): 389.
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Munich. Of these 2000 women, the 48% who worked outside the home had HDL levels that were
between 2.5 and 3.6 milligrams per deciliter (mg/dL) higher than the HDL levels of their stay-
at-home counterparts. Suppose that the difference in HDL levels is normally distributed, with
mean 0 (indicating no difference between the two groups of women) and standard deviation
1.2 mg/dL. If you were to select an employed woman and a stay-at-home counterpart at
random, what is the probability that the difference in their HDL levels would be between 1.2
and 2.4?

1.31 Over the past year, a fertilizer production process has shown an average daily yield of 60 tons
with a variance in daily yields of 100. If the yield should fall to less than 40 tons tomorrow,
should this result cause you to suspect an abnormality in the process? (Calculate the probability
of obtaining less than 40 tons.) What assumptions did you make concerning the distribution of
yields?

*1.32 Let k ≥ 1. Show that, for any set of n measurements, the fraction included in the interval y −ks
to y + ks is at least (1 − 1/k2). [Hint:

s2 = 1

n − 1

[
n∑

i=1

(yi − y)2

]
.

In this expression, replace all deviations for which |yi − y| ≥ ks with ks. Simplify.] This result
is known as Tchebysheff’s theorem.3

1.33 A personnel manager for a certain industry has records of the number of employees absent
per day. The average number absent is 5.5, and the standard deviation is 2.5. Because there
are many days with zero, one, or two absent and only a few with more than ten absent, the
frequency distribution is highly skewed. The manager wants to publish an interval in which at
least 75% of these values lie. Use the result in Exercise 1.32 to find such an interval.

1.34 For the data discussed in Exercise 1.33, give an upper bound to the fraction of days when there
are more than 13 absentees.

1.35 A pharmaceutical company wants to know whether an experimental drug has an effect on
systolic blood pressure. Fifteen randomly selected subjects were given the drug and, after
sufficient time for the drug to have an impact, their systolic blood pressures were recorded.
The data appear below:

172 140 123 130 115
148 108 129 137 161
123 152 133 128 142

a Approximate the value of s using the range approximation.

b Calculate the values of y and s for the 15 blood pressure readings.

c Use Tchebysheff’s theorem (Exercise 1.32) to find values a and b such that at least 75%
of the blood pressure measurements lie between a and b.

d Did Tchebysheff’s theorem work? That is, use the data to find the actual percent of blood
pressure readings that are between the values a and b you found in part (c). Is this actual
percentage greater than 75%?

1.36 A random sample of 100 foxes was examined by a team of veterinarians to determine the preva-
lence of a specific parasite. Counting the number of parasites of this specific type, the veteri-
narians found that 69 foxes had no parasites of the type of interest, 17 had one parasite of the

3. Exercises preceded by an asterisk are optional.
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Supplementary Exercises 19

type under study, and so on. A summary of their results is given in the following table:

Number of Parasites 0 1 2 3 4 5 6 7 8
Number of Foxes 69 17 6 3 1 2 1 0 1

a Construct the relative frequency histogram for the number of parasites per fox.

b Calculate y and s for the data given.

c What fraction of the parasite counts falls within 2 standard deviations of the mean? Within
3 standard deviations? Do your results agree with Tchebysheff’s theorem (Exercise 1.32)
and/or the empirical rule?

1.37 Studies indicate that drinking water supplied by some old lead-lined city piping systems may
contain harmful levels of lead. Based on data presented by Karalekas and colleagues,4 it appears
that the distribution of lead content readings for individual water specimens has mean .033 mg/L
and standard deviation .10 mg/L. Explain why it is obvious that the lead content readings are
not normally distributed.

1.38 In Exercise 1.19, the mean and standard deviation of the amount of chloroform present in water
sources were given to be 34 and 53, respectively. You argued that the amounts of chloroform
could therefore not be normally distributed. Use Tchebysheff’s theorem (Exercise 1.32) to
describe the distribution of chloroform amounts in water sources.

4. P. C. Karalekas, Jr., C. R. Ryan, and F. B. Taylor, “Control of Lead, Copper and Iron Pipe Corrosion in
Boston,” American Water Works Journal (February 1983): 92.
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2.1 Introduction
In everyday conversation, the term probability is a measure of one’s belief in the
occurrence of a future event. We accept this as a meaningful and practical interpreta-
tion of probability but seek a clearer understanding of its context, how it is measured,
and how it assists in making inferences.

The concept of probability is necessary in work with physical, biological, or so-
cial mechanisms that generate observations that cannot be predicted with certainty.
For example, the blood pressure of a person at a given point in time cannot be pre-
dicted with certainty, and we never know the exact load that a bridge will endure
before collapsing into a river. Such random events cannot be predicted with certainty,
but the relative frequency with which they occur in a long series of trials is often
remarkably stable. Events possessing this property are called random, or stochastic,
events. This stable long-term relative frequency provides an intuitively meaningful

20
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2.2 Probability and Inference 21

measure of our belief in the occurrence of a random event if a future observation is
to be made. It is impossible, for example, to predict with certainty the occurrence of
heads on a single toss of a balanced coin, but we would be willing to state with a fair
measure of confidence that the fraction of heads in a long series of trials would be
very near .5. That this relative frequency is commonly used as a measure of belief in
the outcome for a single toss is evident when we consider chance from a gambler’s
perspective. He risks money on the single toss of a coin, not a long series of tosses.
The relative frequency of a head in a long series of tosses, which a gambler calls the
probability of a head, gives him a measure of the chance of winning on a single toss. If
the coin were unbalanced and gave 90% heads in a long series of tosses, the gambler
would say that the probability of a head is .9, and he would be fairly confident in the
occurrence of a head on a single toss of the coin.

The preceding example possesses some realistic and practical analogies. In many
respects all people are gamblers. The research physician gambles time and money
on a research project, and she is concerned with her success on a single flip of this
symbolic coin. Similarly, the investment of capital in a new manufacturing plant is
a gamble that represents a single flip of a coin on which the entrepreneur has high
hopes for success. The fraction of similar investments that are successful in a long
series of trials is of interest to the entrepreneur only insofar as it provides a measure
of belief in the successful outcome of a single individual investment.

The relative frequency concept of probability, although intuitively meaningful,
does not provide a rigorous definition of probability. Many other concepts of proba-
bility have been proposed, including that of subjective probability, which allows the
probability of an event to vary depending upon the person performing the evaluation.
Nevertheless, for our purposes we accept an interpretation based on relative frequency
as a meaningful measure of our belief in the occurrence of an event. Next, we will
examine the link that probability provides between observation and inference.

2.2 Probability and Inference
The role that probability plays in making inferences will be discussed in detail after
an adequate foundation has been laid for the theory of probability. At this point we
will present an elementary treatment of this theory through an example and an appeal
to your intuition.

The example selected is similar to that presented in Section 1.4 but simpler and
less practical. It was chosen because of the ease with which we can visualize the
population and sample and because it provides an observation-producing mechanism
for which a probabilistic model will be constructed in Section 2.3.

Consider a gambler who wishes to make an inference concerning the balance
of a die. The conceptual population of interest is the set of numbers that would be
generated if the die were rolled over and over again, ad infinitum. If the die were
perfectly balanced, one-sixth of the measurements in this population would be 1s,
one-sixth, 2s, one-sixth, 3s, and so on. The corresponding frequency distribution is
shown in Figure 2.1.

Using the scientific method, the gambler proposes the hypothesis that the die is
balanced, and he seeks observations from nature to contradict the theory, if false.
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A sample of ten tosses is selected from the population by rolling the die ten times. All
ten tosses result in 1s. The gambler looks upon this output of nature with a jaundiced
eye and concludes that his hypothesis is not in agreement with nature and hence that
the die is not balanced.

The reasoning employed by the gambler identifies the role that probability plays
in making inferences. The gambler rejected his hypothesis (and concluded that the
die is unbalanced) not because it is impossible to throw ten 1s in ten tosses of a
balanced die but because it is highly improbable. His evaluation of the probability
was most likely subjective. That is, the gambler may not have known how to calculate
the probability of ten 1s in ten tosses, but he had an intuitive feeling that this event
was highly unlikely if the die were balanced. The point to note is that his decision
was based on the probability of the observed sample.

The need for a theory of probability that will provide a rigorous method for finding a
number (a probability) that will agree with the actual relative frequency of occurrence
of an event in a long series of trials is apparent if we imagine a different result for the
gambler’s sample. Suppose, for example, that instead of ten 1s, he observed five 1s
along with two 2s, one 3, one 4, and one 6. Is this result so improbable that we should
reject our hypothesis that the die is balanced and conclude that the die is loaded in
favor of 1s? If we must rely solely on experience and intuition to make our evaluation,
it is not so easy to decide whether the probability of five 1s in ten tosses is large or
small. The probability of throwing four 1s in ten tosses would be even more difficult to
guess. We will not deny that experimental results often are obviously inconsistent with
a given hypothesis and lead to its rejection. However, many experimental outcomes
fall in a gray area where we require a rigorous assessment of the probability of their
occurrence. Indeed, it is not difficult to show that intuitive evaluations of probabilities
often lead to answers that are substantially in error and result in incorrect inferences
about the target population. For example, if there are 20 people in a room, most people
would guess that it is very unlikely that there would be two or more persons with the
same birthday. Yet, under certain reasonable assumptions, in Example 2.18 we will
show that the probability of such an occurrence is larger than .4, a number that is
surprisingly large to many.

We need a theory of probability that will permit us to calculate the probability (or
a quantity proportional to the probability) of observing specified outcomes, assuming
that our hypothesized model is correct. This topic will be developed in detail in
subsequent chapters. Our immediate goal is to present an introduction to the theory
of probability, which provides the foundation for modern statistical inference. We will
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2.3 A Review of Set Notation 23

begin by reviewing some set notation that will be used in constructing probabilistic
models for experiments.

2.3 A Review of Set Notation
To proceed with an orderly development of probability theory, we need some basic
concepts of set theory. We will use capital letters, A, B, C, . . . , to denote sets of
points. If the elements in the set A are a1, a2, and a3, we will write

A = {a1, a2, a3}.
Let S denote the set of all elements under consideration; that is, S is the universal

set. For any two sets A and B, we will say that A is a subset of B, or A is contained in
B (denoted A ⊂ B), if every point in A is also in B. The null, or empty, set, denoted
by ∅, is the set consisting of no points. Thus, ∅ is a subset of every set.

Sets and relationships between sets can be conveniently portrayed by using Venn
diagrams. The Venn diagram in Figure 2.2 shows two sets, A and B, in the universal
set S. Set A is the set of all points inside the triangle; set B is the set of all points
inside the circle. Note that in Figure 2.2, A ⊂ B.

Consider now two arbitrary sets of points. The union of A and B, denoted by
A ∪ B, is the set of all points in A or B or both. That is, the union of A and B contains
all points that are in at least one of the sets. The Venn diagram in Figure 2.3 shows

A

B

SF I G U R E 2.2
Venn diagram for

A ⊂ B

A B

SF I G U R E 2.3
Venn diagram for

A ∪ B
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two sets A and B, where A is the set of points in the left-hand circle and B is the set
of points in the right-hand circle. The set A ∪ B is the shaded region consisting of
all points inside either circle (or both). The key word for expressing the union of two
sets is or (meaning A or B or both).

The intersection of A and B, denoted by A ∩ B or by AB, is the set of all points in
both A and B. The Venn diagram of Figure 2.4 shows two sets A and B, with A ∩ B
consisting of the points in the shaded region where the two sets overlap. The key word
for expressing intersections is and (meaning A and B simultaneously).

If A is a subset of S, then the complement of A, denoted by A, is the set of points
that are in S but not in A. Figure 2.5 is a Venn diagram illustrating that the shaded
area in S but not in A is A. Note that A ∪ A = S.

Two sets, A and B, are said to be disjoint, or mutually exclusive, if A∩ B = ∅. That
is, mutually exclusive sets have no points in common. The Venn diagram in Figure 2.6
illustrates two sets A and B that are mutually exclusive. Referring to Figure 2.5, it is
easy to see that, for any set A, A and A are mutually exclusive.

Consider the die-tossing problem of Section 2.2 and let S denote the set of all pos-
sible numerical observations for a single toss of a die. That is, S = {1, 2, 3, 4, 5, 6}.
Let A = {1, 2}, B = {1, 3}, and C = {2, 4, 6}. Then A ∪ B = {1, 2, 3}, A ∩ B = {1},
and A = {3, 4, 5, 6}. Also, note that B and C are mutually exclusive, whereas A and
C are not.

A

A

SF I G U R E 2.5
Venn diagram for A
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We will not attempt a thorough review of set algebra, but we mention four equalities
of considerable importance. These are the distributive laws, given by

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

and DeMorgan’s laws:

(A ∩ B) = A ∪ B and (A ∪ B) = A ∩ B.

In the next section we will proceed with an elementary discussion of probability
theory.

Exercises
2.1 Suppose a family contains two children of different ages, and we are interested in the gender

of these children. Let F denote that a child is female and M that the child is male and let a
pair such as F M denote that the older child is female and the younger is male. There are four
points in the set S of possible observations:

S = {F F, F M, M F, M M}.
Let A denote the subset of possibilities containing no males; B, the subset containing two
males; and C , the subset containing at least one male. List the elements of A, B, C, A ∩ B,
A ∪ B, A ∩ C, A ∪ C, B ∩ C, B ∪ C , and C ∩ B.

2.2 Suppose that A and B are two events. Write expressions involving unions, intersections, and
complements that describe the following:

a Both events occur.

b At least one occurs.

c Neither occurs.

d Exactly one occurs.

2.3 Draw Venn diagrams to verify DeMorgan’s laws. That is, for any two sets A and B, (A ∪ B) =
A ∩ B and (A ∩ B) = A ∪ B.
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26 Chapter 2 Probability

2.4 If A and B are two sets, draw Venn diagrams to verify the following:

a A = (A ∩ B) ∪ (A ∩ B).

b If B ⊂ A then A = B ∪ (A ∩ B).

2.5 Refer to Exercise 2.4. Use the identities A = A ∩ S and S = B ∪ B and a distributive law to
prove that

a A = (A ∩ B) ∪ (A ∩ B).

b If B ⊂ A then A = B ∪ (A ∩ B).

c Further, show that (A ∩ B) and (A ∩ B) are mutually exclusive and therefore that A is the
union of two mutually exclusive sets, (A ∩ B) and (A ∩ B).

d Also show that B and (A ∩ B) are mutually exclusive and if B ⊂ A, A is the union of two
mutually exclusive sets, B and (A ∩ B).

2.6 Suppose two dice are tossed and the numbers on the upper faces are observed. Let S denote
the set of all possible pairs that can be observed. [These pairs can be listed, for example, by
letting (2, 3) denote that a 2 was observed on the first die and a 3 on the second.]

a Define the following subsets of S:

A: The number on the second die is even.
B: The sum of the two numbers is even.
C : At least one number in the pair is odd.

b List the points in A, C, A ∩ B, A ∩ B, A ∪ B, and A ∩ C .

2.7 A group of five applicants for a pair of identical jobs consists of three men and two women. The
employer is to select two of the five applicants for the jobs. Let S denote the set of all possible
outcomes for the employer’s selection. Let A denote the subset of outcomes corresponding to
the selection of two men and B the subset corresponding to the selection of at least one woman.
List the outcomes in A, B, A ∪ B, A ∩ B, and A ∩ B. (Denote the different men and women
by M1, M2, M3 and W1, W2, respectively.)

2.8 From a survey of 60 students attending a university, it was found that 9 were living off campus,
36 were undergraduates, and 3 were undergraduates living off campus. Find the number of
these students who were

a undergraduates, were living off campus, or both.

b undergraduates living on campus.

c graduate students living on campus.

2.4 A Probabilistic Model for an Experiment:
The Discrete Case
In Section 2.2 we referred to the die-tossing experiment when we observed the number
appearing on the upper face. We will use the term experiment to include observations
obtained from completely uncontrollable situations (such as observations on the daily
price of a particular stock) as well as those made under controlled laboratory condi-
tions. We have the following definition:
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DEFINITION 2.1 An experiment is the process by which an observation is made.

Examples of experiments include coin and die tossing, measuring the IQ score of an
individual, or determining the number of bacteria per cubic centimeter in a portion
of processed food.

When an experiment is performed, it can result in one or more outcomes, which
are called events. In our discussions, events will be denoted by capital letters. If the
experiment consists of counting the number of bacteria in a portion of food, some
events of interest could be

A: Exactly 110 bacteria are present.
B: More than 200 bacteria are present.
C : The number of bacteria present is between 100 and 300.

Some events associated with a single toss of a balanced die are these:

A: Observe an odd number.
B: Observe a number less than 5.
C : Observe a 2 or a 3.
E1: Observe a 1.
E2: Observe a 2.
E3: Observe a 3.
E4: Observe a 4.
E5: Observe a 5.
E6: Observe a 6.

You can see that there is a distinct difference among some of the events associated
with the die-tossing experiment. For example, if you observe event A (an odd number),
at the same time you will have observed E1, E3, or E5. Thus, event A, which can be
decomposed into three other events, is called a compound event. In contrast, the events
E1, E2, E3, E4, E5, and E6 cannot be decomposed and are called simple events. A
simple event can happen only in one way, whereas a compound event can happen in
more than one distinct way.

Certain concepts from set theory are useful for expressing the relationships between
various events associated with an experiment. Because sets are collections of points,
we associate a distinct point, called a sample point, with each and every simple event
associated with an experiment.

DEFINITION 2.2 A simple event is an event that cannot be decomposed. Each simple event
corresponds to one and only one sample point. The letter E with a subscript
will be used to denote a simple event or the corresponding sample point.

Thus, we can think of a simple event as a set consisting of a single point—namely,
the single sample point associated with the event.
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DEFINITION 2.3 The sample space associated with an experiment is the set consisting of all
possible sample points. A sample space will be denoted by S.

We can easily see that the sample space S associated with the die-tossing experi-
ment consists of six sample points corresponding to the six simple events E1, E2, E3,
E4, E5, and E6. That is, S = {E1, E2, E3, E4, E5, E6}. A Venn diagram exhibiting
the sample space for the die-tossing experiment is given in Figure 2.7.

For the microbiology example of counting bacteria in a food specimen, let E0

correspond to observing 0 bacteria, E1 correspond to observing 1 bacterium, and so
on. Then the sample space is

S = {E0, E1, E2, . . .}
because no integer number of bacteria can be ruled out as a possible outcome.

Both sample spaces that we examined have the property that they consist of either
a finite or a countable number of sample points. In the die-tossing example, there are
six (a finite number) sample points. The number of sample points associated with
the bacteria-counting experiment is infinite, but the number of distinct sample points
can be put into a one-to-one correspondence with the integers (that is, the number of
sample points is countable). Such sample spaces are said to be discrete.

DEFINITION 2.4 A discrete sample space is one that contains either a finite or a countable number
of distinct sample points.

When an experiment is conducted a single time, you will observe one and only one
simple event. For example, if you toss a die and observe a 1, you cannot at the same
time observe a 2. Thus, the single sample point E1 associated with observing a 1 and
the single sample point E2 associated with observing a 2 are distinct, and the sets {E1}
and {E2} are mutually exclusive sets. Thus, events E1 and E2 are mutually exclusive
events. Similarly, all distinct simple events correspond to mutually exclusive sets of
simple events and are thus mutually exclusive events.

For experiments with discrete sample spaces, compound events can be viewed as
collections (sets) of sample points or, equivalently, as unions of the sets of single
sample points corresponding to the appropriate simple events. For example, the die-
tossing event A (observe an odd number) will occur if and only if one of the simple
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events E1, E3, or E5 occurs. Thus,

A = {E1, E3, E5} or A = E1 ∪ E3 ∪ E5.

Similarly, B (observe a number less than 5) can be written as

B = {E1, E2, E3, E4} or B = E1 ∪ E2 ∪ E3 ∪ E4.

The rule for determining which simple events to include in a compound event is very
precise. A simple event Ei is included in event A if and only if A occurs whenever Ei

occurs.

DEFINITION 2.5 An event in a discrete sample space S is a collection of sample points—that is,
any subset of S.

Figure 2.8 gives a Venn diagram representing the sample space and events
A (observe an odd number) and B (observe a number less than 5) for the die-tossing
experiment. Notice that it is easy to visualize the relationship between events by using
a Venn diagram.

By Definition 2.5, any event in a discrete sample space S is a subset of S. In the
example concerning counting bacteria in a portion of food, the event B (the number
of bacteria is more than 200) can be expressed as

B = {E201, E202, E203, . . .},
where Ei denotes the simple event that there are i bacteria present in the food sample
and i = 0, 1, 2, . . . .

A probabilistic model for an experiment with a discrete sample space can be
constructed by assigning a numerical probability to each simple event in the sample
space S. We will select this number, a measure of our belief in the event’s occur-
rence on a single repetition of the experiment, in such a way that it will be consistent
with the relative frequency concept of probability. Although relative frequency does
not provide a rigorous definition of probability, any definition applicable to the real
world should agree with our intuitive notion of the relative frequencies of events.

On analyzing the relative frequency concept of probability, we see that three con-
ditions must hold.

1. The relative frequency of occurrence of any event must be greater than or equal
to zero. A negative relative frequency does not make sense.
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2. The relative frequency of the whole sample space S must be unity. Because
every possible outcome of the experiment is a point in S, it follows that S must
occur every time the experiment is performed.

3. If two events are mutually exclusive, the relative frequency of their union is the
sum of their respective relative frequencies. (For example, if the experiment of
tossing a balanced die yields a 1 on 1/6 of the tosses, it should yield a 1 or a 2
on 1/6 + 1/6 = 1/3 of the tosses.)

These three conditions form the basis of the following definition of probability.

DEFINITION 2.6 Suppose S is a sample space associated with an experiment. To every event A
in S (A is a subset of S), we assign a number, P(A), called the probability of
A, so that the following axioms hold:

Axiom 1: P(A) ≥ 0.
Axiom 2: P(S) = 1.
Axiom 3: If A1, A2, A3, . . . form a sequence of pairwise mutually

exclusive events in S (that is, Ai ∩ A j = ∅ if i 7= j), then

P(A1 ∪ A2 ∪ A3 ∪ · · ·) =
∞∑

i=1

P(Ai ).

We can easily show that Axiom 3, which is stated in terms of an infinite sequence of
events, implies a similar property for a finite sequence. Specifically, if A1, A2, . . . , An

are pairwise mutually exclusive events, then

P(A1 ∪ A2 ∪ A3 ∪ · · · ∪ An) =
n∑

i=1

P(Ai ).

Notice that the definition states only the conditions an assignment of probabilities
must satisfy; it does not tell us how to assign specific probabilities to events. For
example, suppose that a coin has yielded 800 heads in 1000 previous tosses. Consider
the experiment of one more toss of the same coin. There are two possible outcomes,
head or tail, and hence two simple events. The definition of probability allows us to
assign to these simple events any two nonnegative numbers that add to 1. For example,
each simple event could have the probability 1/2. In light of the past history of this
coin, however, it might be more reasonable to assign a probability nearer .8 to the
outcome involving a head. Specific assignments of probabilities must be consistent
with reality if the probabilistic model is to serve a useful purpose.

For discrete sample spaces, it suffices to assign probabilities to each simple event. If
a balanced die is used for the die-tossing example, it seems reasonable to assume that
all simple events would have the same relative frequency in the long run. We will assign
a probability of 1/6 to each simple event: P(Ei ) = 1/6, for i = 1, 2, . . . , 6. This
assignment of probabilities agrees with Axiom 1. To see that Axiom 2 is satisfied, write

P(S) = P(E1 ∪ E2 ∪ · · · ∪ E6) = P(E1) + P(E2) + · · · + P(E6) = 1.

The second equality follows because Axiom 3 must hold. Axiom 3 also tells us that
we can calculate the probability of any event by summing the probabilities of the
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2.4 A Probabilistic Model for an Experiment: The Discrete Case 31

simple events contained in that event (recall that distinct simple events are mutually
exclusive). Event A was defined to be “observe an odd number.” Hence,

P(A) = P(E1 ∪ E3 ∪ E5) = P(E1) + P(E3) + P(E5) = 1/2.

EXAMPLE 2.1 A manufacturer has five seemingly identical computer terminals available for ship-
ping. Unknown to her, two of the five are defective. A particular order calls for
two of the terminals and is filled by randomly selecting two of the five that are
available.

a List the sample space for this experiment.
b Let A denote the event that the order is filled with two nondefective terminals.

List the sample points in A.
c Construct a Venn diagram for the experiment that illustrates event A.
d Assign probabilities to the simple events in such a way that the information

about the experiment is used and the axioms in Definition 2.6 are met.
e Find the probability of event A.

Solution a Let the two defective terminals be labeled D1 and D2 and let the three good
terminals be labeled G1, G2, and G3. Any single sample point will consist of
a list of the two terminals selected for shipment. The simple events may be
denoted by

E1 = {D1, D2}, E5 = {D2, G1}, E8 = {G1, G2}, E10 = {G2, G3} .
E2 = {D1, G1}, E6 = {D2, G2}, E9 = {G1, G3},
E3 = {D1, G2}, E7 = {D2, G3},
E4 = {D1, G3},

Thus, there are ten sample points in S, and S ={E1,E2, . . . ,E10}.
b Event A = {E8, E9, E10}.
c S

E1 E5 E9

E2 E6 E10

E3 E7

E4 E8

A

d Because the terminals are selected at random, any pair of terminals is as likely
to be selected as any other pair. Thus, P(Ei ) = 1/10, for i = 1, 2, . . . , 10, is a
reasonable assignment of probabilities.
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32 Chapter 2 Probability

e Because A = E8 ∪ E9 ∪ E10, Axiom 3 implies that

P(A) = P(E8) + P(E9) + P(E10) = 3/10.

The next section contains an axiomatic description of the method for calculating
P(A) that we just used.

Before we proceed, let us note that there are experiments for which the sample space
is not countable and hence is not discrete. Suppose, for example, that the experiment
consists of measuring the blood glucose level of a diabetic patient. The sample space
for this experiment would contain an interval of real numbers, and any such interval
contains an uncountable number of values. Thus, the sample space is not discrete.
Situations like the latter will be discussed in Chapter 4. The remainder of this chapter
is devoted to developing methods for calculating the probabilities of events defined
on discrete sample spaces.

Exercises
2.9 Every person’s blood type is A, B, AB, or O. In addition, each individual either has the

Rhesus (Rh) factor (+) or does not (−). A medical technician records a person’s blood type
and Rh factor. List the sample space for this experiment.

2.10 The proportions of blood phenotypes, A, B, AB, and O, in the population of all Caucasians in
the United States are approximately .41, .10, .04, and .45, respectively. A single Caucasian is
chosen at random from the population.

a List the sample space for this experiment.

b Make use of the information given above to assign probabilities to each of the simple events.

c What is the probability that the person chosen at random has either type A or type AB
blood?

2.11 A sample space consists of five simple events, E1, E2, E3, E4, and E5.

a If P(E1) = P(E2) = 0.15, P(E3) = 0.4, and P(E4) = 2P(E5), find the probabilities of
E4 and E5.

b If P(E1) = 3P(E2) = 0.3, find the probabilities of the remaining simple events if you
know that the remaining simple events are equally probable.

2.12 A vehicle arriving at an intersection can turn right, turn left, or continue straight ahead. The
experiment consists of observing the movement of a single vehicle through the intersection.

a List the sample space for this experiment.

b Assuming that all sample points are equally likely, find the probability that the vehicle turns.

2.13 Americans can be quite suspicious, especially when it comes to government conspiracies. On
the question of whether the U.S. Air Force has withheld proof of the existence of intelligent
life on other planets, the proportions of Americans with varying opinions are given in the
table.
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Opinion Proportion

Very likely .24
Somewhat likely .24
Unlikely .40
Other .12

Suppose that one American is selected and his or her opinion is recorded.

a What are the simple events for this experiment?

b Are the simple events that you gave in part (a) all equally likely? If not, what are the
probabilities that should be assigned to each?

c What is the probability that the person selected finds it at least somewhat likely that the Air
Force is withholding information about intelligent life on other planets?

2.14 A survey classified a large number of adults according to whether they were diagnosed as
needing eyeglasses to correct their reading vision and whether they use eyeglasses when reading.
The proportions falling into the four resulting categories are given in the following table:

Uses Eyeglasses
for Reading

Needs glasses Yes No

Yes .44 .14
No .02 .40

If a single adult is selected from the large group, find the probabilities of the events defined
below. The adult

a needs glasses.

b needs glasses but does not use them.

c uses glasses whether the glasses are needed or not.

2.15 An oil prospecting firm hits oil or gas on 10% of its drillings. If the firm drills two wells,
the four possible simple events and three of their associated probabilities are as given in the
accompanying table. Find the probability that the company will hit oil or gas

a on the first drilling and miss on the second.

b on at least one of the two drillings.

Simple Outcome of Outcome of
Event First Drilling Second Drilling Probability

E1 Hit (oil or gas) Hit (oil or gas) .01
E2 Hit Miss ?
E3 Miss Hit .09
E4 Miss Miss .81

2.16 Of the volunteers coming into a blood center, 1 in 3 have O+ blood, 1 in 15 have O−, 1 in 3
have A+, and 1 in 16 have A−. The name of one person who previously has donated blood is
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selected from the records of the center. What is the probability that the person selected has

a type O+ blood?

b type O blood?

c type A blood?

d neither type A nor type O blood?

2.17 Hydraulic landing assemblies coming from an aircraft rework facility are each inspected for
defects. Historical records indicate that 8% have defects in shafts only, 6% have defects in
bushings only, and 2% have defects in both shafts and bushings. One of the hydraulic assemblies
is selected randomly. What is the probability that the assembly has

a a bushing defect?

b a shaft or bushing defect?

c exactly one of the two types of defects?

d neither type of defect?

2.18 Suppose two balanced coins are tossed and the upper faces are observed.

a List the sample points for this experiment.

b Assign a reasonable probability to each sample point. (Are the sample points equally
likely?)

c Let A denote the event that exactly one head is observed and B the event that at least one
head is observed. List the sample points in both A and B.

d From your answer to part (c), find P(A), P(B), P(A ∩ B), P(A ∪ B), and P(A ∪ B).

2.19 A business office orders paper supplies from one of three vendors, V1, V2, or V3. Orders are to
be placed on two successive days, one order per day. Thus, (V2, V3) might denote that vendor
V2 gets the order on the first day and vendor V3 gets the order on the second day.

a List the sample points in this experiment of ordering paper on two successive days.

b Assume the vendors are selected at random each day and assign a probability to each sample
point.

c Let A denote the event that the same vendor gets both orders and B the event that V2 gets at
least one order. Find P(A), P(B), P(A ∪ B), and P(A ∩ B) by summing the probabilities
of the sample points in these events.

*2.20 The following game was played on a popular television show. The host showed a contestant
three large curtains. Behind one of the curtains was a nice prize (maybe a new car) and behind
the other two curtains were worthless prizes (duds). The contestant was asked to choose one
curtain. If the curtains are identified by their prizes, they could be labeled G, D1, and D2 (Good
Prize, Dud1, and Dud2). Thus, the sample space for the contestants choice is S = {G, D1, D2}.1

a If the contestant has no idea which curtains hide the various prizes and selects a curtain at
random, assign reasonable probabilities to the simple events and calculate the probability
that the contestant selects the curtain hiding the nice prize.

b Before showing the contestant what was behind the curtain initially chosen, the game show
host would open one of the curtains and show the contestant one of the duds (he could
always do this because he knew the curtain hiding the good prize). He then offered the

1. Exercises preceded by an asterisk are optional.
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contestant the option of changing from the curtain initially selected to the other remaining
unopened curtain. Which strategy maximizes the contestant’s probability of winning the
good prize: stay with the initial choice or switch to the other curtain? In answering the
following sequence of questions, you will discover that, perhaps surprisingly, this question
can be answered by considering only the sample space above and using the probabilities
that you assigned to answer part (a).

i If the contestant choses to stay with her initial choice, she wins the good prize if and
only if she initially chose curtain G. If she stays with her initial choice, what is the
probability that she wins the good prize?

ii If the host shows her one of the duds and she switches to the other unopened curtain,
what will be the result if she had initially selected G?

iii Answer the question in part (ii) if she had initially selected one of the duds.

iv If the contestant switches from her initial choice (as the result of being shown one of
the duds), what is the probability that the contestant wins the good prize?

v Which strategy maximizes the contestant’s probability of winning the good prize: stay
with the initial choice or switch to the other curtain?

*2.21 If A and B are events, use the result derived in Exercise 2.5(a) and the Axioms in Definition
2.6 to prove that

P(A) = P(A ∩ B) + P(A ∩ B).

*2.22 If A and B are events and B ⊂ A, use the result derived in Exercise 2.5(b) and the Axioms in
Definition 2.6 to prove that

P(A) = P(B) + P(A ∩ B).

2.23 If A and B are events and B ⊂ A, why is it “obvious” that P(B) ≤ P(A)?

2.24 Use the result in Exercise 2.22 and the Axioms in Definition 2.6 to prove the “obvious” result
in Exercise 2.23.

2.5 Calculating the Probability of an Event:
The Sample-Point Method
Finding the probability of an event defined on a sample space that contains a finite or
denumerable (countably infinite) set of sample points can be approached in two ways,
the sample-point and the event-composition methods. Both methods use the sample
space model, but they differ in the sequence of steps necessary to obtain a solution
and in the tools that are used. Separation of the two procedures may not be palatable
to the unity-seeking theorist, but it can be extremely useful to a beginner attempting to
find the probability of an event. In this section we consider the sample-point method.
The event-composition method requires additional results and will be presented in
Section 2.9.
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36 Chapter 2 Probability

The sample-point method is outlined in Section 2.4. The following steps are
used to find the probability of an event:

1. Define the experiment and clearly determine how to describe one simple
event.

2. List the simple events associated with the experiment and test each to make
certain that it cannot be decomposed. This defines the sample space S.

3. Assign reasonable probabilities to the sample points in S, making certain
that P(Ei ) ≥ 0 and

∑
P(Ei ) = 1.

4. Define the event of interest, A, as a specific collection of sample points.
(A sample point is in A if A occurs when the sample point occurs. Test all
sample points in S to identify those in A.)

5. Find P(A) by summing the probabilities of the sample points in A.

We will illustrate these steps with three examples.

EXAMPLE 2.2 Consider the problem of selecting two applicants for a job out of a group of five and
imagine that the applicants vary in competence, 1 being the best, 2 second best, and
so on, for 3, 4, and 5. These ratings are of course unknown to the employer. Define
two events A and B as:

A: The employer selects the best and one of the two poorest
applicants (applicants 1 and 4 or 1 and 5).

B: The employer selects at least one of the two best.
Find the probabilities of these events.

Solution The steps are as follows:
1. The experiment involves randomly selecting two applicants out of five. Denote

the selection of applicants 3 and 5 by {3, 5}.
2. The ten simple events, with {i, j} denoting the selection of applicants i and

j , are

E1 : {1, 2}, E5 : {2, 3}, E8 : {3, 4}, E10 : {4, 5}.
E2 : {1, 3}, E6 : {2, 4}, E9 : {3, 5},
E3 : {1, 4}, E7 : {2, 5},
E4 : {1, 5},

3. A random selection of two out of five gives each pair an equal chance for
selection. Hence, we will assign each sample point the probability 1/10. That is,

P(Ei ) = 1/10 = .1, i = 1, 2, . . . , 10.

4. Checking the sample points, we see that B occurs whenever E1, E2, E3, E4,
E5, E6, or E7 occurs. Hence, these sample points are included in B.
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5. Finally, P(B) is equal to the sum of the probabilities of the sample points in
B, or

P(B) =
7∑

i=1

P(Ei ) =
7∑

i=1

.1 = .7.

Similarly, we see that event A = E3 ∪ E4 and that P(A) = .1 + .1 = .2.

The solution of this and similar problems would be of importance to a company
personnel director.

EXAMPLE 2.3 A balanced coin is tossed three times. Calculate the probability that exactly two of
the three tosses result in heads.

Solution The five steps of the sample-point method are as follows:
1. The experiment consists of observing the outcomes (heads or tails) for each of

three tosses of a coin. A simple event for this experiment can be symbolized by a
three-letter sequence of H ’s and T ’s, representing heads and tails, respectively.
The first letter in the sequence represents the observation on the first coin. The
second letter represents the observation on the second coin, and so on.

2. The eight simple events in S are

E1 : H H H , E3 : H T H , E5 : H T T , E7 : T T H ,
E2 : H H T , E4 : T H H , E6 : T H T , E8 : T T T .

3. Because the coin is balanced, we would expect the simple events to be equally
likely; that is,

P(Ei ) = 1/8, i = 1, 2, . . . , 8.

4. The event of interest, A, is the event that exactly two of the tosses result in
heads. An examination of the sample points will verify that

A = {E2, E3, E4}.

5. Finally,

P(A) = P(E2) + P(E3) + P(E4) = 1/8 + 1/8 + 1/8 = 3/8.

Although the sample points in the sample spaces associated with Examples 2.2
and 2.3 are equally likely, it is important to realize that sample points need not be
equally likely. An example to illustrate this point follows.
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EXAMPLE 2.4 The odds are two to one that, when A and B play tennis, A wins. Suppose that A and
B play two matches. What is the probability that A wins at least one match?

Solution
1. The experiment consists of observing the winner (A or B) for each of two

matches. Let AB denote the event that player A wins the first match and player
B wins the second.

2. The sample space for the experiment consists of four sample points:

E1 : AA, E2 : AB, E3 : B A, E4 : B B

3. Because A has a better chance of winning any match, it does not seem appro-
priate to assign equal probabilities to these sample points. As you will see in
Section 2.9, under certain conditions it is reasonable to make the following
assignment of probabilities:

P(E1) = 4/9, P(E2) = 2/9, P(E3) = 2/9, P(E4) = 1/9.

Notice that, even though the probabilities assigned to the simple events are not
all equal, P(Ei ) ≥ 0, for i = 1, 2, 3, 4, and

∑
S P(Ei ) = 1.

4. The event of interest is that A wins at least one game. Thus, if we denote the
event of interest as C , it is easily seen that

C = E1 ∪ E2 ∪ E3.

5. Finally,

P(C) = P(E1) + P(E2) + P(E3) = 4/9 + 2/9 + 2/9 = 8/9.

The sample-point method for solving a probability problem is direct and powerful
and in some respects is a bulldozer approach. It can be applied to find the probability of
any event defined over a sample space containing a finite or countable set of sample
points, but it is not resistant to human error. Common errors include incorrectly
diagnosing the nature of a simple event and failing to list all the sample points in
S. A second complication occurs because many sample spaces contain a very large
number of sample points and a complete itemization is tedious and time consuming
and might be practically impossible.

Fortunately, many sample spaces generated by experimental data contain subsets
of sample points that are equiprobable. (The sample spaces for Examples 2.1, 2.2,
and 2.3 possess this property.) When this occurs, we need not list the points but may
simply count the number in each subset. If such counting methods are inapplicable,
an orderly method should be used to list the sample points (notice the listing schemes
for Examples 2.1, 2.2, and 2.3). The listing of large numbers of sample points can be
accomplished by using a computer.

Tools that reduce the effort and error associated with the sample-point approach
for finding the probability of an event include orderliness, a computer, and the math-
ematical theory of counting, called combinatorial analysis. Computer programming
and applications form a topic for separate study. The mathematical theory of combi-
natorial analysis is also a broad subject, but some quite useful results can be given
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succinctly. Hence, our next topic concerns some elementary results in combinato-
rial analysis and their application to the sample-point approach for the solution of
probability problems.

Exercises
2.25 A single car is randomly selected from among all of those registered at a local tag agency.

What do you think of the following claim? “All cars are either Volkswagens or they are not.
Therefore, the probability is 1/2 that the car selected is a Volkswagen.”

2.26 According to Webster’s New Collegiate Dictionary, a divining rod is “a forked rod believed
to indicate [divine] the presence of water or minerals by dipping downward when held over a
vein.” To test the claims of a divining rod expert, skeptics bury four cans in the ground, two
empty and two filled with water. The expert is led to the four cans and told that two contain
water. He uses the divining rod to test each of the four cans and decide which two contain water.

a List the sample space for this experiment.

b If the divining rod is completely useless for locating water, what is the probability that the
expert will correctly identify (by guessing) both of the cans containing water?

2.27 In Exercise 2.12 we considered a situation where cars entering an intersection each could turn
right, turn left, or go straight. An experiment consists of observing two vehicles moving through
the intersection.

a How many sample points are there in the sample space? List them.

b Assuming that all sample points are equally likely, what is the probability that at least one
car turns left?

c Again assuming equally likely sample points, what is the probability that at most one
vehicle turns?

2.28 Four equally qualified people apply for two identical positions in a company. One and only
one applicant is a member of a minority group. The positions are filled by choosing two of the
applicants at random.

a List the possible outcomes for this experiment.

b Assign reasonable probabilities to the sample points.

c Find the probability that the applicant from the minority group is selected for a position.

2.29 Two additional jurors are needed to complete a jury for a criminal trial. There are six prospective
jurors, two women and four men. Two jurors are randomly selected from the six available.

a Define the experiment and describe one sample point. Assume that you need describe only
the two jurors chosen and not the order in which they were selected.

b List the sample space associated with this experiment.

c What is the probability that both of the jurors selected are women?

2.30 Three imported wines are to be ranked from lowest to highest by a purported wine expert. That
is, one wine will be identified as best, another as second best, and the remaining wine as worst.

a Describe one sample point for this experiment.

b List the sample space.

c Assume that the “expert” really knows nothing about wine and randomly assigns ranks to
the three wines. One of the wines is of much better quality than the others. What is the
probability that the expert ranks the best wine no worse than second best?
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2.31 A boxcar contains six complex electronic systems. Two of the six are to be randomly selected
for thorough testing and then classified as defective or not defective.

a If two of the six systems are actually defective, find the probability that at least one of the
two systems tested will be defective. Find the probability that both are defective.

b If four of the six systems are actually defective, find the probabilities indicated in part (a).

2.32 A retailer sells only two styles of stereo consoles, and experience shows that these are in equal
demand. Four customers in succession come into the store to order stereos. The retailer is
interested in their preferences.

a List the possibilities for preference arrangements among the four customers (that is, list
the sample space).

b Assign probabilities to the sample points.

c Let A denote the event that all four customers prefer the same style. Find P(A).

2.33 The Bureau of the Census reports that the median family income for all families in the United
States during the year 2003 was $43,318. That is, half of all American families had incomes
exceeding this amount, and half had incomes equal to or below this amount. Suppose that four
families are surveyed and that each one reveals whether its income exceeded $43,318 in 2003.

a List the points in the sample space.

b Identify the simple events in each of the following events:

A: At least two had incomes exceeding $43,318.

B: Exactly two had incomes exceeding $43,318.

C : Exactly one had income less than or equal to $43,318.

c Make use of the given interpretation for the median to assign probabilities to the simple
events and find P(A), P(B), and P(C).

2.34 Patients arriving at a hospital outpatient clinic can select one of three stations for service.
Suppose that physicians are assigned randomly to the stations and that the patients therefore
have no station preference. Three patients arrive at the clinic and their selection of stations is
observed.

a List the sample points for the experiment.

b Let A be the event that each station receives a patient. List the sample points in A.

c Make a reasonable assignment of probabilities to the sample points and find P(A).

2.6 Tools for Counting Sample Points
This section presents some useful results from the theory of combinatorial analysis
and illustrates their application to the sample-point method for finding the probability
of an event. In many cases, these results enable you to count the total number of
sample points in the sample space S and in an event of interest, thereby providing
a confirmation of your listing of simple events. When the number of simple events
in a sample space is very large and manual enumeration of every sample point is
tedious or even impossible, counting the number of points in the sample space and in
the event of interest may be the only efficient way to calculate the probability of an
event. Indeed, if a sample space contains N equiprobable sample points and an event
A contains exactly na sample points, it is easily seen that P(A) = na/N .
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The first result from combinatorial analysis that we present, often called the mn
rule, is stated as follows:

THEOREM 2.1 With m elements a1, a2, . . . , am and n elements b1, b2, . . . , bn , it is possible
to form mn = m × n pairs containing one element from each group.

Proof Verification of the theorem can be seen by observing the rectangular table in
Figure 2.9. There is one square in the table for each ai , b j pair and hence a total
of m × n squares.

The mn rule can be extended to any number of sets. Given three sets of elements—
a1, a2, . . . , am ; b1, b2, . . . , bn; and c1, c2, . . . , cp—the number of distinct triplets
containing one element from each set is equal to mnp. The proof of the theorem for
three sets involves two applications of Theorem 2.1. We think of the first set as an
(ai , b j ) pair and unite each of these pairs with elements of the third set, c1, c2, . . . , cp.
Theorem 2.1 implies that there are mn pairs (ai , b j ). Because there are p elements
c1, c2, . . . , cp, another application of Theorem 2.1 implies that there are (mn)(p) =
mnp triplets ai b j ck .

EXAMPLE 2.5 An experiment involves tossing a pair of dice and observing the numbers on the upper
faces. Find the number of sample points in S, the sample space for the experiment.

Solution A sample point for this experiment can be represented symbolically as an ordered
pair of numbers representing the outcomes on the first and second die, respectively.
Thus, (4, 5) denotes the event that the uppermost face on the first die was a 4 and on
the second die, a 5. The sample space S consists of the set of all possible pairs (x, y),
where x and y are both integers between 1 and 6.

The first die can result in one of six numbers. These represent a1, a2, . . . ,

a6. Likewise, the second die can fall in one of six ways, and these correspond to
b1, b2, . . . , b6. Then m = n = 6 and the total number of sample points in S is
mn = (6)(6) = 36.
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EXAMPLE 2.6 Refer to the coin-tossing experiment in Example 2.3. We found for this example that
the total number of sample points was eight. Use the extension of the mn rule to
confirm this result.

Solution Each sample point in S was identified by a sequence of three letters, where each
position in the sequence contained one of two letters, an H or a T . The problem
therefore involves the formation of triples, with an element (an H or a T ) from each
of three sets. For this example the sets are identical and all contain two elements
(H and T ). Thus, the number of elements in each set is m = n = p = 2, and the
total number of triples that can be formed is mnp = (2)3 = 8.

EXAMPLE 2.7 Consider an experiment that consists of recording the birthday for each of 20 randomly
selected persons. Ignoring leap years and assuming that there are only 365 possible
distinct birthdays, find the number of points in the sample space S for this experiment.
If we assume that each of the possible sets of birthdays is equiprobable, what is the
probability that each person in the 20 has a different birthday?

Solution Number the days of the year 1, 2, . . . , 365. A sample point for this experiment can be
represented by an ordered sequence of 20 numbers, where the first number denotes
the number of the day that is the first person’s birthday, the second number denotes the
number of the day that is the second person’s birthday, and so on. We are concerned
with the number of 20-tuples that can be formed, selecting a number representing
one of the 365 days in the year from each of 20 sets.The sets are all identical, and
each contains 365 elements. Repeated applications of the mn rule tell us there are
(365)20 such 20-tuples. Thus, the sample space S contains N = (365)20 sample
points. Although we could not feasibly list all the sample points, if we assume them
to be equiprobable, P(Ei ) = 1/(365)20 for each simple event.

If we denote the event that each person has a different birthday by A, the probability
of A can be calculated if we can determine na , the number of sample points in A.
A sample point is in A if the corresponding 20-tuple is such that no two positions
contain the same number. Thus, the set of numbers from which the first element in a
20-tuple in A can be selected contains 365 numbers, the set from which the second
element can be selected contains 364 numbers (all but the one selected for the first
element), the set from which the third can be selected contains 363 (all but the two
selected for the first two elements), . . . , and the set from which the 20th element can
be selected contains 346 elements (all but those selected for the first 19 elements).
An extension of the mn rule yields

na = (365) × (364) × · · · × (346).

Finally, we may determine that

P(A) = na

N
= 365 × 364 × · · · × 346

(365)20
= .5886.
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Notice that for Examples 2.5 and 2.6 the numbers of sample points in the respective
sample spaces are both relatively small and that listings for these sample spaces could
easily be written down. For instances like these, the mn rule provides a simple method
to verify that the sample spaces contain the correct number of points. In contrast, it
is not feasible to list the sample space in Example 2.7. However, the mn rule can be
used to count the number of sample points in S and in the event of interest, permitting
calculation of the probability of the event.

We have seen that the sample points associated with an experiment often can be
represented symbolically as a sequence of numbers or symbols. In some instances, it
will be clear that the total number of sample points equals the number of distinct ways
that the respective symbols can be arranged in sequence. The following theorem can
be used to determine the number of ordered arrangements that can be formed.

DEFINITION 2.7 An ordered arrangement of r distinct objects is called a permutation. The num-
ber of ways of ordering n distinct objects taken r at a time will be designated
by the symbol Pn

r .

THEOREM 2.2 Pn
r = n(n − 1)(n − 2) · · · (n − r + 1) = n!

(n − r)!
.

Proof We are concerned with the number of ways of filling r positions with n distinct
objects. Applying the extension of the mn rule, we see that the first object can
be chosen in one of n ways. After the first is chosen, the second can be chosen
in (n − 1) ways, the third in (n − 2), and the r th in (n − r + 1) ways. Hence,
the total number of distinct arrangements is

Pn
r = n(n − 1)(n − 2) · · · (n − r + 1).

Expressed in terms of factorials,

Pn
r = n(n − 1)(n − 2) · · · (n − r + 1)

(n − r)!

(n − r)!
= n!

(n − r)!
where n! = n(n − 1) · · · (2)(1) and 0! = 1.

EXAMPLE 2.8 The names of 3 employees are to be randomly drawn, without replacement, from a
bowl containing the names of 30 employees of a small company. The person whose
name is drawn first receives $100, and the individuals whose names are drawn second
and third receive $50 and $25, respectively. How many sample points are associated
with this experiment?

Solution Because the prizes awarded are different, the number of sample points is the number
of ordered arrangements of r = 3 out of the possible n = 30 names. Thus, the number
of sample points in S is

P30
3 = 30!

27!
= (30)(29)(28) = 24,360.
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EXAMPLE 2.9 Suppose that an assembly operation in a manufacturing plant involves four steps,
which can be performed in any sequence. If the manufacturer wishes to compare
the assembly time for each of the sequences, how many different sequences will be
involved in the experiment?

Solution The total number of sequences equals the number of ways of arranging the n = 4
steps taken r = 4 at a time, or

P4
4 = 4!

(4 − 4)!
= 4!

0!
= 24.

The next result from combinatorial analysis can be used to determine the number
of subsets of various sizes that can be formed by partitioning a set of n distinct objects
into k nonoverlapping groups.

THEOREM 2.3 The number of ways of partitioning n distinct objects into k distinct groups
containing n1, n2, . . . , nk objects, respectively, where each object appears in
exactly one group and

∑k
i=1 ni = n, is

N =
(

n

n1 n2 · · · nk

)
= n!

n1! n2! · · · nk!
.

Proof N is the number of distinct arrangements of n objects in a row for a case in
which rearrangement of the objects within a group does not count. For example,
the letters a to l are arranged in three groups, where n1 = 3, n2 = 4, and
n3 = 5:

abc|de f g|hi jkl

is one such arrangement.
The number of distinct arrangements of the n objects, assuming all objects

are distinct, is Pn
n = n! (from Theorem 2.2). Then Pn

n equals the number of
ways of partitioning the n objects into k groups (ignoring order within groups)
multiplied by the number of ways of ordering the n1, n2, . . . , nk elements
within each group. This application of the extended mn rule gives

Pn
n = (N ) · (n1! n2! n3! · · · nk!),

where ni ! is the number of distinct arrangements of the ni objects in group i .
Solving for N , we have

N = n!

n1! n2! · · · nk!
≡

(
n

n1 n2 · · · nk

)
.
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The terms
(

n
n1 n2 ··· nk

)
are often called multinomial coefficients because they occur

in the expansion of the multinomial term y1 + y2 + · · · + yk raised to the nth power:

(y1 + y2 + · · · + yk)
n =

∑ (
n

n1 n2 · · · nk

)
yn1

1 yn2
2 · · · ynk

k ,

where this sum is taken over all ni = 0, 1, . . . , n such that n1 + n2 + · · · + nk = n.

EXAMPLE 2.10 A labor dispute has arisen concerning the distribution of 20 laborers to four different
construction jobs. The first job (considered to be very undesirable) required 6 laborers;
the second, third, and fourth utilized 4, 5, and 5 laborers, respectively. The dispute
arose over an alleged random distribution of the laborers to the jobs that placed all 4
members of a particular ethnic group on job 1. In considering whether the assignment
represented injustice, a mediation panel desired the probability of the observed event.
Determine the number of sample points in the sample space S for this experiment.
That is, determine the number of ways the 20 laborers can be divided into groups of
the appropriate sizes to fill all of the jobs. Find the probability of the observed event
if it is assumed that the laborers are randomly assigned to jobs.

Solution The number of ways of assigning the 20 laborers to the four jobs is equal to the number
of ways of partitioning the 20 into four groups of sizes n1 = 6, n2 = 4, n3 = n4 = 5.
Then

N =
(

20

6 4 5 5

)
= 20!

6! 4! 5! 5!
.

By a random assignment of laborers to the jobs, we mean that each of the N
sample points has probability equal to 1/N . If A denotes the event of interest and na

the number of sample points in A, the sum of the probabilities of the sample points in
A is P(A) = na(1/N ) = na/N . The number of sample points in A, na , is the number
of ways of assigning laborers to the four jobs with the 4 members of the ethnic group
all going to job 1. The remaining 16 laborers need to be assigned to the remaining
jobs. Because there remain two openings for job 1, this can be done in

na =
(

16

2 4 5 5

)
= 16!

2! 4! 5! 5!

ways. It follows that

P(A) = na

N
= 0.0031.

Thus, if laborers are randomly assigned to jobs, the probability that the 4 members
of the ethnic group all go to the undesirable job is very small. There is reason to doubt
that the jobs were randomly assigned.

In many situations the sample points are identified by an array of symbols in which
the arrangement of symbols is unimportant. The sample points for the selection of
applicants, Example 2.2, imply a selection of two applicants out of five. Each sample
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46 Chapter 2 Probability

point is identified as a pair of symbols, and the order of the symbols used to identify
the sample points is irrelevant.

DEFINITION 2.8 The number of combinations of n objects taken r at a time is the number of
subsets, each of size r , that can be formed from the n objects. This number will
be denoted by Cn

r or
( n

r

)
.

THEOREM 2.4 The number of unordered subsets of size r chosen (without replacement) from
n available objects is (

n

r

)
= Cn

r = Pn
r

r !
= n!

r !(n − r)!
.

Proof The selection of r objects from a total of n is equivalent to partitioning the n
objects into k = 2 groups, the r selected, and the (n − r) remaining. This is a
special case of the general partitioning problem dealt with in Theorem 2.3. In
the present case, k = 2, n1 = r , and n2 = (n − r) and, therefore,(

n

r

)
= Cn

r =
(

n

r n − r

)
= n!

r !(n − r)!
.

The terms
(n

r

)
are generally referred to as binomial coefficients because they occur

in the binomial expansion

(x + y)n =
(

n

0

)
xn y0 +

(
n

1

)
xn−1 y1 +

(
n

2

)
xn−2 y2 + · · · +

(
n

n

)
x0 yn

=
n∑

i=0

(
n

i

)
xn−i yi .

EXAMPLE 2.11 Find the number of ways of selecting two applicants out of five and hence the total
number of sample points in S for Example 2.2.

Solution (
5

2

)
= 5!

2!3!
= 10.

(Notice that this agrees with the number of sample points listed in Example 2.2.)

EXAMPLE 2.12 Let A denote the event that exactly one of the two best applicants appears in a selection
of two out of five. Find the number of sample points in A and P(A).

Solution Let na denote the number of sample points in A. Then na equals the number of
ways of selecting one of the two best (call this number m) times the number of
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ways of selecting one of the three low-ranking applicants (call this number n). Then
m = (2

1

)
, n = (3

1

)
, and applying the mn rule,

na =
(

2

1

)
·
(

3

1

)
= 2!

1!1!
· 3!

1!2!
= 6.

(This number can be verified by counting the sample points in A from the listing in
Example 2.2.)

In Example 2.11 we found the total number of sample points in S to be N = 10.
If each selection is equiprobable, P(Ei ) = 1/10 = .1, i = 1, 2, . . . , 10, and

P(A) =
∑
Ei ⊂A

P(Ei ) =
∑
Ei ⊂A

(.1) = na(.1) = 6(.1) = .6.

EXAMPLE 2.13 A company orders supplies from M distributors and wishes to place n orders (n < M).
Assume that the company places the orders in a manner that allows every distributor
an equal chance of obtaining any one order and there is no restriction on the number
of orders that can be placed with any distributor. Find the probability that a particular
distributor—say, distributor I—gets exactly k orders (k ≤ n).

Solution Because any of the M distributors can be selected to receive any one of the orders,
there are M ways that each order can be placed, and the number of different ways
that the n orders can be placed is M · M · M · · · M = (M)n . Consequently, there are
(M)n sample points in S. All these points are equally likely; hence P(Ei ) = 1/(M)n .

Let A denote the event that distributor I receives exactly k orders from among the n.
The k orders assigned to distributor I can be chosen from the n in

(n
k

)
ways. It remains to

determine the number of ways the remaining (n−k) orders can be assigned to the other
M −1 distributors. Because each of these (n − k) orders can go to any of the (M −1)

distributors, this assignment can be made in (M − 1)n−k ways. Thus, A contains

na =
(

n

k

)
(M − 1)n−k

sample points, and because the sample points are equally likely,

P(A) =
∑
Ei ⊂A

P(Ei ) =
∑
Ei ⊂A

(
1

Mn

)
= na

(
1

Mn

)
=

(n
k

)
(M − 1)n−k

Mn
.

Theorems 2.1 through 2.4 provide a few of the many useful counting rules found
in the theory of combinatorial analysis. A few additional theorems appear in the
exercises at the end of the chapter. If you are interested in extending your knowledge
of combinatorial analysis, refer to one of the numerous texts on this subject.

We will next direct our attention to the concept of conditional probability. Con-
ditional probability plays an important role in the event-composition approach for
finding the probability of an event and is sometimes useful in finding the probabilities
of sample points (for sample spaces with sample points that are not equally likely).
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Exercises
2.35 An airline has six flights from New York to California and seven flights from California to

Hawaii per day. If the flights are to be made on separate days, how many different flight
arrangements can the airline offer from New York to Hawaii?

2.36 An assembly operation in a manufacturing plant requires three steps that can be performed in
any sequence. How many different ways can the assembly be performed?

2.37 A businesswoman in Philadelphia is preparing an itinerary for a visit to six major cities. The
distance traveled, and hence the cost of the trip, will depend on the order in which she plans
her route.

a How many different itineraries (and trip costs) are possible?

b If the businesswoman randomly selects one of the possible itineraries and Denver and San
Francisco are two of the cities that she plans to visit, what is the probability that she will
visit Denver before San Francisco?

2.38 An upscale restaurant offers a special fixe prix menu in which, for a fixed dinner cost, a diner can
select from four appetizers, three salads, four entrees, and five desserts. How many different
dinners are available if a dinner consists of one appetizer, one salad, one entree, and one
dessert?

2.39 An experiment consists of tossing a pair of dice.

a Use the combinatorial theorems to determine the number of sample points in the sample
space S.

b Find the probability that the sum of the numbers appearing on the dice is equal to 7.

2.40 A brand of automobile comes in five different styles, with four types of engines, with two types
of transmissions, and in eight colors.

a How many autos would a dealer have to stock if he included one for each style–engine–
transmission combination?

b How many would a distribution center have to carry if all colors of cars were stocked for
each combination in part (a)?

2.41 How many different seven-digit telephone numbers can be formed if the first digit cannot be
zero?

2.42 A personnel director for a corporation has hired ten new engineers. If three (distinctly different)
positions are open at a Cleveland plant, in how many ways can she fill the positions?

2.43 A fleet of nine taxis is to be dispatched to three airports in such a way that three go to airport
A, five go to airport B, and one goes to airport C. In how many distinct ways can this be
accomplished?

2.44 Refer to Exercise 2.43. Assume that taxis are allocated to airports at random.

a If exactly one of the taxis is in need of repair, what is the probability that it is dispatched
to airport C?

b If exactly three of the taxis are in need of repair, what is the probability that every airport
receives one of the taxis requiring repairs?

2.45 Suppose that we wish to expand (x + y + z)17. What is the coefficient of x2 y5z10?
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2.46 Ten teams are playing in a basketball tournament. In the first round, the teams are randomly
assigned to games 1, 2, 3, 4 and 5. In how many ways can the teams be assigned to the games?

*2.47 Refer to Exercise 2.46. If 2n teams are to be assigned to games 1, 2, . . . , n, in how many ways
can the teams be assigned to the games?

2.48 If we wish to expand (x + y)8, what is the coefficient of x5 y3? What is the coefficient of
x3 y5?

2.49 Students attending the University of Florida can select from 130 major areas of study. A
student’s major is identified in the registrar’s records with a two-or three-letter code (for
example, statistics majors are identified by STA, math majors by MS). Some students opt for
a double major and complete the requirements for both of the major areas before graduation.
The registrar was asked to consider assigning these double majors a distinct two- or three-letter
code so that they could be identified through the student records’ system.

a What is the maximum number of possible double majors available to University of Florida
students?

b If any two- or three-letter code is available to identify majors or double majors, how many
major codes are available?

c How many major codes are required to identify students who have either a single major or
a double major?

d Are there enough major codes available to identify all single and double majors at the
University of Florida?

2.50 Probability played a role in the rigging of the April 24, 1980, Pennsylvania state lottery (Los
Angeles Times, September 8, 1980). To determine each digit of the three-digit winning number,
each of the numbers 0, 1, 2, . . . , 9 is placed on a Ping-Pong ball, the ten balls are blown into
a compartment, and the number selected for the digit is the one on the ball that floats to the
top of the machine. To alter the odds, the conspirators injected a liquid into all balls used in
the game except those numbered 4 and 6, making it almost certain that the lighter balls would
be selected and determine the digits in the winning number. Then they bought lottery tickets
bearing the potential winning numbers. How many potential winning numbers were there (666
was the eventual winner)?

2.51 A local fraternity is conducting a raffle where 50 tickets are to be sold—one per customer.
There are three prizes to be awarded. If the four organizers of the raffle each buy one ticket,
what is the probability that the four organizers win

a all of the prizes?

b exactly two of the prizes?

c exactly one of the prizes?

d none of the prizes?

2.52 An experimenter wishes to investigate the effect of three variables—pressure, temperature,
and the type of catalyst—on the yield in a refining process. If the experimenter intends to
use three settings each for temperature and pressure and two types of catalysts, how many
experimental runs will have to be conducted if he wishes to run all possible combinations of
pressure, temperature, and types of catalysts?

2.53 Five firms, F1, F2, . . . , F5, each offer bids on three separate contracts, C1, C2, and C3. Any one
firm will be awarded at most one contract. The contracts are quite different, so an assignment
of C1 to F1, say, is to be distinguished from an assignment of C2 to F1.
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a How many sample points are there altogether in this experiment involving assignment of
contracts to the firms? (No need to list them all.)

b Under the assumption of equally likely sample points, find the probability that F3 is awarded
a contract.

2.54 A group of three undergraduate and five graduate students are available to fill certain stu-
dent government posts. If four students are to be randomly selected from this group, find the
probability that exactly two undergraduates will be among the four chosen.

2.55 A study is to be conducted in a hospital to determine the attitudes of nurses toward various
administrative procedures. A sample of 10 nurses is to be selected from a total of the 90 nurses
employed by the hospital.

a How many different samples of 10 nurses can be selected?

b Twenty of the 90 nurses are male. If 10 nurses are randomly selected from those employed
by the hospital, what is the probability that the sample of ten will include exactly 4 male
(and 6 female) nurses?

2.56 A student prepares for an exam by studying a list of ten problems. She can solve six of them.
For the exam, the instructor selects five problems at random from the ten on the list given
to the students. What is the probability that the student can solve all five problems on the
exam?

2.57 Two cards are drawn from a standard 52-card playing deck. What is the probability that the
draw will yield an ace and a face card?

2.58 Five cards are dealt from a standard 52-card deck. What is the probability that we draw

a 3 aces and 2 kings?

b a “full house” (3 cards of one kind, 2 cards of another kind)?

2.59 Five cards are dealt from a standard 52-card deck. What is the probability that we draw

a 1 ace, 1 two, 1 three, 1 four, and 1 five (this is one way to get a “straight”)?

b any straight?

2.60 Refer to Example 2.7. Suppose that we record the birthday for each of n randomly selected
persons.

a Give an expression for the probability that none share the same birthday.

b What is the smallest value of n so that the probability is at least .5 that at least two people
share a birthday?

2.61 Suppose that we ask n randomly selected people whether they share your birthday.

a Give an expression for the probability that no one shares your birthday (ignore leap years).

b How many people do we need to select so that the probability is at least .5 that at least one
shares your birthday?

2.62 A manufacturer has nine distinct motors in stock, two of which came from a particular supplier.
The motors must be divided among three production lines, with three motors going to each
line. If the assignment of motors to lines is random, find the probability that both motors from
the particular supplier are assigned to the first line.

2.63 The eight-member Human Relations Advisory Board of Gainesville, Florida, considered
the complaint of a woman who claimed discrimination, based on sex, on the part of a local
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company. The board, composed of five women and three men, voted 5–3 in favor of the plaintiff,
the five women voting in favor of the plaintiff, the three men against. The attorney representing
the company appealed the board’s decision by claiming sex bias on the part of the board mem-
bers. If there was no sex bias among the board members, it might be reasonable to conjecture
that any group of five board members would be as likely to vote for the complainant as any
other group of five. If this were the case, what is the probability that the vote would split along
sex lines (five women for, three men against)?

2.64 A balanced die is tossed six times, and the number on the uppermost face is recorded each
time. What is the probability that the numbers recorded are 1, 2, 3, 4, 5, and 6 in any order?

2.65 Refer to Exercise 2.64. Suppose that the die has been altered so that the faces are 1, 2, 3, 4, 5,
and 5. If the die is tossed five times, what is the probability that the numbers recorded are 1, 2,
3, 4, and 5 in any order?

2.66 Refer to Example 2.10. What is the probability that

a an ethnic group member is assigned to each type of job?

b no ethnic group member is assigned to a type 4 job?

2.67 Refer to Example 2.13. Suppose that the number of distributors is M = 10 and that there are
n = 7 orders to be placed. What is the probability that

a all of the orders go to different distributors?

*b distributor I gets exactly two orders and distributor II gets exactly three orders?

*c distributors I, II, and III get exactly two, three, and one order(s), respectively?

2.68 Show that, for any integer n ≥ 1,

a
(n

n

) = 1. Interpret this result.

b
(n

0

) = 1. Interpret this result.

c
(n

r

) = ( n
n−r

)
. Interpret this result.

d
n∑

i=0

(
n

i

)
= 2n . [Hint: Consider the binomial expansion of (x + y)n with x = y = 1.]

2.69 Prove that
(n+1

k

) = (n
k

) + ( n
k−1

)
.

*2.70 Consider the situation where n items are to be partitioned into k < n distinct subsets. The

multinomial coefficients
(

n
n1 n2 ··· nk

)
provide the number of distinct partitions where n1 items

are in group 1, n2 are in group 2, . . . , nk are in group k. Prove that the total number of distinct
partitions equals kn . [Hint: Recall Exercise 2.68(d).]

2.7 Conditional Probability
and the Independence of Events
The probability of an event will sometimes depend upon whether we know that other
events have occurred. For example, Florida sport fishermen are vitally interested
in the probability of rain. The probability of rain on a given day, ignoring the daily
atmospheric conditions or any other events, is the fraction of days in which rain occurs
over a long period of time. This is the unconditional probability of the event “rain on
a given day.” Now suppose that we wish to consider the probability of rain tomorrow.
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52 Chapter 2 Probability

It has rained almost continuously for two days in succession, and a tropical storm
is heading up the coast. We have extra information related to whether or not it rains
tomorrow and are interested in the conditional probability that it will rain given this
information. A Floridian would tell you that the conditional probability of rain (given
that it has rained two preceding days and that a tropical storm is predicted) is much
larger than the unconditional probability of rain.

The unconditional probability of a 1 in the toss of one balanced die is 1/6. If we
know that an odd number has fallen, the number on the die must be 1, 3, or 5 and
the relative frequency of occurrence of a 1 is 1/3. The conditional probability of an
event is the probability (relative frequency of occurrence) of the event given the fact
that one or more events have already occurred. A careful perusal of this example will
indicate the agreement of the following definition with the relative frequency concept
of probability.

DEFINITION 2.9 The conditional probability of an event A, given that an event B has occurred,
is equal to

P(A|B) = P(A ∩ B)

P(B)
,

provided P(B) > 0. [The symbol P(A|B) is read “probability of A given B.”]

Further confirmation of the consistency of Definition 2.9 with the relative frequency
concept of probability can be obtained from the following construction. Suppose that
an experiment is repeated a large number, N , of times, resulting in both A and B,
A ∩ B, n11 times; A and not B, A ∩ B, n21 times; B and not A, A ∩ B, n12 times; and
neither A nor B, A ∩ B, n22 times. These results are contained in Table 2.1.

Note that n11 + n12 + n21 + n22 = N . Then it follows that

P(A) ≈ n11 + n21

N
, P(B) ≈ n11 + n12

N
, P(A|B), ≈ n11

n11 + n12
,

P(B|A) ≈ n11

n11 + n21
, and P(A ∩ B) ≈ n11

N
,

where ≈ is read approximately equal to.
With these probabilities, it is easy to see that

P(B|A) ≈ P(A ∩ B)

P(A)
and P(A|B) ≈ P(A ∩ B)

P(B)
.

Hence, Definition 2.9 is consistent with the relative frequency concept of probability.

Table 2.1 Table for events A and B

A A

B n11 n12 n11 + n12

B n21 n22 n21 + n22

n11 + n21 n12 + n22 N
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EXAMPLE 2.14 Suppose that a balanced die is tossed once. Use Definition 2.9 to find the probability
of a 1, given that an odd number was obtained.

Solution Define these events:

A: Observe a 1.
B: Observe an odd number.

We seek the probability of A given that the event B has occurred. The event A ∩ B
requires the observance of both a 1 and an odd number. In this instance, A ⊂ B,
so A ∩ B = A and P(A ∩ B) = P(A) = 1/6. Also, P(B) = 1/2 and, using
Definition 2.9,

P(A|B) = P(A ∩ B)

P(B)
= 1/6

1/2
= 1

3
.

Notice that this result is in complete agreement with our earlier intuitive evaluation
of this probability.

Suppose that probability of the occurrence of an event A is unaffected by the
occurrence or nonoccurrence of event B. When this happens, we would be inclined
to say that events A and B are independent. This event relationship is expressed by
the following definition.

DEFINITION 2.10 Two events A and B are said to be independent if any one of the following holds:

P(A|B) = P(A),

P(B|A) = P(B),

P(A ∩ B) = P(A)P(B).

Otherwise, the events are said to be dependent.

The notion of independence as a probabilistic concept is in agreement with our ev-
eryday usage of the word if we carefully consider the events in question. Most would
agree that “smoking” and “contracting lung cancer” are not independent events and
would intuitively feel that the probability of contracting lung cancer, given that a
person smokes, is greater than the (unconditional) probability of contracting lung
cancer. In contrast, the events “rain today” and “rain a month from today” may well
be independent.

EXAMPLE 2.15 Consider the following events in the toss of a single die:

A: Observe an odd number.
B: Observe an even number.
C : Observe a 1 or 2.
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a Are A and B independent events?
b Are A and C independent events?

Solution
a To decide whether A and B are independent, we must see whether they satisfy

the conditions of Definition 2.10. In this example, P(A) = 1/2, P(B) = 1/2,
and P(C) = 1/3. Because A ∩ B = ∅, P(A|B) = 0, and it is clear that
P(A|B) 7= P(A). Events A and B are dependent events.

b Are A and C independent? Note that P(A|C) = 1/2 and, as before, P(A) =
1/2. Therefore, P(A|C) = P(A), and A and C are independent.

EXAMPLE 2.16 Three brands of coffee, X , Y , and Z , are to be ranked according to taste by a judge.
Define the following events:

A: Brand X is preferred to Y .
B: Brand X is ranked best.
C : Brand X is ranked second best.
D: Brand X is ranked third best.

If the judge actually has no taste preference and randomly assigns ranks to the
brands, is event A independent of events B, C , and D?

Solution The six equally likely sample points for this experiment are given by

E1 : XY Z , E3 : Y X Z , E5 : Z XY ,
E2 : X ZY , E4 : Y Z X , E6 : ZY X ,

where XY Z denotes that X is ranked best, Y is second best, and Z is last.
Then A = {E1, E2, E5}, B = {E1, E2}, C = {E3, E5}, D = {E4, E6}, and it

follows that

P(A) = 1/2, P(A|B) = P(A ∩ B)

P(B)
= 1, P(A|C) = 1/2, P(A|D) = 0.

Thus, events A and C are independent, but events A and B are dependent. Events A
and D are also dependent.

Exercises
2.71 If two events, A and B, are such that P(A) = .5, P(B) = .3, and P(A ∩ B) = .1, find the

following:

a P(A|B)

b P(B|A)

c P(A|A ∪ B)
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d P(A|A ∩ B)

e P(A ∩ B|A ∪ B)

2.72 For a certain population of employees, the percentage passing or failing a job competency exam,
listed according to sex, were as shown in the accompanying table. That is, of all the people
taking the exam, 24% were in the male-pass category, 16% were in the male-fail category, and
so forth. An employee is to be selected randomly from this population. Let A be the event that
the employee scores a passing grade on the exam and let M be the event that a male is selected.

Sex

Outcome Male (M) Female (F) Total

Pass (A) 24 36 60
Fail (A) 16 24 40
Total 40 60 100

a Are the events A and M independent?

b Are the events A and F independent?

2.73 Gregor Mendel was a monk who, in 1865, suggested a theory of inheritance based on the
science of genetics. He identified heterozygous individuals for flower color that had two alleles
(one r = recessive white color allele and one R = dominant red color allele). When these
individuals were mated, 3/4 of the offspring were observed to have red flowers, and 1/4 had
white flowers. The following table summarizes this mating; each parent gives one of its alleles
to form the gene of the offspring.

Parent 2

Parent 1 r R

r rr rR
R Rr RR

We assume that each parent is equally likely to give either of the two alleles and that, if either
one or two of the alleles in a pair is dominant (R), the offspring will have red flowers. What is
the probability that an offspring has

a at least one dominant allele?

b at least one recessive allele?

c one recessive allele, given that the offspring has red flowers?

2.74 One hundred adults were interviewed in a telephone survey. Of interest was their opinions
regarding the loan burdens of college students and whether the respondent had a child currently
in college. Their responses are summarized in the table below:

Loan Burden

Child in College Too High (A) About Right (B) Too Little (C) Total

Yes (D) .20 .09 .01 .30
No (E) .41 .21 .08 .70
Total .61 .30 .09 1.00
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Which of the following are independent events?

a A and D

b B and D

c C and D

2.75 Cards are dealt, one at a time, from a standard 52-card deck.

a If the first 2 cards are both spades, what is the probability that the next 3 cards are also
spades?

b If the first 3 cards are all spades, what is the probability that the next 2 cards are also
spades?

c If the first 4 cards are all spades, what is the probability that the next card is also a spade?

2.76 A survey of consumers in a particular community showed that 10% were dissatisfied with
plumbing jobs done in their homes. Half the complaints dealt with plumber A, who does 40%
of the plumbing jobs in the town. Find the probability that a consumer will obtain

a an unsatisfactory plumbing job, given that the plumber was A.

b a satisfactory plumbing job, given that the plumber was A.

2.77 A study of the posttreatment behavior of a large number of drug abusers suggests that the
likelihood of conviction within a two-year period after treatment may depend upon the offenders
education. The proportions of the total number of cases falling in four education–conviction
categories are shown in the following table:

Status within 2 Years
after Treatment

Education Convicted Not Convicted Total

10 years or more .10 .30 .40
9 years or less .27 .33 .60
Total .37 .63 1.00

Suppose that a single offender is selected from the treatment program. Define the events:

A: The offender has 10 or more years of education.
B: The offender is convicted within two years after completion of treatment.

Find the following:

a P(A).

b P(B).

c P(A ∩ B).

d P(A ∪ B).

e P(A).

f P(A ∪ B).

g P(A ∩ B).

h P(A|B).

i P(B|A).

2.78 In the definition of the independence of two events, you were given three equalities to check:
P(A|B) = P(A) or P(B|A) = P(B) or P(A∩B) = P(A)P(B). If any one of these equalities
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holds, A and B are independent. Show that if any of these equalities hold, the other two also
hold.

2.79 Suppose that A and B are mutually exclusive events, with P(A) > 0 and P(B) < 1. Are A
and B independent? Prove your answer.

2.80 Suppose that A ⊂ B and that P(A) > 0 and P(B) > 0. Are A and B independent? Prove your
answer.

2.81 If P(A) > 0, P(B) > 0, and P(A) < P(A|B), show that P(B) < P(B|A).

2.82 Suppose that A ⊂ B and that P(A) > 0 and P(B) > 0. Show that P(B|A) = 1 and P(A|B) =
P(A)/P(B).

2.83 If A and B are mutually exclusive events and P(B) > 0, show that

P(A|A ∪ B) = P(A)

P(A) + P(B)
.

2.8 Two Laws of Probability
The following two laws give the probabilities of unions and intersections of events.
As such, they play an important role in the event-composition approach to the solution
of probability problems.

THEOREM 2.5 The Multiplicative Law of Probability The probability of the intersection of
two events A and B is

P(A ∩ B) = P(A)P(B|A)

= P(B)P(A|B).

If A and B are independent, then

P(A ∩ B) = P(A)P(B).

Proof The multiplicative law follows directly from Definition 2.9, the definition of
conditional probability.

Notice that the multiplicative law can be extended to find the probability of the
intersection of any number of events. Thus, twice applying Theorem 2.5, we obtain

P(A ∩ B ∩ C) = P[(A ∩ B) ∩ C] = P(A ∩ B)P(C |A ∩ B)

= P(A)P(B|A)P(C |A ∩ B).

The probability of the intersection of any number of, say, k events can be obtained in
the same manner:

P(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) = P(A1)P(A2|A1)P(A3|A1 ∩ A2)

· · · P(Ak |A1 ∩ A2 ∩ · · · ∩ Ak−1).

The additive law of probability gives the probability of the union of two events.
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THEOREM 2.6 The Additive Law of Probability The probability of the union of two events
A and B is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

If A and B are mutually exclusive events, P(A ∩ B) = 0 and

P(A ∪ B) = P(A) + P(B).

Proof The proof of the additive law can be followed by inspecting the Venn diagram
in Figure 2.10.

Notice that A ∪ B = A ∪ (A ∩ B), where A and (A ∩ B) are mutually
exclusive events. Further, B = (A ∩ B)∪ (A ∩ B), where (A ∩ B) and (A ∩ B)

are mutually exclusive events. Then, by Axiom 3,

P(A ∪ B) = P(A) + P(A ∩ B) and P(B) = P(A ∩ B) + P(A ∩ B).

The equality given on the right implies that P(A ∩ B) = P(B) − P(A ∩ B).
Substituting this expression for P(A ∩ B) into the expression for P(A ∪ B)

given in the left-hand equation of the preceding pair, we obtain the desired
result:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

The probability of the union of three events can be obtained by making use of
Theorem 2.6. Observe that

P(A ∪ B ∪ C) = P[A ∪ (B ∪ C)]

= P(A) + P(B ∪ C) − P[A ∩ (B ∪ C)]

= P(A) + P(B) + P(C) − P(B ∩ C) − P[(A ∩ B) ∪ (A ∩ C)]

= P(A) + P(B) + P(C) − P(B ∩ C) − P(A ∩ B) − P(A ∩ C)

+ P(A ∩ B ∩ C)

because (A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C .
Another useful result expressing the relationship between the probability of an

event and its complement is immediately available from the axioms of probability.

A B

F I G U R E 2.10
Venn diagram for the

union of A and B
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THEOREM 2.7 If A is an event, then

P(A) = 1 − P(A).

Proof Observe that S = A ∪ A. Because A and A are mutually exclusive events, it
follows that P(S) = P(A) + P(A). Therefore, P(A) + P(A) = 1 and the
result follows.

As we will see in Section 2.9, it is sometimes easier to calculate P(A) than to
calculate P(A). In such cases, it is easier to find P(A) by the relationship P(A) =
1 − P(A) than to find P(A) directly.

Exercises
2.84 If A1, A2, and A3 are three events and P(A1 ∩ A2) = P(A1 ∩ A3) 7= 0 but P(A2 ∩ A3) = 0,

show that

P(at least one Ai ) = P(A1) + P(A2) + P(A3) − 2P(A1 ∩ A2).

2.85 If A and B are independent events, show that A and B are also independent. Are A and B
independent?

2.86 Suppose that A and B are two events such that P(A) = .8 and P(B) = .7.

a Is it possible that P(A ∩ B) = .1? Why or why not?

b What is the smallest possible value for P(A ∩ B)?

c Is it possible that P(A ∩ B) = .77? Why or why not?

d What is the largest possible value for P(A ∩ B)?

2.87 Suppose that A and B are two events such that P(A) + P(B) > 1.

a What is the smallest possible value for P(A ∩ B)?

b What is the largest possible value for P(A ∩ B)?

2.88 Suppose that A and B are two events such that P(A) = .6 and P(B) = .3.

a Is it possible that P(A ∩ B) = .1? Why or why not?

b What is the smallest possible value for P(A ∩ B)?

c Is it possible that P(A ∩ B) = .7? Why or why not?

d What is the largest possible value for P(A ∩ B)?

2.89 Suppose that A and B are two events such that P(A) + P(B) < 1.

a What is the smallest possible value for P(A ∩ B)?

b What is the largest possible value for P(A ∩ B)?

2.90 Suppose that there is a 1 in 50 chance of injury on a single skydiving attempt.

a If we assume that the outcomes of different jumps are independent, what is the probability
that a skydiver is injured if she jumps twice?

b A friend claims if there is a 1 in 50 chance of injury on a single jump then there is a 100%
chance of injury if a skydiver jumps 50 times. Is your friend correct? Why?
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2.91 Can A an B be mutually exclusive if P(A) = .4 and P(B) = .7? If P(A) = .4 and P(B) = .3?
Why?

2.92 A policy requiring all hospital employees to take lie detector tests may reduce losses due to theft,
but some employees regard such tests as a violation of their rights. Past experience indicates
that lie detectors have accuracy rates that vary from 92% to 99%.2 To gain some insight into the
risks that employees face when taking a lie detector test, suppose that the probability is .05 that
a lie detector concludes that a person is lying who, in fact, is telling the truth and suppose
that any pair of tests are independent. What is the probability that a machine will conclude
that

a each of three employees is lying when all are telling the truth?

b at least one of the three employees is lying when all are telling the truth?

2.93 In a game, a participant is given three attempts to hit a ball. On each try, she either scores a
hit, H , or a miss, M . The game requires that the player must alternate which hand she uses in
successive attempts. That is, if she makes her first attempt with her right hand, she must use
her left hand for the second attempt and her right hand for the third. Her chance of scoring a
hit with her right hand is .7 and with her left hand is .4. Assume that the results of successive
attempts are independent and that she wins the game if she scores at least two hits in a row.
If she makes her first attempt with her right hand, what is the probability that she wins the
game?

2.94 A smoke detector system uses two devices, A and B. If smoke is present, the probability that
it will be detected by device A is .95; by device B, .90; and by both devices, .88.

a If smoke is present, find the probability that the smoke will be detected by either device A
or B or both devices.

b Find the probability that the smoke will be undetected.

2.95 Two events A and B are such that P(A) = .2, P(B) = .3, and P(A ∪ B) = .4. Find the
following:

a P(A ∩ B)

b P(A ∪ B)

c P(A ∩ B)

d P(A|B)

2.96 If A and B are independent events with P(A) = .5 and P(B) = .2, find the following:

a P(A ∪ B)

b P(A ∩ B)

c P(A ∪ B)

2.97 Consider the following portion of an electric circuit with three relays. Current will flow from
point a to point b if there is at least one closed path when the relays are activated. The relays
may malfunction and not close when activated. Suppose that the relays act independently of
one another and close properly when activated, with a probability of .9.

a What is the probability that current will flow when the relays are activated?

b Given that current flowed when the relays were activated, what is the probability that relay
1 functioned?

2. Source: Copyright c© 1980 Sentinel Communications Co. All rights reserved.
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1

2

3

A B

2.98 With relays operating as in Exercise 2.97, compare the probability of current flowing from a
to b in the series system shown

1 2A B

with the probability of flow in the parallel system shown.

1

2

A B

2.99 Suppose that A and B are independent events such that the probability that neither occurs is a

and the probability of B is b. Show that P(A) = 1 − b − a

1 − b
.

*2.100 Show that Theorem 2.6, the additive law of probability, holds for conditional probabilities.
That is, if A, B, and C are events such that P(C) > 0, prove that P(A ∪ B|C) = P(A|C) +
P(B|C)−P(A∩B|C). [Hint: Make use of the distributive law (A∪B)∩C = (A∩C)∪(B∩C).]

2.101 Articles coming through an inspection line are visually inspected by two successive inspectors.
When a defective article comes through the inspection line, the probability that it gets by the
first inspector is .1. The second inspector will “miss” five out of ten of the defective items that
get past the first inspector. What is the probability that a defective item gets by both inspectors?

2.102 Diseases I and II are prevalent among people in a certain population. It is assumed that 10% of
the population will contract disease I sometime during their lifetime, 15% will contract disease
II eventually, and 3% will contract both diseases.

a Find the probability that a randomly chosen person from this population will contract at
least one disease.

b Find the conditional probability that a randomly chosen person from this population will
contract both diseases, given that he or she has contracted at least one disease.

2.103 Refer to Exercise 2.50. Hours after the rigging of the Pennsylvania state lottery was announced,
Connecticut state lottery officials were stunned to learn that their winning number for the day
was 666 (Los Angeles Times, September 21, 1980).

a All evidence indicates that the Connecticut selection of 666 was due to pure chance. What
is the probability that a 666 would be drawn in Connecticut, given that a 666 had been
selected in the April 24, 1980, Pennsylvania lottery?

b What is the probability of drawing a 666 in the April 24, 1980, Pennsylvania lottery
(remember, this drawing was rigged) and a 666 in the September 19, 1980, Connecticut
lottery?
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2.104 If A and B are two events, prove that P(A∩ B) ≥ 1− P(A)− P(B). [Note: This is a simplified
version of the Bonferroni inequality.]

2.105 If the probability of injury on each individual parachute jump is .05, use the result in Exer-
cise 2.104 to provide a lower bound for the probability of landing safely on both of two jumps.

2.106 If A and B are equally likely events and we require that the probability of their intersection be
at least .98, what is P(A)?

2.107 Let A, B, and C be events such that P(A) > P(B) and P(C) > 0. Construct an example to
demonstrate that it is possible that P(A|C) < P(B|C).

2.108 If A, B, and C are three events, use two applications of the result in Exercise 2.104 to prove
that P(A ∩ B ∩ C) ≥ 1 − P(A) − P(B) − P(C).

2.109 If A, B, and C are three equally likely events, what is the smallest value for P(A) such that
P(A ∩ B ∩ C) always exceeds 0.95?

2.9 Calculating the Probability of an Event:
The Event-Composition Method
We learned in Section 2.4 that sets (events) can often be expressed as unions, intersec-
tions, or complements of other sets. The event-composition method for calculating
the probability of an event, A, expresses A as a composition involving unions and/or
intersections of other events. The laws of probability are then applied to find P(A).
We will illustrate this method with an example.

EXAMPLE 2.17 Of the voters in a city, 40% are Republicans and 60% are Democrats. Among the
Republicans 70% are in favor of a bond issue, whereas 80% of the Democrats favor
the issue. If a voter is selected at random in the city, what is the probability that he or
she will favor the bond issue?

Solution Let F denote the event “favor the bond issue,” R the event “a Republican is selected,”
and D the event “a Democrat is selected.” Then P(R) = .4, P(D) = .6, P(F |R) =
.7, and P(F |D) = .8. Notice that

P(F) = P[(F ∩ R) ∪ (F ∩ D)] = P(F ∩ R) + P(F ∩ D)

because (F ∩ R) and (F ∩ D) are mutually exclusive events. Figure 2.11 will help
you visualize the result that F = (F ∩ R) ∪ (F ∩ D). Now

P(F ∩ R) = P(F |R)P(R) = (.7)(.4) = .28,

P(F ∩ D) = P(F |D)P(D) = (.8)(.6) = .48.
It follows that

P(F) = .28 + .48 = .76.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.9 Calculating the Probability of an Event: The Event-Composition Method 63

S

R D

F

F " DF " R

F I G U R E 2.11
Venn diagram

for events of
Example 2.17

EXAMPLE 2.18 In Example 2.7 we considered an experiment wherein the birthdays of 20 randomly
selected persons were recorded. Under certain conditions we found that P(A) =
.5886, where A denotes the event that each person has a different birthday. Let B
denote the event that at least one pair of individuals share a birthday. Find P(B).

Solution The event B is the set of all sample points in S that are not in A, that is, B = A.
Therefore,

P(B) = 1 − P(A) = 1 − .5886 = .4114.

(Most would agree that this probability is surprisingly high!)

Let us refer to Example 2.4, which involves the two tennis players, and let D1

and D2 denote the events that player A wins the first and second games, respec-
tively. The information given in the example implies that P(D1) = P(D2) = 2/3.
Further, if we make the assumption that D1 and D2 are independent, it follows that
P(D1 ∩ D2) = 2/3 × 2/3 = 4/9. In that example we identified the simple event E1,
which we denoted AA, as meaning that player A won both games. With the present
notation,

E1 = D1 ∩ D2,

and thus P(E1) = 4/9. The probabilities assigned to the other simple events in
Example 2.4 can be verified in a similar manner.

The event-composition approach will not be successful unless the probabilities of
the events that appear in P(A) (after the additive and multiplicative laws have been
applied) are known. If one or more of these probabilities is unknown, the method fails.
Often it is desirable to form compositions of mutually exclusive or independent events.
Mutually exclusive events simplify the use of the additive law and the multiplicative
law of probability is easier to apply to independent events.
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64 Chapter 2 Probability

A summary of the steps used in the event-composition method follows:

1. Define the experiment.
2. Visualize the nature of the sample points. Identify a few to clarify your

thinking.
3. Write an equation expressing the event of interest—say, A—as a

composition of two or more events, using unions, intersections, and/or
complements. (Notice that this equates point sets.) Make certain that event
A and the event implied by the composition represent the same set of
sample points.

4. Apply the additive and multiplicative laws of probability to the
compositions obtained in step 3 to find P(A).

Step 3 is the most difficult because we can form many compositions that will be
equivalent to event A. The trick is to form a composition in which all the probabilities
appearing in step 4 are known.

The event-composition approach does not require listing the sample points in S,
but it does require a clear understanding of the nature of a typical sample point. The
major error students tend to make in applying the event-composition approach occurs
in writing the composition. That is, the point-set equation that expresses A as union
and/or intersection of other events is frequently incorrect. Always test your equality
to make certain that the composition implies an event that contains the same set of
sample points as those in A.

A comparison of the sample-point and event-composition methods for calculating
the probability of an event can be obtained by applying both methods to the same
problem. We will apply the event-composition approach to the problem of selecting
applicants that was solved by the sample-point method in Examples 2.11 and 2.12.

EXAMPLE 2.19 Two applicants are randomly selected from among five who have applied for a job.
Find the probability that exactly one of the two best applicants is selected, event A.

Solution Define the following two events:

B: Draw the best and one of the three poorest applicants.
C : Draw the second best and one of the three poorest applicants.

Events B and C are mutually exclusive and A = B ∪ C . Also, let D1 = B1 ∩ B2,
where

B1 = Draw the best on the first draw,
B2 = Draw one of the three poorest applicants on the second draw,

and D2 = B3 ∩ B4, where

B3 = Draw one of the three poorest applicants on the first draw,
B4 = Draw the best on the second draw.

Note that B = D1 ∪ D2.
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2.9 Calculating the Probability of an Event: The Event-Composition Method 65

Similarly, let G1 = C1 ∩ C2 and G2 = C3 ∩ C4, where C1, C2, C3, and C4 are
defined like B1, B2, B3, and B4, with the words second best replacing best. Notice
that D1 and D2 and G1 and G2 are pairs of mutually exclusive events and that

A = B ∪ C = (D1 ∪ D2) ∪ (G1 ∪ G2),

A = (B1 ∩ B2) ∪ (B3 ∩ B4) ∪ (C1 ∩ C2) ∪ (C3 ∩ C4).

Applying the additive law of probability to these four mutually exclusive events,
we have

P(A) = P(B1 ∩ B2) + P(B3 ∩ B4) + P(C1 ∩ C2) + P(C3 ∩ C4).

Applying the multiplicative law, we have

P(B1 ∩ B2) = P(B1)P(B2|B1).

The probability of drawing the best on the first draw is

P(B1) = 1/5.

Similarly, the probability of drawing one of the three poorest on the second draw,
given that the best was drawn on the first selection, is

P(B2|B1) = 3/4.

Then

P(B1 ∩ B2) = P(B1)P(B2|B1) = (1/5)(3/4) = 3/20.

The probabilities of all other intersections in P(A), P(B3 ∩ B4), P(C1 ∩C2), and
P(C3 ∩ C4) are obtained in exactly the same manner, and all equal 3/20. Then

P(A) = P(B1 ∩ B2) + P(B3 ∩ B4) + P(C1 ∩ C2) + P(C3 ∩ C4)

= (3/20) + (3/20) + (3/20) + (3/20) = 3/5.

This answer is identical to that obtained in Example 2.12, where P(A) was calcu-
lated by using the sample-point approach.

EXAMPLE 2.20 It is known that a patient with a disease will respond to treatment with probability
equal to .9. If three patients with the disease are treated and respond independently,
find the probability that at least one will respond.

Solution Define the following events:
A: At least one of the three patients will respond.
B1: The first patient will not respond.
B2: The second patient will not respond.
B3: The third patient will not respond.
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66 Chapter 2 Probability

Then observe that A = B1 ∩ B2 ∩ B3. Theorem 2.7 implies that

P(A) = 1 − P(A)

= 1 − P(B1 ∩ B2 ∩ B3).

Applying the multiplicative law, we have

P(B1 ∩ B2 ∩ B3) = P(B1)P(B2|B1)P(B3|B1 ∩ B2),

where, because the events are independent,

P(B2|B1) = P(B2) = 0.1 and P(B3|B1 ∩ B2) = P(B3) = 0.1.

Substituting P(Bi ) = .1, i = 1, 2, 3, we obtain

P(A) = 1 − (.1)3 = .999.

Notice that we have demonstrated the utility of complementary events. This result
is important because frequently it is easier to find the probability of the complement,
P(A), than to find P(A) directly.

EXAMPLE 2.21 Observation of a waiting line at a medical clinic indicates the probability that a new
arrival will be an emergency case is p = 1/6. Find the probability that the r th patient
is the first emergency case. (Assume that conditions of arriving patients represent
independent events.)

Solution The experiment consists of watching patient arrivals until the first emergency case
appears. Then the sample points for the experiment are

Ei : The i th patient is the first emergency case, for i = 1, 2, . . . .

Because only one sample point falls in the event of interest,

P(r th patient is the first emergency case ) = P(Er ).

Now define Ai to denote the event that the i th arrival is not an emergency case.
Then we can represent Er as the intersection

Er = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ar−1 ∩ Ar .

Applying the multiplicative law, we have

P(Er ) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · · P(Ar |A1 ∩ · · · ∩ Ar−1),

and because the events A1, A2, . . . , Ar−1, and Ar are independent, it follows that

P(Er ) = P(A1)P(A2) · · · P(Ar−1)P(Ar ) = (1 − p)r−1 p

= (5/6)r−1(1/6), r = 1, 2, 3, . . . .
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Notice that

P(S) = P(E1) + P(E2) + P(E3) + · · · + P(Ei ) + · · ·
= (1/6) + (5/6)(1/6) + (5/6)2(1/6) + · · · + (5/6)i−1(1/6) + · · ·

= 1

6

∞∑
i=0

(
5

6

)i

= 1/6

1 − (5/6)
= 1.

This result follows from the formula for the sum of a geometric series given in
Appendix A1.11. This formula, which states that if |r | < 1,

∑∞
i=0 r i = 1

1−r , is use-
ful in many simple probability problems.

EXAMPLE 2.22 A monkey is to demonstrate that she recognizes colors by tossing one red, one black,
and one white ball into boxes of the same respective colors, one ball to a box. If the
monkey has not learned the colors and merely tosses one ball into each box at random,
find the probabilities of the following results:

a There are no color matches.
b There is exactly one color match.

Solution This problem can be solved by listing sample points because only three balls are
involved, but a more general method will be illustrated. Define the following events:

A1: A color match occurs in the red box.
A2: A color match occurs in the black box.
A3: A color match occurs in the white box.

There are 3! = 6 equally likely ways of randomly tossing the balls into the boxes
with one ball in each box. Also, there are only 2! = 2 ways of tossing the balls into
the boxes if one particular box is required to have a color match. Hence,

P(A1) = P(A2) = P(A3) = 2/6 = 1/3.

Similarly, it follows that

P(A1 ∩ A2) = P(A1 ∩ A3) = P(A2 ∩ A3) = P(A1 ∩ A2 ∩ A3) = 1/6.

We can now answer parts (a) and (b) by using the event-composition method.
a Notice that

P(no color matches) = 1 − P(at least one color match)

= 1 − P(A1 ∪ A2 ∪ A3)

= 1 − [P(A1) + P(A2) + P(A3) − P(A1 ∩ A2)

− P(A1 ∩ A3) − P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3)]

= 1 − [3(1/3) − 3(1/6) + (1/6)] = 2/6 = 1/3.
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68 Chapter 2 Probability

b We leave it to you to show that

P(exactly one match) = P(A1) + P(A2) + P(A3)

− 2[P(A1 ∩ A2) + P(A1 ∩ A3) + P(A2 ∩ A3)]

+ 3[P(A1 ∩ A2 ∩ A3)]

= (3)(1/3) − (2)(3)(1/6) + (3)(1/6) = 1/2.

The best way to learn how to solve probability problems is to learn by doing. To
assist you in developing your skills, many exercises are provided at the end of this
section, at the end of the chapter, and in the references.

Exercises
2.110 Of the items produced daily by a factory, 40% come from line I and 60% from line II. Line I

has a defect rate of 8%, whereas line II has a defect rate of 10%. If an item is chosen at random
from the day’s production, find the probability that it will not be defective.

2.111 An advertising agency notices that approximately 1 in 50 potential buyers of a product sees
a given magazine ad, and 1 in 5 sees a corresponding ad on television. One in 100 sees both.
One in 3 actually purchases the product after seeing the ad, 1 in 10 without seeing it. What is
the probability that a randomly selected potential customer will purchase the product?

2.112 Three radar sets, operating independently, are set to detect any aircraft flying through a certain
area. Each set has a probability of .02 of failing to detect a plane in its area. If an aircraft enters
the area, what is the probability that it

a goes undetected?

b is detected by all three radar sets?

2.113 Consider one of the radar sets of Exercise 2.112. What is the probability that it will correctly
detect exactly three aircraft before it fails to detect one, if aircraft arrivals are independent
single events occurring at different times?

2.114 A lie detector will show a positive reading (indicate a lie) 10% of the time when a person is
telling the truth and 95% of the time when the person is lying. Suppose two people are suspects
in a one-person crime and (for certain) one is guilty and will lie. Assume further that the lie
detector operates independently for the truthful person and the liar. What is the probability that
the detector

a shows a positive reading for both suspects?

b shows a positive reading for the guilty suspect and a negative reading for the innocent
suspect?

c is completely wrong—that is, that it gives a positive reading for the innocent suspect and
a negative reading for the guilty?

d gives a positive reading for either or both of the two suspects?
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2.115 A football team has a probability of .75 of winning when playing any of the other four teams
in its conference. If the games are independent, what is the probability the team wins all its
conference games?

2.116 A communications network has a built-in safeguard system against failures. In this system if
line I fails, it is bypassed and line II is used. If line II also fails, it is bypassed and line III is
used. The probability of failure of any one of these three lines is .01, and the failures of these
lines are independent events. What is the probability that this system of three lines does not
completely fail?

2.117 A state auto-inspection station has two inspection teams. Team 1 is lenient and passes all
automobiles of a recent vintage; team 2 rejects all autos on a first inspection because their
“headlights are not properly adjusted.” Four unsuspecting drivers take their autos to the station
for inspection on four different days and randomly select one of the two teams.

a If all four cars are new and in excellent condition, what is the probability that three of the
four will be rejected?

b What is the probability that all four will pass?

2.118 An accident victim will die unless in the next 10 minutes he receives some type A, Rh-positive
blood, which can be supplied by a single donor. The hospital requires 2 minutes to type a
prospective donor’s blood and 2 minutes to complete the transfer of blood. Many untyped
donors are available, and 40% of them have type A, Rh-positive blood. What is the probability
that the accident victim will be saved if only one blood-typing kit is available? Assume that
the typing kit is reusable but can process only one donor at a time.

*2.119 Suppose that two balanced dice are tossed repeatedly and the sum of the two uppermost faces
is determined on each toss. What is the probability that we obtain

a a sum of 3 before we obtain a sum of 7?

b a sum of 4 before we obtain a sum of 7?

2.120 Suppose that two defective refrigerators have been included in a shipment of six refrigerators.
The buyer begins to test the six refrigerators one at a time.

a What is the probability that the last defective refrigerator is found on the fourth test?

b What is the probability that no more than four refrigerators need to be tested to locate both
of the defective refrigerators?

c When given that exactly one of the two defective refrigerators has been located in the first
two tests, what is the probability that the remaining defective refrigerator is found in the
third or fourth test?

2.121 A new secretary has been given n computer passwords, only one of which will permit access
to a computer file. Because the secretary has no idea which password is correct, he chooses
one of the passwords at random and tries it. If the password is incorrect, he discards it and
randomly selects another password from among those remaining, proceeding in this manner
until he finds the correct password.

a What is the probability that he obtains the correct password on the first try?

b What is the probability that he obtains the correct password on the second try? The third try?

c A security system has been set up so that if three incorrect passwords are tried before
the correct one, the computer file is locked and access to it denied. If n = 7, what is the
probability that the secretary will gain access to the file?

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



70 Chapter 2 Probability

2.10 The Law of Total Probability
and Bayes’ Rule
The event-composition approach to solving probability problems is sometimes facil-
itated by viewing the sample space, S, as a union of mutually exclusive subsets and
using the following law of total probability. The results of this section are based on
the following construction.

DEFINITION 2.11 For some positive integer k, let the sets B1, B2, . . . , Bk be such that

1. S = B1 ∪ B2 ∪ · · · ∪ Bk .
2. Bi ∩ B j = ∅, for i 7= j .

Then the collection of sets {B1, B2, . . . , Bk} is said to be a partition of S.

If A is any subset of S and {B1, B2, . . . , Bk} is a partition of S, A can be decomposed
as follows:

A = (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bk).

Figure 2.12 illustrates this decomposition for k = 3.

THEOREM 2.8 Assume that {B1, B2, . . . , Bk} is a partition of S (see Definition 2.11) such that
P(Bi ) > 0, for i = 1, 2, . . . , k. Then for any event A

P(A) =
k∑

i=1

P(A|Bi )P(Bi ).

Proof Any subset A of S can be written as

A = A ∩ S = A ∩ (B1 ∪ B2 ∪ · · · ∪ Bk)

= (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bk).

Notice that, because {B1, B2, · · · , Bk} is a partition of S, if i 7= j ,

(A ∩ Bi ) ∩ (A ∩ B j ) = A ∩ (Bi ∩ B j ) = A ∩ ∅ = ∅
and that (A ∩ Bi ) and (A ∩ B j ) are mutually exclusive events. Thus,

P(A) = P(A ∩ B1) + P(A ∩ B2) + · · · + P(A ∩ Bk)

= P(A|B1)P(B1) + P(A|B2)P(B2) + · · · + P(A|Bk)P(Bk)

=
k∑

i=1

P(A|Bi )P(Bi ).

In the examples and exercises that follow, you will see that it is sometimes much
easier to calculate the conditional probabilities P(A|Bi ) for suitably chosen Bi than it
is to compute P(A) directly. In such cases, the law of total probability can be applied
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to determine P(A). Using the result of Theorem 2.8, it is a simple matter to derive
the result known as Bayes’ rule.

THEOREM 2.9 Bayes’ Rule Assume that {B1, B2, . . . , Bk} is a partition of S (see Definition
2.11) such that P(Bi ) > 0, for i = 1, 2, . . . , k. Then

P(B j |A) = P(A|B j )P(B j )

k∑
i=1

P(A|Bi )P(Bi )

.

Proof The proof follows directly from the definition of conditional probability and
the law of total probability. Note that

P(B j |A) = P(A ∩ B j )

P(A)
= P(A|B j )P(B j )

k∑
i=1

P(A|Bi )P(Bi )

.

EXAMPLE 2.23 An electronic fuse is produced by five production lines in a manufacturing operation.
The fuses are costly, are quite reliable, and are shipped to suppliers in 100-unit lots.
Because testing is destructive, most buyers of the fuses test only a small number of
fuses before deciding to accept or reject lots of incoming fuses.

All five production lines produce fuses at the same rate and normally produce
only 2% defective fuses, which are dispersed randomly in the output. Unfortunately,
production line 1 suffered mechanical difficulty and produced 5% defectives during
the month of March. This situation became known to the manufacturer after the fuses
had been shipped. A customer received a lot produced in March and tested three fuses.
One failed. What is the probability that the lot was produced on line 1? What is the
probability that the lot came from one of the four other lines?

Solution Let B denote the event that a fuse was drawn from line 1 and let A denote the event
that a fuse was defective. Then it follows directly that

P(B) = 0.2 and P(A|B) = 3(.05)(.95)2 = .135375.
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P(B|A) = 0.0271 / (0.0271 + 0.0461) = 0.3700

F I G U R E 2.13
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Example 2.23. ∼ A

and ∼ B are
alternative notations

for A and B,
respectively.

Similarly,

P(B) = 0.8 and P(A|B) = 3(.02)(.98)2 = .057624.

Note that these conditional probabilities were very easy to calculate. Using the law
of total probability,

P(A) = P(A|B)P(B) + P(A|B)P(B)

= (.135375)(.2) + (.057624)(.8) = .0731742.

Finally,

P(B|A) = P(B ∩ A)

P(A)
= P(A|B)P(B)

P(A)
= (.135375)(.2)

.0731742
= .37,

and

P(B|A) = 1 − P(B|A) = 1 − .37 = .63.

Figure 2.13, obtained using the applet Bayes’ Rule as a Tree, illustrates the various
steps in the computation of P(B|A) .

Exercises
2.122 Applet Exercise Use the applet Bayes’ Rule as a Tree to obtain the results given in Figure 2.13.

2.123 Applet Exercise Refer to Exercise 2.122 and Example 2.23. Suppose that lines 2 through
5 remained the same, but line 1 was partially repaired and produced a smaller percentage
of defects.
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a What impact would this have on P(A|B)?

b Suppose that P(A|B) decreased to .12 and all other probabilities remained unchanged. Use
the applet Bayes’ Rule as a Tree to re-evaluate P(B|A).

c How does the answer you obtained in part (b) compare to that obtained in Exercise 2.122?
Are you surprised by this result?

d Assume that all probabilities remain the same except P(A|B). Use the applet and trial and
error to find the value of P(A|B) for which P(B|A) = .3000.

e If line 1 produces only defective items but all other probabilities remain unchanged, what
is P(B|A)?

f A friend expected the answer to part (e) to be 1. Explain why, under the conditions of part
(e), P(B|A) 7= 1.

2.124 A population of voters contains 40% Republicans and 60% Democrats. It is reported that
30% of the Republicans and 70% of the Democrats favor an election issue. A person chosen
at random from this population is found to favor the issue in question. Find the conditional
probability that this person is a Democrat.

2.125 A diagnostic test for a disease is such that it (correctly) detects the disease in 90% of the
individuals who actually have the disease. Also, if a person does not have the disease, the test
will report that he or she does not have it with probability .9. Only 1% of the population has the
disease in question. If a person is chosen at random from the population and the diagnostic test
indicates that she has the disease, what is the conditional probability that she does, in fact, have
the disease? Are you surprised by the answer? Would you call this diagnostic test reliable?

2.126 Applet Exercise Refer to Exercise 2.125. The probability that the test detects the disease given
that the patient has the disease is called the sensitivity of the test. The specificity of the test is the
probability that the test indicates no disease given that the patient is disease free. The positive
predictive value of the test is the probability that the patient has the disease given that the test
indicates that the disease is present. In Exercise 2.125, the disease in question was relatively
rare, occurring with probability .01, and the test described has sensitivity = specificity = .90
and positive predictive value = .0833.

a In an effort to increase the positive predictive value of the test, the sensitivity was increased
to .95 and the specificity remained at .90, what is the positive predictive value of the
“improved” test?

b Still not satisfied with the positive predictive value of the procedure, the sensitivity of the
test is increased to .999. What is the positive predictive value of the (now twice) modified
test if the specificity stays at .90?

c Look carefully at the various numbers that were used to compute the positive predictive
value of the tests. Why are all of the positive predictive values so small? [Hint: Compare
the size of the numerator and the denominator used in the fraction that yields the value of
the positive predictive value. Why is the denominator so (relatively) large?]

d The proportion of individuals with the disease is not subject to our control. If the sensitivity
of the test is .90, is it possible that the positive predictive value of the test can be increased
to a value above .5? How? [Hint: Consider improving the specificity of the test.]

e Based on the results of your calculations in the previous parts, if the disease in question
is relatively rare, how can the positive predictive value of a diagnostic test be significantly
increased?

2.127 Applet Exercise Refer to Exercises 2.125 and 2.126. Suppose now that the disease is not
particularly rare and occurs with probability .4 .
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a If, as in Exercise 2.125, a test has sensitivity = specificity = .90, what is the positive
predictive value of the test?

b Why is the value of the positive predictive value of the test so much higher that the value
obtained in Exercise 2.125? [Hint: Compare the size of the numerator and the denominator
used in the fraction that yields the value of the positive predictive value.]

c If the specificity of the test remains .90, can the sensitivity of the test be adjusted to obtain
a positive predictive value above .87?

d If the sensitivity remains at .90, can the specificity be adjusted to obtain a positive predictive
value above .95? How?

e The developers of a diagnostic test want the test to have a high positive predictive value.
Based on your calculations in previous parts of this problem and in Exercise 2.126, is the
value of the specificity more or less critical when developing a test for a rarer disease?

2.128 Use Theorem 2.8, the law of total probability, to prove the following:

a If P(A|B) = P(A|B), then A and B are independent.

b If P(A|C) > P(B|C) and P(A|C) > P(B|C), then P(A) > P(B).

2.129 Males and females are observed to react differently to a given set of circumstances. It has
been observed that 70% of the females react positively to these circumstances, whereas only
40% of males react positively. A group of 20 people, 15 female and 5 male, was subjected
to these circumstances, and the subjects were asked to describe their reactions on a written
questionnaire. A response picked at random from the 20 was negative. What is the probability
that it was that of a male?

2.130 A study of Georgia residents suggests that those who worked in shipyards during World War II
were subjected to a significantly higher risk of lung cancer (Wall Street Journal, September 21,
1978).3 It was found that approximately 22% of those persons who had lung cancer worked at
some prior time in a shipyard. In contrast, only 14% of those who had no lung cancer worked
at some prior time in a shipyard. Suppose that the proportion of all Georgians living during
World War II who have or will have contracted lung cancer is .04%. Find the percentage of
Georgians living during the same period who will contract (or have contracted) lung cancer,
given that they have at some prior time worked in a shipyard.

2.131 The symmetric difference between two events A and B is the set of all sample points that are
in exactly one of the sets and is often denoted A C B. Note that A C B = (A ∩ B) ∪ (A ∩ B).
Prove that P(A C B) = P(A) + P(B) − 2P(A ∩ B).

2.132 A plane is missing and is presumed to have equal probability of going down in any of three
regions. If a plane is actually down in region i , let 1 − αi denote the probability that the plane
will be found upon a search of the i th region, i = 1, 2, 3. What is the conditional probability
that the plane is in

a region 1, given that the search of region 1 was unsuccessful?

b region 2, given that the search of region 1 was unsuccessful?

c region 3, given that the search of region 1 was unsuccessful?

2.133 A student answers a multiple-choice examination question that offers four possible answers.
Suppose the probability that the student knows the answer to the question is .8 and the prob-
ability that the student will guess is .2. Assume that if the student guesses, the probability of

3. Source: Wall Street Journal, c© Dow Jones & Company, Inc. 1981. All rights reserved worldwide.
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selecting the correct answer is .25. If the student correctly answers a question, what is the
probability that the student really knew the correct answer?

2.134 Two methods, A and B, are available for teaching a certain industrial skill. The failure rate is
20% for A and 10% for B. However, B is more expensive and hence is used only 30% of the
time. (A is used the other 70%.) A worker was taught the skill by one of the methods but failed
to learn it correctly. What is the probability that she was taught by method A?

2.135 Of the travelers arriving at a small airport, 60% fly on major airlines, 30% fly on privately
owned planes, and the remainder fly on commercially owned planes not belonging to a major
airline. Of those traveling on major airlines, 50% are traveling for business reasons, whereas
60% of those arriving on private planes and 90% of those arriving on other commercially owned
planes are traveling for business reasons. Suppose that we randomly select one person arriving
at this airport. What is the probability that the person

a is traveling on business?

b is traveling for business on a privately owned plane?

c arrived on a privately owned plane, given that the person is traveling for business reasons?

d is traveling on business, given that the person is flying on a commercially owned plane?

2.136 A personnel director has two lists of applicants for jobs. List 1 contains the names of five
women and two men, whereas list 2 contains the names of two women and six men. A name is
randomly selected from list 1 and added to list 2. A name is then randomly selected from the
augmented list 2. Given that the name selected is that of a man, what is the probability that a
woman’s name was originally selected from list 1?

2.137 Five identical bowls are labeled 1, 2, 3, 4, and 5. Bowl i contains i white and 5 − i black
balls, with i = 1, 2, . . . , 5. A bowl is randomly selected and two balls are randomly selected
(without replacement) from the contents of the bowl.

a What is the probability that both balls selected are white?

b Given that both balls selected are white, what is the probability that bowl 3 was selected?

*2.138 Following is a description of the game of craps. A player rolls two dice and computes the total
of the spots showing. If the player’s first toss is a 7 or an 11, the player wins the game. If the
first toss is a 2, 3, or 12, the player loses the game. If the player rolls anything else (4, 5, 6, 8, 9
or 10) on the first toss, that value becomes the player’s point. If the player does not win or lose
on the first toss, he tosses the dice repeatedly until he obtains either his point or a 7. He wins
if he tosses his point before tossing a 7 and loses if he tosses a 7 before his point. What is the
probability that the player wins a game of craps? [Hint: Recall Exercise 2.119.]

2.11 Numerical Events and Random Variables
Events of major interest to the scientist, engineer, or businessperson are those identi-
fied by numbers, called numerical events. The research physician is interested in the
event that ten of ten treated patients survive an illness; the businessperson is inter-
ested in the event that sales next year will reach $5 million. Let Y denote a variable
to be measured in an experiment. Because the value of Y will vary depending on the
outcome of the experiment, it is called a random variable.

To each point in the sample space we will assign a real number denoting the value
of the variable Y . The value assigned to Y will vary from one sample point to another,
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F I G U R E 2.14
Partitioning S into

subsets that define
the events

Y = 0, 1, 2, 3, and 4

but some points may be assigned the same numerical value. Thus, we have defined
a variable that is a function of the sample points in S, and {all sample points where
Y = a} is the numerical event assigned the number a. Indeed, the sample space S can
be partitioned into subsets so that points within a subset are all assigned the same value
of Y . These subsets are mutually exclusive since no point is assigned two different
numerical values. The partitioning of S is symbolically indicated in Figure 2.14 for a
random variable that can assume values 0, 1, 2, 3, and 4.

DEFINITION 2.12 A random variable is a real-valued function for which the domain is a sample
space.

EXAMPLE 2.24 Define an experiment as tossing two coins and observing the results. Let Y equal the
number of heads obtained. Identify the sample points in S, assign a value of Y to
each sample point, and identify the sample points associated with each value of the
random variable Y .

Solution Let H and T represent head and tail, respectively; and let an ordered pair of symbols
identify the outcome for the first and second coins. (Thus, H T implies a head on the
first coin and a tail on the second.) Then the four sample points in S are E1: H H, E2:
H T, E3: T H and E4: T T . The values of Y assigned to the sample points depend
on the number of heads associated with each point. For E1 : H H , two heads were
observed, and E1 is assigned the value Y = 2. Similarly, we assign the values Y = 1
to E2 and E3 and Y = 0 to E4. Summarizing, the random variable Y can take three
values, Y = 0, 1, and 2, which are events defined by specific collections of sample
points:

{Y = 0} = {E4}, {Y = 1} = {E2, E3}, {Y = 2} = {E1}.

Let y denote an observed value of the random variable Y . Then P(Y = y) is the
sum of the probabilities of the sample points that are assigned the value y.
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EXAMPLE 2.25 Compute the probabilities for each value of Y in Example 2.24.

Solution The event {Y = 0} results only from sample point E4. If the coins are balanced, the
sample points are equally likely; hence,

P(Y = 0) = P(E4) = 1/4.

Similarly,

P(Y = 1) = P(E2) + P(E3) = 1/2 and P(Y = 2) = P(E1) = 1/4.

A more detailed examination of random variables will be undertaken in the next
two chapters.

Exercises
2.139 Refer to Exercise 2.112. Let the random variable Y represent the number of radar sets that

detect a particular aircraft. Compute the probabilities associated with each value of Y .

2.140 Refer to Exercise 2.120. Let the random variable Y represent the number of defective refrig-
erators found after three refrigerators have been tested. Compute the probabilities for each
value of Y .

2.141 Refer again to Exercise 2.120. Let the random variable Y represent the number of the test in
which the last defective refrigerator is identified. Compute the probabilities for each value of Y .

2.142 A spinner can land in any of four positions, A, B, C , and D, with equal probability. The
spinner is used twice, and the position is noted each time. Let the random variable Y denote
the number of positions on which the spinner did not land. Compute the probabilities for each
value of Y .

2.12 Random Sampling
As our final topic in this chapter, we move from theory to application and examine
the nature of experiments conducted in statistics. A statistical experiment involves the
observation of a sample selected from a larger body of data, existing or conceptual,
called a population. The measurements in the sample, viewed as observations of the
values of one or more random variables, are then employed to make an inference
about the characteristics of the target population.

How are these inferences made? An exact answer to this question is deferred until
later, but a general observation follows from our discussion in Section 2.2. There we
learned that the probability of the observed sample plays a major role in making an
inference and evaluating the credibility of the inference.

Without belaboring the point, it is clear that the method of sampling will affect
the probability of a particular sample outcome. For example, suppose that a fictitious
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population contains only N = 5 elements, from which we plan to take a sample of
size n = 2. You could mix the elements thoroughly and select two in such a way that
all pairs of elements possess an equal probability of selection. A second sampling
procedure might require selecting a single element, replacing it in the population, and
then drawing a single element again. The two methods of sample selection are called
sampling without and with replacement, respectively.

If all the N = 5 population elements are distinctly different, the probability of
drawing a specific pair, when sampling without replacement, is 1/10. The probability
of drawing the same specific pair, when sampling with replacement, is 2/25. You can
easily verify these results.

The point that we make is that the method of sampling, known as the design of an
experiment, affects both the quantity of information in a sample and the probability of
observing a specific sample result. Hence, every sampling procedure must be clearly
described if we wish to make valid inferences from sample to population.

The study of the design of experiments, the various types of designs along with their
properties, is a course in itself. Hence, at this early stage of study we introduce only the
simplest sampling procedure, simple random sampling. The notion of simple random
sampling will be needed in subsequent discussions of the probabilities associated with
random variables, and it will inject some realism into our discussion of statistics. This
is because simple random sampling is often employed in practice. Now let us define
the term random sample.

DEFINITION 2.13 Let N and n represent the numbers of elements in the population and sample,
respectively. If the sampling is conducted in such a way that each of the

(N
n

)
samples has an equal probability of being selected, the sampling is said to be
random, and the result is said to be a random sample.

Perfect random sampling is difficult to achieve in practice. If the population is not
too large, we might write each of the N numbers on a poker chip, mix all the chips,
and select a sample of n chips. The numbers on the poker chips would specify the
measurements to appear in the sample.

Tables of random numbers have been formed by computer to expedite the selection
of random samples. An example of such a table is Table 12, Appendix 3. A random
number table is a set of integers (0, 1, . . . , 9) generated so that, in the long run, the
table will contain all ten integers in approximately equal proportions, with no trends
in the patterns in which the digits were generated. Thus, if one digit is selected from
a random point on the table, it is equally likely to be any of the digits 0 through 9.

Choosing numbers from the table is analogous to drawing numbered poker chips
from the mixed pile, as mentioned earlier. Suppose we want a random sample of
three persons to be selected from a population of seven persons. We could number
the people from 1 to 7, put the numbers on chips, thoroughly mix the chips, and then
draw three out. Analogously, we could drop a pencil point on a random starting point
in Table 12, Appendix 3. Suppose the point falls on the 15th line of column 9 and we
decide to use the rightmost digit of the group of five, which is a 5 in this case. This
process is like drawing the chip numbered 5. We may now proceed in any direction to

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.13 Summary 79

obtain the remaining numbers in the sample. If we decide to proceed down the page,
the next number (immediately below the 5) is a 2. So our second sampled person
would be number 2. Proceeding, we next come to an 8, but there are only seven
elements in the population. Thus, the 8 is ignored, and we continue down the column.
Two more 5s then appear, but they must both be ignored because person 5 has already
been selected. (The chip numbered 5 has been removed from the pile.) Finally, we
come to a 1, and our sample of three is completed with persons numbered 5, 2, and 1.

Any starting point can be used in a random number table, and we may proceed in
any direction from the starting point. However, if more than one sample is to be used
in any problem, each should have a unique starting point.

In many situations the population is conceptual, as in an observation made during
a laboratory experiment. Here the population is envisioned to be the infinitely many
measurements that would be obtained if the experiment were to be repeated over and
over again. If we wish a sample of n = 10 measurements from this population, we
repeat the experiment ten times and hope that the results represent, to a reasonable
degree of approximation, a random sample.

Although the primary purpose of this discussion was to clarify the meaning of a
random sample, we would like to mention that some sampling techniques are only
partially random. For instance, if we wish to determine the voting preference of the
nation in a presidential election, we would not likely choose a random sample from
the population of voters. By pure chance, all the voters appearing in the sample
might be drawn from a single city—say, San Francisco—which might not be at
all representative of the population of all voters in the United States. We would
prefer a random selection of voters from smaller political districts, perhaps states,
allotting a specified number to each state. The information from the randomly selected
subsamples drawn from the respective states would be combined to form a prediction
concerning the entire population of voters in the country. In general, we want to select
a sample so as to obtain a specified quantity of information at minimum cost.

2.13 Summary
This chapter has been concerned with providing a model for the repetition of an
experiment and, consequently, a model for the population frequency distributions of
Chapter 1. The acquisition of a probability distribution is the first step in forming a
theory to model reality and to develop the machinery for making inferences.

An experiment was defined as the process of making an observation. The concepts
of an event, a simple event, the sample space, and the probability axioms have provided
a probabilistic model for calculating the probability of an event. Numerical events
and the definition of a random variable were introduced in Section 2.11.

Inherent in the model is the sample-point approach for calculating the probability
of an event (Section 2.5). Counting rules useful in applying the sample-point method
were discussed in Section 2.6. The concept of conditional probability, the operations
of set algebra, and the laws of probability set the stage for the event-composition
method for calculating the probability of an event (Section 2.9).

Of what value is the theory of probability? It provides the theory and the tools
for calculating the probabilities of numerical events and hence the probability
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distributions for the random variables that will be discussed in Chapter 3. The nu-
merical events of interest to us appear in a sample, and we will wish to calculate the
probability of an observed sample to make an inference about the target population.
Probability provides both the foundation and the tools for statistical inference, the
objective of statistics.
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Supplementary Exercises
2.143 Show that Theorem 2.7 holds for conditional probabilities. That is, if P(B) > 0, then

P(A|B) = 1 − P(A|B).

2.144 Let S contain four sample points, E1, E2, E3, and E4.

a List all possible events in S (include the null event).

b In Exercise 2.68(d), you showed that
∑n

i=1

(n
i

) = 2n . Use this result to give the total number
of events in S.

c Let A and B be the events {E1, E2, E3} and {E2, E4}, respectively. Give the sample points
in the following events: A ∪ B, A ∩ B, A ∩ B, and A ∪ B.

2.145 A patient receiving a yearly physical examination must have 18 checks or tests performed. The
sequence in which the tests are conducted is important because the time lost between tests will
vary depending on the sequence. If an efficiency expert were to study the sequences to find the
one that required the minimum length of time, how many sequences would be included in her
study if all possible sequences were admissible?

2.146 Five cards are drawn from a standard 52-card playing deck. What is the probability that all 5
cards will be of the same suit?

2.147 Refer to Exercise 2.146. A gambler has been dealt five cards: two aces, one king, one five, and
one 9. He discards the 5 and the 9 and is dealt two more cards. What is the probability that he
ends up with a full house?
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2.148 A bin contains three components from supplier A, four from supplier B, and five from supplier
C. If four of the components are randomly selected for testing, what is the probability that each
supplier would have at least one component tested?

2.149 A large group of people is to be checked for two common symptoms of a certain disease. It
is thought that 20% of the people possess symptom A alone, 30% possess symptom B alone,
10% possess both symptoms, and the remainder have neither symptom. For one person chosen
at random from this group, find these probabilities:

a The person has neither symptom.

b The person has at least one symptom.

c The person has both symptoms, given that he has symptom B.

2.150 Refer to Exercise 2.149. Let the random variable Y represent the number of symptoms possessed
by a person chosen at random from the group. Compute the probabilities associated with each
value of Y .

*2.151 A Model for the World Series Two teams A and B play a series of games until one team
wins four games. We assume that the games are played independently and that the probability
that A wins any game is p. What is the probability that the series lasts exactly five games?

2.152 We know the following about a colormetric method used to test lake water for nitrates. If
water specimens contain nitrates, a solution dropped into the water will cause the specimen to
turn red 95% of the time. When used on water specimens without nitrates, the solution causes
the water to turn red 10% of the time (because chemicals other than nitrates are sometimes
present and they also react to the agent). Past experience in a lab indicates that nitrates are
contained in 30% of the water specimens that are sent to the lab for testing. If a water specimen
is randomly selected

a from among those sent to the lab, what is the probability that it will turn red when tested?

b and turns red when tested, what is the probability that it actually contains nitrates?

2.153 Medical case histories indicate that different illnesses may produce identical symptoms. Sup-
pose that a particular set of symptoms, denoted H , occurs only when any one of three illnesses,
I1, I2, or I3, occurs. Assume that the simultaneous occurrence of more that one of these illnesses
is impossible and that

P(I1) = .01, P(I2) = .005, P(I3) = .02.

The probabilities of developing the set of symptoms H , given each of these illnesses, are known
to be

P(H |I1) = .90, P(H |I2) = .95, P(H |I3) = .75.

Assuming that an ill person exhibits the symptoms, H , what is the probability that the person
has illness I1?

2.154 a A drawer contains n = 5 different and distinguishable pairs of socks (a total of ten socks).
If a person (perhaps in the dark) randomly selects four socks, what is the probability that
there is no matching pair in the sample?

*b A drawer contains n different and distinguishable pairs of socks (a total of 2n socks). A
person randomly selects 2r of the socks, where 2r < n. In terms of n and r , what is the
probability that there is no matching pair in the sample?

2.155 A group of men possesses the three characteristics of being married (A), having a college
degree (B), and being a citizen of a specified state (C), according to the fractions given in the
accompanying Venn diagram. That is, 5% of the men possess all three characteristics, whereas
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20% have a college education but are not married and are not citizens of the specified state.
One man is chosen at random from this group.

AB

C

.20 .10
.10.05

.10 .15

.25

Find the probability that he

a is married.

b has a college degree and is married.

c is not from the specified state but is married and has a college degree.

d is not married or does not have a college degree, given that he is from the specified state.

2.156 The accompanying table lists accidental deaths by age and certain specific types for the United
States in 2002.

a A randomly selected person from the United States was known to have an accidental death
in 2002. Find the probability that

i he was over the age of 15 years.

ii the cause of death was a motor vehicle accident.

iii the cause of death was a motor vehicle accident, given that the person was between 15
and 24 years old.

iv the cause of death was a drowning accident, given that it was not a motor vehicle
accident and the person was 34 years old or younger.

b From these figures can you determine the probability that a person selected at random from
the U.S. population had a fatal motor vehicle accident in 2002?

Type of Accident

Age All Types Motor Vehicle Falls Drowning

Under 5 2,707 819 44 568
5–14 2,979 1,772 37 375

15–24 14,113 10,560 237 646
25–34 11,769 6,884 303 419
35–44 15,413 6,927 608 480
45–54 12,278 5,361 871 354
55–64 7,505 3,506 949 217
65–74 7,698 3,038 1,660 179
75 and over 23,438 4,487 8,613 244
Total 97,900 43,354 13,322 3,482

Source: Compiled from National Vital Statistics Report 50, no. 15, 2002.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Supplementary Exercises 83

2.157 A study of the residents of a region showed that 20% were smokers. The probability of death
due to lung cancer, given that a person smoked, was ten times the probability of death due to
lung cancer, given that the person did not smoke. If the probability of death due to lung cancer
in the region is .006, what is the probability of death due to lung cancer given that the person
is a smoker?

2.158 A bowl contains w white balls and b black balls. One ball is selected at random from the bowl,
its color is noted, and it is returned to the bowl along with n additional balls of the same color.
Another single ball is randomly selected from the bowl (now containing w + b + n balls) and
it is observed that the ball is black. Show that the (conditional) probability that the first ball
selected was white is

w

w + b + n
.

2.159 It seems obvious that P(∅) = 0. Show that this result follows from the axioms in Definition 2.6.

2.160 A machine for producing a new experimental electronic component generates defectives from
time to time in a random manner. The supervising engineer for a particular machine has
noticed that defectives seem to be grouping (hence appearing in a nonrandom manner), thereby
suggesting a malfunction in some part of the machine. One test for nonrandomness is based
on the number of runs of defectives and nondefectives (a run is an unbroken sequence of
either defectives or nondefectives). The smaller the number of runs, the greater will be the
amount of evidence indicating nonrandomness. Of 12 components drawn from the machine,
the first 10 were not defective, and the last 2 were defective (N N N N N N N N N N DD). Assume
randomness. What is the probability of observing

a this arrangement (resulting in two runs) given that 10 of the 12 components are not defec-
tive?

b two runs?

2.161 Refer to Exercise 2.160. What is the probability that the number of runs, R, is less than or
equal to 3?

2.162 Assume that there are nine parking spaces next to one another in a parking lot. Nine cars need to
be parked by an attendant. Three of the cars are expensive sports cars, three are large domestic
cars, and three are imported compacts. Assuming that the attendant parks the cars at random,
what is the probability that the three expensive sports cars are parked adjacent to one another?

2.163 Relays used in the construction of electric circuits function properly with probability .9. As-
suming that the circuits operate independently, which of the following circuit designs yields
the higher probability that current will flow when the relays are activated?

1

2

3

4

A

A B

B A B

1

2

3

4

2.164 Refer to Exercise 2.163 and consider circuit A. If we know that current is flowing, what is the
probability that switches 1 and 4 are functioning properly?

2.165 Refer to Exercise 2.163 and consider circuit B. If we know that current is flowing, what is the
probability that switches 1 and 4 are functioning properly?

2.166 Eight tires of different brands are ranked from 1 to 8 (best to worst) according to mileage
performance. If four of these tires are chosen at random by a customer, find the probability
that the best tire among those selected by the customer is actually ranked third among the
original eight.
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84 Chapter 2 Probability

2.167 Refer to Exercise 2.166. Let Y denote the actual quality rank of the best tire selected by the
customer. In Exercise 2.166, you computed P(Y = 3). Give the possible values of Y and the
probabilities associated with all of these values.

2.168 As in Exercises 2.166 and 2.167, eight tires of different brands are ranked from 1 to 8 (best to
worst) according to mileage performance.

a If four of these tires are chosen at random by a customer, what is the probability that the
best tire selected is ranked 3 and the worst is ranked 7?

b In part (a) you computed the probability that the best tire selected is ranked 3 and the worst
is ranked 7. If that is the case, the range of the ranks, R = largest rank − smallest rank
= 7 − 3 = 4. What is P(R = 4)?

c Give all possible values for R and the probabilities associated with all of these values.

*2.169 Three beer drinkers (say I, II, and III) are to rank four different brands of beer (say A, B, C ,
and D) in a blindfold test. Each drinker ranks the four beers as 1 (for the beer that he or she
liked best), 2 (for the next best), 3, or 4.

a Carefully describe a sample space for this experiment (note that we need to specify the
ranking of all four beers for all three drinkers). How many sample points are in this sample
space?

b Assume that the drinkers cannot discriminate between the beers so that each assignment
of ranks to the beers is equally likely. After all the beers are ranked by all three drinkers,
the ranks of each brand of beer are summed. What is the probability that some beer will
receive a total rank of 4 or less?

2.170 Three names are to be selected from a list of seven names for a public opinion survey. Find the
probability that the first name on the list is selected for the survey.

2.171 An AP news service story, printed in the Gainesville Sun on May 20, 1979, states the following
with regard to debris from Skylab striking someone on the ground: “The odds are 1 in 150 that
a piece of Skylab will hit someone. But 4 billion people . . . live in the zone in which pieces
could fall. So any one person’s chances of being struck are one in 150 times 4 billion—or one
in 600 billion.” Do you see any inaccuracies in this reasoning?

2.172 Let A and B be any two events. Which of the following statements, in general, are false?

a P(A|B) + P(A|B) = 1.

b P(A|B) + P(A|B) = 1.

c P(A|B) + P(A|B) = 1.

2.173 As items come to the end of a production line, an inspector chooses which items are to go
through a complete inspection. Ten percent of all items produced are defective. Sixty percent
of all defective items go through a complete inspection, and 20% of all good items go through
a complete inspection. Given that an item is completely inspected, what is the probability it
is defective?

2.174 Many public schools are implementing a “no-pass, no-play” rule for athletes. Under this system,
a student who fails a course is disqualified from participating in extracurricular activities
during the next grading period. Suppose that the probability is .15 that an athlete who has
not previously been disqualified will be disqualified next term. For athletes who have been
previously disqualified, the probability of disqualification next term is .5. If 30% of the athletes
have been disqualified in previous terms, what is the probability that a randomly selected athlete
will be disqualified during the next grading period?
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2.175 Three events, A, B, and C , are said to be mutually independent if

P(A ∩ B) = P(A) × P(B), P(B ∩ C) = P(B) × P(C),
P(A ∩ C) = P(A) × P(C), P(A ∩ B ∩ C) = P(A) × P(B) × P(C).

Suppose that a balanced coin is independently tossed two times. Define the following events:

A: Head appears on the first toss.
B: Head appears on the second toss.
C : Both tosses yield the same outcome.

Are A, B, and C mutually independent?

2.176 Refer to Exercise 2.175 and suppose that events A, B, and C are mutually independent.

a Show that (A ∪ B) and C are independent.

b Show that A and (B ∩ C) are independent.

2.177 Refer to Exercise 2.90(b) where a friend claimed that if there is a 1 in 50 chance of injury on
a single jump then there is a 100% chance of injury if a skydiver jumps 50 times. Assume that
the results of repeated jumps are mutually independent.

a What is the probability that 50 jumps will be completed without an injury?

b What is the probability that at least one injury will occur in 50 jumps?

c What is the maximum number of jumps, n, the skydiver can make if the probability is at
least .60 that all n jumps will be completed without injury?

*2.178 Suppose that the probability of exposure to the flu during an epidemic is .6. Experience has
shown that a serum is 80% successful in preventing an inoculated person from acquiring the
flu, if exposed to it. A person not inoculated faces a probability of .90 of acquiring the flu if
exposed to it. Two persons, one inoculated and one not, perform a highly specialized task in a
business. Assume that they are not at the same location, are not in contact with the same people,
and cannot expose each other to the flu. What is the probability that at least one will get the flu?

*2.179 Two gamblers bet $1 each on the successive tosses of a coin. Each has a bank of $6. What is
the probability that

a they break even after six tosses of the coin?

b one player—say, Jones—wins all the money on the tenth toss of the coin?

*2.180 Suppose that the streets of a city are laid out in a grid with streets running north–south and
east–west. Consider the following scheme for patrolling an area of 16 blocks by 16 blocks. An
officer commences walking at the intersection in the center of the area. At the corner of each
block the officer randomly elects to go north, south, east, or west. What is the probability that
the officer will

a reach the boundary of the patrol area after walking the first 8 blocks?

b return to the starting point after walking exactly 4 blocks?

*2.181 Suppose that n indistinguishable balls are to be arranged in N distinguishable boxes so that
each distinguishable arrangement is equally likely. If n ≥ N , show that the probability no box
will be empty is given by (

n − 1

N − 1

)
(

N + n − 1

N − 1

) .
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CHAPTER 3

Discrete Random
Variables and Their
Probability Distributions
3.1 Basic Definition

3.2 The Probability Distribution for a Discrete Random Variable

3.3 The Expected Value of a Random Variable or a Function of a Random Variable

3.4 The Binomial Probability Distribution

3.5 The Geometric Probability Distribution

3.6 The Negative Binomial Probability Distribution (Optional)

3.7 The Hypergeometric Probability Distribution

3.8 The Poisson Probability Distribution

3.9 Moments and Moment-Generating Functions

3.10 Probability-Generating Functions (Optional)

3.11 Tchebysheff’s Theorem

3.12 Summary

References and Further Readings

3.1 Basic Definition
As stated in Section 2.12, a random variable is a real-valued function defined over
a sample space. Consequently, a random variable can be used to identify numerical
events that are of interest in an experiment. For example, the event of interest in an
opinion poll regarding voter preferences is not usually the particular people sampled
or the order in which preferences were obtained but Y = the number of voters favoring
a certain candidate or issue. The observed value of this random variable must be zero
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3.2 The Probability Distribution for a Discrete Random Variable 87

or an integer between 1 and the sample size. Thus, this random variable can take on
only a finite number of values with nonzero probability. A random variable of this
type is said to be discrete.

DEFINITION 3.1 A random variable Y is said to be discrete if it can assume only a finite or
countably infinite1 number of distinct values.

A less formidable characterization of discrete random variables can be obtained
by considering some practical examples. The number of bacteria per unit area in
the study of drug control on bacterial growth is a discrete random variable, as is the
number of defective television sets in a shipment of 100 sets. Indeed, discrete random
variables often represent counts associated with real phenomena.

Let us now consider the relation of the material in Chapter 2 to this chapter. Why
study the theory of probability? The answer is that the probability of an observed
event is needed to make inferences about a population. The events of interest are often
numerical events that correspond to values of discrete random variables. Hence, it is
imperative that we know the probabilities of these numerical events. Because certain
types of random variables occur so frequently in practice, it is useful to have at hand
the probability for each value of a random variable. This collection of probabilities is
called the probability distribution of the discrete random variable. We will find that
many experiments exhibit similar characteristics and generate random variables with
the same type of probability distribution. Consequently, knowledge of the probability
distributions for random variables associated with common types of experiments will
eliminate the need for solving the same probability problems over and over again.

3.2 The Probability Distribution
for a Discrete Random Variable
Notationally, we will use an uppercase letter, such as Y , to denote a random variable
and a lowercase letter, such as y, to denote a particular value that a random variable
may assume. For example, let Y denote any one of the six possible values that could
be observed on the upper face when a die is tossed. After the die is tossed, the number
actually observed will be denoted by the symbol y. Note that Y is a random variable,
but the specific observed value, y, is not random.

The expression (Y = y) can be read, the set of all points in S assigned the value
y by the random variable Y .

It is now meaningful to talk about the probability that Y takes on the value y,
denoted by P(Y = y). As in Section 2.11, this probability is defined as the sum of
the probabilities of appropriate sample points in S.

1. Recall that a set of elements is countably infinite if the elements in the set can be put into one-to-one
correspondence with the positive integers.
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88 Chapter 3 Discrete Random Variables and Their Probability Distributions

DEFINITION 3.2 The probability that Y takes on the value y, P(Y = y), is defined as the sum
of the probabilities of all sample points in S that are assigned the value y. We
will sometimes denote P(Y = y) by p(y).

Because p(y) is a function that assigns probabilities to each value y of the random
variable Y , it is sometimes called the probability function for Y .

DEFINITION 3.3 The probability distribution for a discrete variable Y can be represented by a
formula, a table, or a graph that provides p(y) = P(Y = y) for all y.

Notice that p(y) ≥ 0 for all y, but the probability distribution for a discrete random
variable assigns nonzero probabilities to only a countable number of distinct y values.
Any value y not explicitly assigned a positive probability is understood to be such
that p(y) = 0. We illustrate these ideas with an example.

EXAMPLE 3.1 A supervisor in a manufacturing plant has three men and three women working for
him. He wants to choose two workers for a special job. Not wishing to show any
biases in his selection, he decides to select the two workers at random. Let Y denote
the number of women in his selection. Find the probability distribution for Y .

Solution The supervisor can select two workers from six in
(

6
2

) = 15 ways. Hence, S contains
15 sample points, which we assume to be equally likely because random sampling
was employed. Thus, P(Ei ) = 1/15, for i = 1, 2, . . . , 15. The values for Y that have
nonzero probability are 0, 1, and 2. The number of ways of selecting Y = 0 women
is

(
3
0

)(
3
2

)
because the supervisor must select zero workers from the three women and

two from the three men. Thus, there are
(

3
0

)(
3
2

) = 1 · 3 = 3 sample points in the event
Y = 0, and

p(0) = P(Y = 0) =
(3

0

)(3
2

)
15

= 3

15
= 1

5
.

Similarly,

p(1) = P(Y = 1) =
(3

1

)(3
1

)
15

= 9

15
= 3

5
,

p(2) = P(Y = 2) =
(3

2

)(3
0

)
15

= 3

15
= 1

5
.

Notice that (Y = 1) is by far the most likely outcome. This should seem reasonable
since the number of women equals the number of men in the original group.

The table for the probability distribution of the random variable Y considered in
Example 3.1 is summarized in Table 3.1. The same distribution is given in graphical
form in Figure 3.1. If we regard the width at each bar in Figure 3.1 as one unit, then
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Table 3.1 Probability distribution
for Example 3.1

y p(y)

0 1/5
1 3/5
2 1/5

0 21

3/5

1/5

0

p ( y)

y

F I G U R E 3.1
Probability histogram

for Table 3.1

the area in a bar is equal to the probability that Y takes on the value over which the
bar is centered. This concept of areas representing probabilities was introduced in
Section 1.2.

The most concise method of representing discrete probability distributions is by
means of a formula. For Example 3.1 we see that the formula for p(y) can be written as

p(y) =
(3

y

)( 3
2−y

)(6
2

) , y = 0, 1, 2.

Notice that the probabilities associated with all distinct values of a discrete random
variable must sum to 1. In summary, the following properties must hold for any discrete
probability distribution:

THEOREM 3.1 For any discrete probability distribution, the following must be true:

1. 0 ≤ p(y) ≤ 1 for all y.
2.

∑
y p(y) = 1, where the summation is over all values of y with nonzero

probability.

As mentioned in Section 1.5, the probability distributions we derive are models, not
exact representations, for the frequency distributions of populations of real data that
occur (or would be generated) in nature. Thus, they are models for real distributions
of data similar to the distributions discussed in Chapter 1. For example, if we were to
randomly select two workers from among the six described in Example 3.1, we would
observe a single y value. In this instance the observed y value would be 0, 1, or 2.
If the experiment were repeated many times, many y values would be generated. A
relative frequency histogram for the resulting data, constructed in the manner de-
scribed in Chapter 1, would be very similar to the probability histogram of Figure 3.1.
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90 Chapter 3 Discrete Random Variables and Their Probability Distributions

Such simulation studies are very useful. By repeating some experiments over and
over again, we can generate measurements of discrete random variables that possess
frequency distributions very similar to the probability distributions derived in this
chapter, reinforcing the conviction that our models are quite accurate.

Exercises
3.1 When the health department tested private wells in a county for two impurities commonly found

in drinking water, it found that 20% of the wells had neither impurity, 40% had impurity A,
and 50% had impurity B. (Obviously, some had both impurities.) If a well is randomly chosen
from those in the county, find the probability distribution for Y , the number of impurities found
in the well.

3.2 You and a friend play a game where you each toss a balanced coin. If the upper faces on the
coins are both tails, you win $1; if the faces are both heads, you win $2; if the coins do not match
(one shows a head, the other a tail), you lose $1 (win (−$1)). Give the probability distribution
for your winnings, Y , on a single play of this game.

3.3 A group of four components is known to contain two defectives. An inspector tests the compo-
nents one at a time until the two defectives are located. Once she locates the two defectives, she
stops testing, but the second defective is tested to ensure accuracy. Let Y denote the number of
the test on which the second defective is found. Find the probability distribution for Y .

3.4 Consider a system of water flowing through valves from A to B. (See the accompanying
diagram.) Valves 1, 2, and 3 operate independently, and each correctly opens on signal with
probability .8. Find the probability distribution for Y , the number of open paths from A to B
after the signal is given. (Note that Y can take on the values 0, 1, and 2.)

A B

1

2 3

3.5 A problem in a test given to small children asks them to match each of three pictures of animals
to the word identifying that animal. If a child assigns the three words at random to the three
pictures, find the probability distribution for Y , the number of correct matches.

3.6 Five balls, numbered 1, 2, 3, 4, and 5, are placed in an urn. Two balls are randomly selected
from the five, and their numbers noted. Find the probability distribution for the following:

a The largest of the two sampled numbers

b The sum of the two sampled numbers

3.7 Each of three balls are randomly placed into one of three bowls. Find the probability distribution
for Y = the number of empty bowls.

3.8 A single cell can either die, with probability .1, or split into two cells, with probability .9,
producing a new generation of cells. Each cell in the new generation dies or splits into two cells
independently with the same probabilities as the initial cell. Find the probability distribution
for the number of cells in the next generation.
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3.9 In order to verify the accuracy of their financial accounts, companies use auditors on a regular
basis to verify accounting entries. The company’s employees make erroneous entries 5% of
the time. Suppose that an auditor randomly checks three entries.

a Find the probability distribution for Y , the number of errors detected by the auditor.

b Construct a probability histogram for p(y).

c Find the probability that the auditor will detect more than one error.

3.10 A rental agency, which leases heavy equipment by the day, has found that one expensive piece
of equipment is leased, on the average, only one day in five. If rental on one day is independent
of rental on any other day, find the probability distribution of Y , the number of days between
a pair of rentals.

3.11 Persons entering a blood bank are such that 1 in 3 have type O+ blood and 1 in 15 have type O−

blood. Consider three randomly selected donors for the blood bank. Let X denote the number of
donors with type O+ blood and Y denote the number with type O− blood. Find the probability
distributions for X and Y . Also find the probability distribution for X + Y , the number of
donors who have type O blood.

3.3 The Expected Value of a Random Variable
or a Function of a Random Variable
We have observed that the probability distribution for a random variable is a theoret-
ical model for the empirical distribution of data associated with a real population. If
the model is an accurate representation of nature, the theoretical and empirical dis-
tributions are equivalent. Consequently, as in Chapter 1, we attempt to find the mean
and the variance for a random variable and thereby to acquire numerical descriptive
measures, parameters, for the probability distribution p(y) that are consistent with
those discussed in Chapter 1.

DEFINITION 3.4 Let Y be a discrete random variable with the probability function p(y). Then
the expected value of Y , E(Y ), is defined to be2

E(Y ) =
∑

y

yp(y).

If p(y) is an accurate characterization of the population frequency distribution,
then E(Y ) = μ, the population mean.

Definition 3.4 is completely consistent with the definition of the mean of a set of
measurements that was given in Definition 1.1. For example, consider a discrete

2. To be precise, the expected value of a discrete random variable is said to exist if the sum, as given
earlier, is absolutely convergent—that is, if ∑

y

|y|p(y) < ∞.

This absolute convergence will hold for all examples in this text and will not be mentioned each time an
expected value is defined.
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92 Chapter 3 Discrete Random Variables and Their Probability Distributions

Table 3.2 Probability distribution for Y

y p(y)

0 1/4
1 1/2
2 1/4

0 21

.5

.25

0

p ( y)

y

F I G U R E 3.2
Probability

distribution for Y

random variable Y that can assume values 0, 1, and 2 with probability distribution
p(y) as shown in Table 3.2 and the probability histogram shown in Figure 3.2. A
visual inspection will reveal the mean of the distribution to be located at y = 1.

To show that E(Y ) = ∑
y yp(y) is the mean of the probability distribution p(y),

suppose that the experiment were conducted 4 million times, yielding 4 million
observed values for Y . Noting p(y) in Figure 3.2, we would expect approximately
1 million of the 4 million repetitions to result in the outcome Y = 0, 2 million in
Y = 1, and 1 million in Y = 2. To find the mean value of Y , we average these 4 million
measurements and obtain

μ ≈
∑n

i=1 yi

n
= (1,000,000)(0) + (2,000,000)(1) + (1,000,000)(2)

4,000,000

= (0)(1/4) + (1)(1/2) + (2)(1/4)

=
2∑

y=0

yp(y) = 1.

Thus, E(Y ) is an average, and Definition 3.4 is consistent with the definition of a
mean given in Definition 1.1. Similarly, we frequently are interested in the mean or
expected value of a function of a random variable Y . For example, molecules in space
move at varying velocities, where Y , the velocity of a given molecule, is a random
variable. The energy imparted upon impact by a moving body is proportional to the
square of the velocity. Consequently, to find the mean amount of energy transmitted
by a molecule upon impact, we must find the mean value of Y 2. More important, we
note in Definition 1.2 that the variance of a set of measurements is the mean of the
square of the differences between each value in the set of measurements and their
mean, or the mean value of (Y − μ)2.
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THEOREM 3.2 Let Y be a discrete random variable with probability function p(y) and g(Y )

be a real-valued function of Y . Then the expected value of g(Y ) is given by

E[g(Y )] =
∑
all y

g(y)p(y).

Proof We prove the result in the case where the random variable Y takes on the finite
number of values y1, y2, . . . , yn . Because the function g(y) may not be one
to-one, suppose that g(Y ) takes on values g1, g2, . . . , gm (where m ≤ n). It
follows that g(Y ) is a random variable such that for i = 1, 2, . . . , m,

P[g(Y ) = gi ] =
∑

all y j such that
g(y j )=gi

p(y j ) = p∗(gi ).

Thus, by Definition 3.4,

E[g(Y )] =
m∑

i=1

gi p∗(gi )

=
m∑

i=1

gi

{ ∑
all y j such that

g(y j )=gi

p(y j )

}

=
m∑

i=1

∑
all y j such that

g(y j )=gi

gi p(y j )

=
n∑

j=1

g(y j )p(y j ).

Now let us return to our immediate objective, finding numerical descriptive mea-
sures (or parameters) to characterize p(y). As previously discussed, E(Y ) provides
the mean of the population with distribution given by p(y). We next seek the vari-
ance and standard deviation of this population. You will recall from Chapter 1 that
the variance of a set of measurements is the average of the square of the differences
between the values in a set of measurements and their mean. Thus, we wish to find
the mean value of the function g(Y ) = (Y − μ)2.

DEFINITION 3.5 If Y is a random variable with mean E(Y ) = μ, the variance of a random
variable Y is defined to be the expected value of (Y − μ)2. That is,

V (Y ) = E[(Y − μ)2].

The standard deviation of Y is the positive square root of V (Y ).

If p(y) is an accurate characterization of the population frequency distribution (and
to simplify notation, we will assume this to be true), then E(Y ) = μ, V (Y ) = σ 2,
the population variance, and σ is the population standard deviation.
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94 Chapter 3 Discrete Random Variables and Their Probability Distributions

EXAMPLE 3.2 The probability distribution for a random variable Y is given in Table 3.3. Find the
mean, variance, and standard deviation of Y .

Table 3.3 Probability distribution for Y

y p(y)

0 1/8
1 1/4
2 3/8
3 1/4

Solution By Definitions 3.4 and 3.5,

μ = E(Y ) =
3∑

y=0

yp(y) = (0)(1/8) + (1)(1/4) + (2)(3/8) + (3)(1/4) = 1.75,

σ 2 = E[(Y − μ)2] =
3∑

y=0

(y − μ)2 p(y)

= (0 − 1.75)2(1/8) + (1 − 1.75)2(1/4) + (2 − 1.75)2(3/8) + (3 − 1.75)2(1/4)

= .9375,

σ = +
√

σ 2 =
√

.9375 = .97.

The probability histogram is shown in Figure 3.3. Locate μ on the axis of measure-
ment, and observe that it does locate the “center” of the nonsymmetrical probability
distribution of Y . Also notice that the interval (μ ± σ) contains the discrete points
Y = 1 and Y = 2, which account for 5/8 of the probability. Thus, the empirical rule
(Chapter 1) provides a reasonable approximation to the probability of a measurement
falling in this interval. (Keep in mind that the probabilities are concentrated at the
points Y = 0, 1, 2, and 3 because Y cannot take intermediate values.)

1 32

3/8

1/8

1/4

0

p ( y)

y0

F I G U R E 3.3
Probability histogram

for Example 3.2

It will be helpful to acquire a few additional tools and definitions before attempt-
ing to find the expected values and variances of more complicated discrete random
variables, such as the binomial or Poisson. Hence, we present three useful expectation
theorems that follow directly from the theory of summation. (Other useful techniques
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are presented in Sections 3.4 and 3.9.) For each theorem we assume that Y is a discrete
random variable with probability function p(y).

The first theorem states the rather obvious result that the mean or expected value
of a nonrandom quantity c is equal to c.

THEOREM 3.3 Let Y be a discrete random variable with probability function p(y) and c be a
constant. Then E(c) = c.

Proof Consider the function g(Y ) ≡ c. By Theorem 3.2,

E(c) =
∑

y

cp(y) = c
∑

y

p(y).

But
∑

y p(y) = 1 (Theorem 3.1) and, hence, E(c) = c(1) = c.

The second theorem states that the expected value of the product of a constant c
times a function of a random variable is equal to the constant times the expected value
of the function of the variable.

THEOREM 3.4 Let Y be a discrete random variable with probability function p(y), g(Y ) be a
function of Y , and c be a constant. Then

E[cg(Y )] = cE[g(Y )].

Proof By Theorem 3.2,

E[cg(Y )] =
∑

y

cg(y)p(y) = c
∑

y

g(y)p(y) = cE[g(Y )].

The third theorem states that the mean or expected value of a sum of functions of
a random variable Y is equal to the sum of their respective expected values.

THEOREM 3.5 Let Y be a discrete random variable with probability function p(y) and g1(Y ),

g2(Y ), . . . , gk(Y ) be k functions of Y . Then

E[g1(Y ) + g2(Y ) + · · · + gk(Y )]= E[g1(Y )] + E[g2(Y )] + · · · + E[gk(Y )].

Proof We will demonstrate the proof only for the case k = 2, but analogous steps will
hold for any finite k. By Theorem 3.2,

E[g1(Y ) + g2(Y )] =
∑

y

[g1(y) + g2(y)]p(y)

=
∑

y

g1(y)p(y) +
∑

y

g2(y)p(y)

= E[g1(Y )] + E[g2(Y )].

Theorems 3.3, 3.4, and 3.5 can be used immediately to develop a theorem useful
in finding the variance of a discrete random variable.
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96 Chapter 3 Discrete Random Variables and Their Probability Distributions

THEOREM 3.6 Let Y be a discrete random variable with probability function p(y) and mean
E(Y ) = μ; then

V (Y ) = σ 2 = E[(Y − μ)2] = E(Y 2) − μ2.

Proof
σ 2 = E[(Y − μ)2] = E(Y 2 − 2μY + μ2)

= E(Y 2) − E(2μY ) + E(μ2) (by Theorem 3.5).

Noting that μ is a constant and applying Theorems 3.4 and 3.3 to the second
and third terms, respectively, we have

σ 2 = E(Y 2) − 2μE(Y ) + μ2.

But μ = E(Y ) and, therefore,

σ 2 = E(Y 2) − 2μ2 + μ2 = E(Y 2) − μ2.

Theorem 3.6 often greatly reduces the labor in finding the variance of a discrete
random variable. We will demonstrate the usefulness of this result by recomputing
the variance of the random variable considered in Example 3.2.

EXAMPLE 3.3 Use Theorem 3.6 to find the variance of the random variable Y in Example 3.2.

Solution The mean μ = 1.75 was found in Example 3.2. Because

E(Y 2) =
∑

y

y2 p(y) = (0)2(1/8) + (1)2(1/4) + (2)2(3/8) + (3)2(1/4) = 4,

Theorem 3.6 yields that

σ 2 = E(Y 2) − μ2 = 4 − (1.75)2 = .9375.

EXAMPLE 3.4 The manager of an industrial plant is planning to buy a new machine of either type A
or type B. If t denotes the number of hours of daily operation, the number of daily
repairs Y1 required to maintain a machine of type A is a random variable with mean
and variance both equal to .10t . The number of daily repairs Y2 for a machine of
type B is a random variable with mean and variance both equal to .12t . The daily
cost of operating A is CA(t) = 10t + 30Y 2

1; for B it is CB(t) = 8t + 30Y 2
2. Assume

that the repairs take negligible time and that each night the machines are tuned so
that they operate essentially like new machines at the start of the next day. Which
machine minimizes the expected daily cost if a workday consists of (a) 10 hours and
(b) 20 hours?
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Solution The expected daily cost for A is

E[CA(t)] = E
[
10t + 30Y 2

1

] = 10t + 30E
(
Y 2

1

)
= 10t + 30{V (Y1) + [E(Y1)]

2} = 10t + 30[.10t + (.10t)2]

= 13t + .3t2.

In this calculation, we used the known values for V (Y1) and E(Y1) and the fact
that V (Y1) = E(Y 2

1 ) − [E(Y1)]2 to obtain that E(Y 2
1 ) = V (Y1) + [E(Y1)]2 =

.10t + (.10t)2. Similarly,

E[CB(t)] = E
[
8t + 30Y 2

2

] = 8t + 30E
(
Y 2

2

)
= 8t + 30{V (Y2) + [E(Y2)]

2} = 8t + 30[.12t + (.12t)2]

= 11.6t + .432t2.

Thus, for scenario (a) where t = 10,

E[CA(10)] = 160 and E[CB(10)] = 159.2,

which results in the choice of machine B.
For scenario (b), t = 20 and

E[CA(20)] = 380 and E[CB(20)] = 404.8,

resulting in the choice of machine A.
In conclusion, machines of type B are more economical for short time periods

because of their smaller hourly operating cost. For long time periods, however, ma-
chines of type A are more economical because they tend to be repaired less frequently.

The purpose of this section was to introduce the concept of an expected value and
to develop some useful theorems for finding means and variances of random variables
or functions of random variables. In the following sections, we present some specific
types of discrete random variables and provide formulas for their probability distribu-
tions and their means and variances. As you will see, actually deriving some of these
expected values requires skill in the summation of algebraic series and knowledge of
a few tricks. We will illustrate some of these tricks in some of the derivations in the
upcoming sections.

Exercises
3.12 Let Y be a random variable with p(y) given in the accompanying table. Find E(Y ), E(1/Y ),

E(Y 2 − 1), and V (Y ).

y 1 2 3 4

p(y) .4 .3 .2 .1
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98 Chapter 3 Discrete Random Variables and Their Probability Distributions

3.13 Refer to the coin-tossing game in Exercise 3.2. Calculate the mean and variance of Y , your
winnings on a single play of the game. Note that E(Y ) > 0. How much should you pay to play
this game if your net winnings, the difference between the payoff and cost of playing, are to
have mean 0?

3.14 The maximum patent life for a new drug is 17 years. Subtracting the length of time required by
the FDA for testing and approval of the drug provides the actual patent life for the drug—that
is, the length of time that the company has to recover research and development costs and to
make a profit. The distribution of the lengths of actual patent lives for new drugs is given below:

Years, y 3 4 5 6 7 8 9 10 11 12 13

p(y) .03 .05 .07 .10 .14 .20 .18 .12 .07 .03 .01

a Find the mean patent life for a new drug.

b Find the standard deviation of Y = the length of life of a randomly selected new drug.

c What is the probability that the value of Y falls in the interval μ ± 2σ?

3.15 Who is the king of late night TV? An Internet survey estimates that, when given a choice
between David Letterman and Jay Leno, 52% of the population prefers to watch Jay Leno.
Three late night TV watchers are randomly selected and asked which of the two talk show
hosts they prefer.

a Find the probability distribution for Y , the number of viewers in the sample who prefer
Leno.

b Construct a probability histogram for p(y).

c What is the probability that exactly one of the three viewers prefers Leno?

d What are the mean and standard deviation for Y ?

e What is the probability that the number of viewers favoring Leno falls within 2 standard
deviations of the mean?

3.16 The secretary in Exercise 2.121 was given n computer passwords and tries the passwords at
random. Exactly one password will permit access to a computer file. Find the mean and the
variance of Y , the number of trials required to open the file, if unsuccessful passwords are
eliminated (as in Exercise 2.121).

3.17 Refer to Exercise 3.7. Find the mean and standard deviation for Y = the number of empty
bowls. What is the probability that the value of Y falls within 2 standard deviations of the mean?

3.18 Refer to Exercise 3.8. What is the mean number of cells in the second generation?

3.19 An insurance company issues a one-year $1000 policy insuring against an occurrence A that
historically happens to 2 out of every 100 owners of the policy. Administrative fees are $15 per
policy and are not part of the company’s “profit.” How much should the company charge for the
policy if it requires that the expected profit per policy be $50? [Hint: If C is the premium for the
policy, the company’s “profit” is C −15 if A does not occur and C −15−1000 if A does occur.]

3.20 A manufacturing company ships its product in two different sizes of truck trailers. Each ship-
ment is made in a trailer with dimensions 8 feet × 10 feet × 30 feet or 8 feet× 10 feet × 40 feet.
If 30% of its shipments are made by using 30-foot trailers and 70% by using 40-foot trailers,
find the mean volume shipped per trailer load. (Assume that the trailers are always full.)

3.21 The number N of residential homes that a fire company can serve depends on the distance r (in
city blocks) that a fire engine can cover in a specified (fixed) period of time. If we assume that
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N is proportional to the area of a circle R blocks from the firehouse, then N = Cπ R2, where C is
a constant, π = 3.1416 . . . , and R, a random variable, is the number of blocks that a fire engine
can move in the specified time interval. For a particular fire company, C = 8, the probability
distribution for R is as shown in the accompanying table, and p(r) = 0 for r ≤ 20 and r ≥ 27.

r 21 22 23 24 25 26

p(r) .05 .20 .30 .25 .15 .05

Find the expected value of N , the number of homes that the fire department can serve.

3.22 A single fair die is tossed once. Let Y be the number facing up. Find the expected value and
variance of Y .

3.23 In a gambling game a person draws a single card from an ordinary 52-card playing deck. A
person is paid $15 for drawing a jack or a queen and $5 for drawing a king or an ace. A person
who draws any other card pays $4. If a person plays this game, what is the expected gain?

3.24 Approximately 10% of the glass bottles coming off a production line have serious flaws in the
glass. If two bottles are randomly selected, find the mean and variance of the number of bottles
that have serious flaws.

3.25 Two construction contracts are to be randomly assigned to one or more of three firms: I, II,
and III. Any firm may receive both contracts. If each contract will yield a profit of $90,000 for
the firm, find the expected profit for firm I. If firms I and II are actually owned by the same
individual, what is the owner’s expected total profit?

*3.26 A heavy-equipment salesperson can contact either one or two customers per day with proba-
bility 1/3 and 2/3, respectively. Each contact will result in either no sale or a $50,000 sale,
with the probabilities .9 and .1, respectively. Give the probability distribution for daily sales.
Find the mean and standard deviation of the daily sales.3

3.27 A potential customer for an $85,000 fire insurance policy possesses a home in an area that, ac-
cording to experience, may sustain a total loss in a given year with probability of .001 and a 50%
loss with probability .01. Ignoring all other partial losses, what premium should the insurance
company charge for a yearly policy in order to break even on all $85,000 policies in this area?

3.28 Refer to Exercise 3.3. If the cost of testing a component is $2 and the cost of repairing a
defective is $4, find the expected total cost for testing and repairing the lot.

*3.29 If Y is a discrete random variable that assigns positive probabilities to only the positive integers,
show that

E(Y ) =
∞∑

i=1

P(Y ≥ k).

3.30 Suppose that Y is a discrete random variable with mean μ and variance σ 2 and let X = Y + 1.

a Do you expect the mean of X to be larger than, smaller than, or equal to μ = E(Y )? Why?

b Use Theorems 3.3 and 3.5 to express E(X) = E(Y + 1) in terms of μ = E(Y ). Does this
result agree with your answer to part (a)?

c Recalling that the variance is a measure of spread or dispersion, do you expect the variance
of X to be larger than, smaller than, or equal to σ 2 = V (Y )? Why?

3. Exercises preceded by an asterisk are optional.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



100 Chapter 3 Discrete Random Variables and Their Probability Distributions

d Use Definition 3.5 and the result in part (b) to show that

V (X) = E{[(X − E(X)]2} = E[(Y − μ)2] = σ 2;
that is, X = Y + 1 and Y have equal variances.

3.31 Suppose that Y is a discrete random variable with mean μ and variance σ 2 and let W = 2Y .

a Do you expect the mean of W to be larger than, smaller than, or equal to μ = E(Y )? Why?

b Use Theorem 3.4 to express E(W ) = E(2Y ) in terms of μ = E(Y ). Does this result agree
with your answer to part (a)?

c Recalling that the variance is a measure of spread or dispersion, do you expect the variance
of W to be larger than, smaller than, or equal to σ 2 = V (Y )? Why?

d Use Definition 3.5 and the result in part (b) to show that

V (W ) = E{[W − E(W )]2} = E[4(Y − μ)2] = 4σ 2;
that is, W = 2Y has variance four times that of Y .

3.32 Suppose that Y is a discrete random variable with mean μ and variance σ 2 and let U = Y/10.

a Do you expect the mean of U to be larger than, smaller than, or equal to μ = E(Y )? Why?

b Use Theorem 3.4 to express E(U ) = E(Y/10) in terms of μ = E(Y ). Does this result
agree with your answer to part (a)?

c Recalling that the variance is a measure of spread or dispersion, do you expect the variance
of U to be larger than, smaller than, or equal to σ 2 = V (Y )? Why?

d Use Definition 3.5 and the result in part (b) to show that

V (U ) = E{[U − E(U )]2} = E[.01(Y − μ)2] = .01σ 2;
that is, U = Y/10 has variance .01 times that of Y .

3.33 Let Y be a discrete random variable with mean μ and variance σ 2. If a and b are constants,
use Theorems 3.3 through 3.6 to prove that

a E(aY + b) = aE(Y ) + b = aμ + b.

b V (aY + b) = a2V (Y ) = a2σ 2.

3.34 The manager of a stockroom in a factory has constructed the following probability distribution
for the daily demand (number of times used) for a particular tool.

y 0 1 2

p(y) .1 .5 .4

It costs the factory $10 each time the tool is used. Find the mean and variance of the daily cost
for use of the tool.

3.4 The Binomial Probability Distribution
Some experiments consist of the observation of a sequence of identical and inde-
pendent trials, each of which can result in one of two outcomes. Each item leaving
a manufacturing production line is either defective or nondefective. Each shot in a
sequence of firings at a target can result in a hit or a miss, and each of n persons
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questioned prior to a local election either favors candidate Jones or does not. In this
section we are concerned with experiments, known as binomial experiments, that
exhibit the following characteristics.

DEFINITION 3.6 A binomial experiment possesses the following properties:

1. The experiment consists of a fixed number, n, of identical trials.
2. Each trial results in one of two outcomes: success, S, or failure, F .
3. The probability of success on a single trial is equal to some value p and

remains the same from trial to trial. The probability of a failure is equal to
q = (1 − p).

4. The trials are independent.
5. The random variable of interest is Y , the number of successes observed

during the n trials.

Determining whether a particular experiment is a binomial experiment requires
examining the experiment for each of the characteristics just listed. Notice that the
random variable of interest is the number of successes observed in the n trials. It is
important to realize that a success is not necessarily “good” in the everyday sense of
the word. In our discussions, success is merely a name for one of the two possible
outcomes on a single trial of an experiment.

EXAMPLE 3.5 An early-warning detection system for aircraft consists of four identical radar units
operating independently of one another. Suppose that each has a probability of .95
of detecting an intruding aircraft. When an intruding aircraft enters the scene, the
random variable of interest is Y , the number of radar units that do not detect the
plane. Is this a binomial experiment?

Solution To decide whether this is a binomial experiment, we must determine whether each
of the five requirements in Definition 3.6 is met. Notice that the random variable of
interest is Y , the number of radar units that do not detect an aircraft. The random
variable of interest in a binomial experiment is always the number of successes;
consequently, the present experiment can be binomial only if we call the event do not
detect a success. We now examine the experiment for the five characteristics of the
binomial experiment.

1. The experiment involves four identical trials. Each trial consists of determining
whether (or not) a particular radar unit detects the aircraft.

2. Each trial results in one of two outcomes. Because the random variable of
interest is the number of successes, S denotes that the aircraft was not detected,
and F denotes that it was detected.

3. Because all the radar units detect aircraft with equal probability, the probability
of an S on each trial is the same, and p = P(S) = P(do not detect) = .05.
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102 Chapter 3 Discrete Random Variables and Their Probability Distributions

4. The trials are independent because the units operate independently.
5. The random variable of interest is Y , the number of successes in four trials.

Thus, the experiment is a binomial experiment, with n = 4, p = .05, and q =
1 − .05 = .95.

EXAMPLE 3.6 Suppose that 40% of a large population of registered voters favor candidate Jones.
A random sample of n = 10 voters will be selected, and Y , the number favoring
Jones, is to be observed. Does this experiment meet the requirements of a binomial
experiment?

Solution If each of the ten people is selected at random from the population, then we have
ten nearly identical trials, with each trial resulting in a person either favoring Jones
(S) or not favoring Jones (F). The random variable of interest is then the number of
successes in the ten trials. For the first person selected, the probability of favoring
Jones (S) is .4. But what can be said about the unconditional probability that the
second person will favor Jones? In Exercise 3.35 you will show that unconditionally
the probability that the second person favors Jones is also .4. Thus, the probability of
a success S stays the same from trial to trial. However, the conditional probability of
a success on later trials depends on the number of successes in the previous trials. If
the population of voters is large, removal of one person will not substantially change
the fraction of voters favoring Jones, and the conditional probability that the second
person favors Jones will be very close to .4. In general, if the population is large and
the sample size is relatively small, the conditional probability of success on a later
trial given the number of successes on the previous trials will stay approximately
the same regardless of the outcomes on previous trials. Thus, the trials will be ap-
proximately independent and so sampling problems of this type are approximately
binomial.

If the sample size in Example 3.6 was large relative to the population size (say, 10%
of the population), the conditional probability of selecting a supporter of Jones on a
later selection would be significantly altered by the preferences of persons selected
earlier in the experiment, and the experiment would not be binomial. The hypergeo-
metric probability distribution, the topic of Section 3.7, is the appropriate probability
model to be used when the sample size is large relative to the population size.

You may wish to refine your ability to identify binomial experiments by reexamin-
ing the exercises at the end of Chapter 2. Several of the experiments in those exercises
are binomial or approximately binomial experiments.

The binomial probability distribution p(y) can be derived by applying the sample-
point approach to find the probability that the experiment yields y successes. Each
sample point in the sample space can be characterized by an n-tuple involving the
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letters S and F , corresponding to success and failure. A typical sample point would
thus appear as

SSF SF F F SF S . . . F S︸ ︷︷ ︸
n positions

,

where the letter in the i th position (proceeding from left to right) indicates the outcome
of the i th trial.

Now let us consider a particular sample point corresponding to y successes and
hence contained in the numerical event Y = y. This sample point,

SSSSS . . . SSS︸ ︷︷ ︸
y

F F F . . . F F︸ ︷︷ ︸
n − y

,

represents the intersection of n independent events (the outcomes of the n trials),
in which there were y successes followed by (n − y) failures. Because the trials
were independent and the probability of S, p, stays the same from trial to trial, the
probability of this sample point is

ppppp · · · ppp︸ ︷︷ ︸
y terms

qqq · · · qq︸ ︷︷ ︸
n − y terms

= pyqn−y .

Every other sample point in the event Y = y can be represented as an n-tuple
containing y S’s and (n − y) F’s in some order. Any such sample point also has
probability pyqn−y . Because the number of distinct n-tuples that contain y S’s and
(n − y) F’s is (from Theorem 2.3)(

n

y

)
= n!

y!(n − y)!
,

it follows that the event (Y = y) is made up of
(n

y

)
sample points, each with probability

pyqn−y , and that p(y) = (n
y

)
pyqn−y , y = 0, 1, 2, . . . , n. The result that we have

just derived is the formula for the binomial probability distribution.

DEFINITION 3.7 A random variable Y is said to have a binomial distribution based on n trials
with success probability p if and only if

p(y) =
(

n

y

)
pyqn−y, y = 0, 1, 2, . . . , n and 0 ≤ p ≤ 1.

Figure 3.4 portrays p(y) graphically as probability histograms, the first for n = 10,
p = .1; the second for n = 10, p = .5; and the third for n = 20, p = .5. Before we
proceed, let us reconsider the representation for the sample points in this experiment.
We have seen that a sample point can be represented by a sequence of n letters, each
of which is either S or F . If the sample point contains exactly one S, the probabil-
ity associated with that sample point is pqn−1. If another sample point contains 2
S’s—and (n − 2)F’s—the probability of this sample point is p2qn−2. Notice that the
sample points for a binomial experiment are not equiprobable unless p = .5.

The term binomial experiment derives from the fact each trial results in one of two
possible outcomes and that the probabilities p(y), y = 0, 1, 2, . . . , n, are terms of
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Binomial probability

histograms

the binomial expansion

(q + p)n =
(

n

0

)
qn +

(
n

1

)
p1qn−1 +

(
n

2

)
p2qn−2 + · · · +

(
n

n

)
pn.

You will observe that
(n

0

)
qn = p(0),

(n
1

)
p1qn−1 = p(1), and, in general, p(y) =(n

y

)
pyqn−y . It also follows that p(y) satisfies the necessary properties for a probability

function because p(y) is positive for y = 0, 1, . . . , n and [because (q + p) = 1]∑
y

p(y) =
n∑

y=0

(
n

y

)
pyqn−y = (q + p)n = 1n = 1.
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3.4 The Binomial Probability Distribution 105

The binomial probability distribution has many applications because the binomial
experiment occurs in sampling for defectives in industrial quality control, in the
sampling of consumer preference or voting populations, and in many other physical
situations. We will illustrate with a few examples. Other practical examples will
appear in the exercises at the end of this section and at the end of the chapter.

EXAMPLE 3.7 Suppose that a lot of 5000 electrical fuses contains 5% defectives. If a sample of
5 fuses is tested, find the probability of observing at least one defective.

Solution It is reasonable to assume that Y , the number of defectives observed, has an approx-
imate binomial distribution because the lot is large. Removing a few fuses does not
change the composition of those remaining enough to cause us concern. Thus,

P(at least one defective) = 1 − p(0) = 1 −
(

5

0

)
p0q5

= 1 − (.95)5 = 1 − .774 = .226.

Notice that there is a fairly large chance of seeing at least one defective, even though
the sample is quite small.

EXAMPLE 3.8 Experience has shown that 30% of all persons afflicted by a certain illness recover.
A drug company has developed a new medication. Ten people with the illness were
selected at random and received the medication; nine recovered shortly thereafter.
Suppose that the medication was absolutely worthless. What is the probability that at
least nine of ten receiving the medication will recover?

Solution Let Y denote the number of people who recover. If the medication is worthless, the
probability that a single ill person will recover is p = .3. Then the number of trials is
n = 10 and the probability of exactly nine recoveries is

P(Y = 9) = p(9) =
(

10

9

)
(.3)9(.7) = .000138.

Similarly, the probability of exactly ten recoveries is

P(Y = 10) = p(10) =
(

10

10

)
(.3)10(.7)0 = .000006,

and

P(Y ≥ 9) = p(9) + p(10) = .000138 + .000006 = .000144.

If the medication is ineffective, the probability of observing at least nine recoveries is
extremely small. If we administered the medication to ten individuals and observed at
least nine recoveries, then either (1) the medication is worthless and we have observed
a rare event or (2) the medication is indeed useful in curing the illness. We adhere to
conclusion 2.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



106 Chapter 3 Discrete Random Variables and Their Probability Distributions

A tabulation of binomial probabilities in the form
∑a

y=0 p(y), presented in Table 1,
Appendix 3, will greatly reduce the computations for some of the exercises. The
references at the end of the chapter list several more extensive tabulations of binomial
probabilities. Due to practical space limitations, printed tables typically apply for only
selected values of n and p. Binomial probabilities can also be found using various
computer software packages. If Y has a binomial distribution based on n trials with
success probability p, P(Y = y0) = p(y0) can be found by using the R (or S-
Plus) command dbinom(y0,n,p), whereas P(Y ≤ y0) is found by using the R
(or S-Plus) command pbinom(y0,n,p). A distinct advantage of using software to
compute binomial probabilities is that (practically) any values for n and p can be
used. We illustrate the use of Table 1 (and, simultaneously, the use of the output of
the R command pbinom(y0,n,p)) in the following example.

EXAMPLE 3.9 The large lot of electrical fuses of Example 3.7 is supposed to contain only 5%
defectives. If n = 20 fuses are randomly sampled from this lot, find the probability
that at least four defectives will be observed.

Solution Letting Y denote the number of defectives in the sample, we assume the binomial
model for Y , with p = .05. Thus,

P(Y ≥ 4) = 1 − P(Y ≤ 3),

and using Table 1, Appendix 3 [or the R command pbinom(3,20,.05)], we
obtain

P(Y ≤ 3) =
3∑

y=0

p(y) = .984.

The value .984 is found in the table labeled n = 20 in Table 1, Appendix 3. Specifically,
it appears in the column labeled p = .05 and in the row labeled a = 3. It follows
that

P(Y ≥ 4) = 1 − .984 = .016.

This probability is quite small. If we did indeed observe more than three defectives
out of 20 fuses, we might suspect that the reported 5% defect rate is erroneous.

The mean and variance associated with a binomial random variable are derived in
the following theorem. As you will see in the proof of the theorem, it is necessary to
evaluate the sum of some arithmetic series. In the course of the proof, we illustrate
some of the techniques that are available for summing such series. In particular, we
use the fact that

∑
y p(y) = 1 for any discrete random variable.
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3.4 The Binomial Probability Distribution 107

THEOREM 3.7 Let Y be a binomial random variable based on n trials and success probability
p. Then

μ = E(Y ) = np and σ 2 = V (Y ) = npq.

Proof By Definitions 3.4 and 3.7,

E(Y ) =
∑

y

yp(y) =
n∑

y=0

y

(
n

y

)
pyqn−y .

Notice that the first term in the sum is 0 and hence that

E(Y ) =
n∑

y=1

y
n!

(n − y)!y!
pyqn−y

=
n∑

y=1

n!

(n − y)!(y − 1)!
pyqn−y .

The summands in this last expression bear a striking resemblance to binomial
probabilities. In fact, if we factor np out of each term in the sum and let z = y−1,

E(Y ) = np
n∑

y=1

(n − 1)!

(n − y)!(y − 1)!
py−1qn−y

= np
n−1∑
z=0

(n − 1)!

(n − 1 − z)!z!
pzqn−1−z

= np
n−1∑
z=0

(
n − 1

z

)
pzqn−1−z .

Notice that p(z) = (n−1
z

)
pzqn−1−z is the binomial probability function based

on (n − 1) trials. Thus,
∑

z
p(z) = 1, and it follows that

μ = E(Y ) = np.

From Theorem 3.6, we know that σ 2 = V (Y ) = E(Y 2) − μ2. Thus, σ 2 can be
calculated if we find E(Y 2). Finding E(Y 2) directly is difficult because

E(Y 2) =
n∑

y=0

y2 p(y) =
n∑

y=0

y2

(
n

y

)
pyqn−y =

n∑
y=0

y2 n!

y!(n − y)!
pyqn−y

and the quantity y2 does not appear as a factor of y!. Where do we go from
here? Notice that

E[Y (Y − 1)] = E(Y 2 − Y ) = E(Y 2) − E(Y )

and, therefore,

E(Y 2) = E[Y (Y − 1)] + E(Y ) = E[Y (Y − 1)] + μ.
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In this case,

E[Y (Y − 1)] =
n∑

y=0

y(y − 1)
n!

y!(n − y)!
pyqn−y .

The first and second terms of this sum equal zero (when y = 0 and y = 1).
Then

E[Y (Y − 1)] =
n∑

y=2

n!

(y − 2)!(n − y)!
pyqn−y .

(Notice the cancellation that led to this last result. The anticipation of this
cancellation is what actually motivated the consideration of E[Y (Y − 1)].)
Again, the summands in the last expression look very much like binomial
probabilities. Factor n(n − 1)p2 out of each term in the sum and let z = y − 2
to obtain

E[Y (Y − 1)] = n(n − 1)p2
n∑

y=2

(n − 2)!

(y − 2)!(n − y)!
py−2qn−y

= n(n − 1)p2
n−2∑
z=0

(n − 2)!

z!(n − 2 − z)!
pzqn−2−z

= n(n − 1)p2
n−2∑
z=0

(
n − 2

z

)
pzqn−2−z .

Again note that p(z) = (n−2
z

)
pzqn−2−z is the binomial probability function

based on (n −2) trials. Then
∑n−2

z=0 p(z) = 1 (again using the device illustrated
in the derivation of the mean) and

E[Y (Y − 1)] = n(n − 1)p2.

Thus,

E(Y 2) = E[Y (Y − 1)] + μ = n(n − 1)p2 + np

and

σ 2 = E(Y 2) − μ2 = n(n − 1)p2 + np − n2 p2

= np[(n − 1)p + 1 − np] = np(1 − p) = npq.

In addition to providing formulas for the mean and variance of a binomial random
variable, the derivation of Theorem 3.7 illustrates the use of two fairly common tricks,
namely, to use the fact that

∑
p(y) = 1 if p(y) is a valid probability function and to

find E(Y 2) by finding E[Y (Y − 1)]. These techniques also will be useful in the next
sections where we consider other discrete probability distributions and the associated
means and variances.

A frequent source of error in applying the binomial probability distribution to
practical problems is the failure to define which of the two possible results of a trial
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3.4 The Binomial Probability Distribution 109

is the success. As a consequence, q may be used erroneously in place of p. Carefully
define a success and make certain that p equals the probability of a success for each
application.

Thus far in this section we have assumed that the number of trials, n, and the
probability of success, p, were known, and we used the formula p(y) = (n

y

)
pyqn−y to

compute probabilities associated with binomial random variables. In Example 3.8 we
obtained a value for P(Y ≥ 9) and used this probability to reach a conclusion about
the effectiveness of the medication. The next example exhibits another statistical,
rather than probabilistic, use of the binomial distribution.

EXAMPLE 3.10 Suppose that we survey 20 individuals working for a large company and ask each
whether they favor implementation of a new policy regarding retirement funding. If,
in our sample, 6 favored the new policy, find an estimate for p, the true but unknown
proportion of employees that favor the new policy.

Solution If Y denotes the number among the 20 who favor the new policy, it is reasonable
to conclude that Y has a binomial distribution with n = 20 for some value of p.
Whatever the true value for p, we conclude that the probability of observing 6 out of
20 in favor of the policy is

P(Y = 6) =
(

20

6

)
p6(1 − p)14.

We will use as our estimate for p the value that maximizes the probability of observing
the value that we actually observed (6 in favor in 20 trials). How do we find the value
of p that maximizes P(Y = 6)?

Because
(20

6

)
is a constant (relative to p) and ln(w) is an increasing function of w ,

the value of p that maximizes P(Y = 6) = (20
6

)
p6(1 − p)14 is the same as the value

of p that maximizes ln[p6(1 − p)14] = [6 ln(p) + 14 ln(1 − p)].
If we take the derivative of [6 ln(p) + 14 ln(1 − p)] with respect to p, we obtain

d[6 ln(p) + 14 ln(1 − p)]

dp
=

(
6

p

)
−

(
14

1 − p

)
.

The value of p that maximizes (or minimizes) [6 ln(p) + 14 ln(1 − p)] [and, more
important, P(Y = 6)] is the solution to the equation

6

p
− 14

1 − p
= 0.

Solving, we obtain p = 6/20.
Because the second derivative of [6 ln(p) + 14 ln(1 − p)] is negative when p =

6/20, it follows that [6 ln(p) + 14 ln(1 − p)] [and P(Y = 6)] is maximized when
p = 6/20. Our estimate for p, based on 6 “successes” in 20 trials is therefore 6/20.

The ultimate answer that we obtained should look very reasonable to you. Because
p is the probability of a “success” on any given trial, a reasonable estimate is, indeed,
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110 Chapter 3 Discrete Random Variables and Their Probability Distributions

the proportion of “successes” in our sample, in this case 6/20. In the next section, we
will apply this same technique to obtain an estimate that is not initially so intuitive. As
we will see in Chapter 9, the estimate that we just obtained is the maximum likelihood
estimate for p and the procedure used above is an example of the application of the
method of maximum likelihood.

Exercises
3.35 Consider the population of voters described in Example 3.6. Suppose that there are N = 5000

voters in the population, 40% of whom favor Jones. Identify the event favors Jones as a
success S. It is evident that the probability of S on trial 1 is .40. Consider the event B that S
occurs on the second trial. Then B can occur two ways: The first two trials are both succes-
ses or the first trial is a failure and the second is a success. Show that P(B) = .4. What is
P(B| the first trial is S)? Does this conditional probability differ markedly from P(B)?

3.36 a A meteorologist in Denver recorded Y = the number of days of rain during a 30-day period.
Does Y have a binomial distribution? If so, are the values of both n and p given?

b A market research firm has hired operators who conduct telephone surveys. A computer
is used to randomly dial a telephone number, and the operator asks the answering person
whether she has time to answer some questions. Let Y = the number of calls made until the
first person replies that she is willing to answer the questions. Is this a binomial experiment?
Explain.

3.37 In 2003, the average combined SAT score (math and verbal) for college-bound students in the
United States was 1026. Suppose that approximately 45% of all high school graduates took
this test and that 100 high school graduates are randomly selected from among all high school
grads in the United States. Which of the following random variables has a distribution that can
be approximated by a binomial distribution? Whenever possible, give the values for n and p.

a The number of students who took the SAT

b The scores of the 100 students in the sample

c The number of students in the sample who scored above average on the SAT

d The amount of time required by each student to complete the SAT

e The number of female high school grads in the sample

3.38 The manufacturer of a low-calorie dairy drink wishes to compare the taste appeal of a new
formula (formula B) with that of the standard formula (formula A). Each of four judges is given
three glasses in random order, two containing formula A and the other containing formula B.
Each judge is asked to state which glass he or she most enjoyed. Suppose that the two formulas
are equally attractive. Let Y be the number of judges stating a preference for the new formula.

a Find the probability function for Y .

b What is the probability that at least three of the four judges state a preference for the new
formula?

c Find the expected value of Y .

d Find the variance of Y .
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3.39 A complex electronic system is built with a certain number of backup components in its
subsystems. One subsystem has four identical components, each with a probability of .2 of
failing in less than 1000 hours. The subsystem will operate if any two of the four components
are operating. Assume that the components operate independently. Find the probability that

a exactly two of the four components last longer than 1000 hours.

b the subsystem operates longer than 1000 hours.

3.40 The probability that a patient recovers from a stomach disease is .8. Suppose 20 people are
known to have contracted this disease. What is the probability that

a exactly 14 recover?

b at least 10 recover?

c at least 14 but not more than 18 recover?

d at most 16 recover?

3.41 A multiple-choice examination has 15 questions, each with five possible answers, only one of
which is correct. Suppose that one of the students who takes the examination answers each of
the questions with an independent random guess. What is the probability that he answers at
least ten questions correctly?

3.42 Refer to Exercise 3.41. What is the probability that a student answers at least ten questions
correctly if

a for each question, the student can correctly eliminate one of the wrong answers and sub-
sequently answers each of the questions with an independent random guess among the
remaining answers?

b he can correctly eliminate two wrong answers for each question and randomly chooses
from among the remaining answers?

3.43 Many utility companies promote energy conservation by offering discount rates to consumers
who keep their energy usage below certain established subsidy standards. A recent EPA report
notes that 70% of the island residents of Puerto Rico have reduced their electricity usage
sufficiently to qualify for discounted rates. If five residential subscribers are randomly selected
from San Juan, Puerto Rico, find the probability of each of the following events:

a All five qualify for the favorable rates.

b At least four qualify for the favorable rates.

3.44 A new surgical procedure is successful with a probability of p. Assume that the operation is
performed five times and the results are independent of one another. What is the probability
that

a all five operations are successful if p = .8?

b exactly four are successful if p = .6?

c less than two are successful if p = .3?

3.45 A fire-detection device utilizes three temperature-sensitive cells acting independently of each
other in such a manner that any one or more may activate the alarm. Each cell possesses a
probability of p = .8 of activating the alarm when the temperature reaches 100◦ Celsius or
more. Let Y equal the number of cells activating the alarm when the temperature reaches 100◦.

a Find the probability distribution for Y .

b Find the probability that the alarm will function when the temperature reaches 100◦.
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112 Chapter 3 Discrete Random Variables and Their Probability Distributions

3.46 Construct probability histograms for the binomial probability distributions for n = 5, p = .1,

.5, and .9. (Table 1, Appendix 3, will reduce the amount of calculation.) Notice the symmetry
for p = .5 and the direction of skewness for p = .1 and .9.

3.47 Use Table 1, Appendix 3, to construct a probability histogram for the binomial probability
distribution for n = 20 and p = .5. Notice that almost all the probability falls in the interval
5 ≤ y ≤ 15.

3.48 A missile protection system consists of n radar sets operating independently, each with a
probability of .9 of detecting a missile entering a zone that is covered by all of the units.

a If n = 5 and a missile enters the zone, what is the probability that exactly four sets detect
the missile? At least one set?

b How large must n be if we require that the probability of detecting a missile that enters the
zone be .999?

3.49 A manufacturer of floor wax has developed two new brands, A and B, which she wishes to
subject to homeowners’ evaluation to determine which of the two is superior. Both waxes,
A and B, are applied to floor surfaces in each of 15 homes. Assume that there is actually no
difference in the quality of the brands. What is the probability that ten or more homeowners
would state a preference for

a brand A?

b either brand A or brand B?

3.50 In Exercise 2.151, you considered a model for the World Series. Two teams A and B play a series
of games until one team wins four games. We assume that the games are played independently
and that the probability that A wins any game is p. Compute the probability that the series lasts
exactly five games. [Hint: Use what you know about the random variable, Y , the number of
games that A wins among the first four games.]

3.51 In the 18th century, the Chevalier de Mere asked Blaise Pascal to compare the probabilities of
two events. Below, you will compute the probability of the two events that, prior to contrary
gambling experience, were thought by de Mere to be equally likely.

a What is the probability of obtaining at least one 6 in four rolls of a fair die?

b If a pair of fair dice is tossed 24 times, what is the probability of at least one double six?

3.52 The taste test for PTC (phenylthiocarbamide) is a favorite exercise in beginning human genetics
classes. It has been established that a single gene determines whether or not an individual is a
“taster.” If 70% of Americans are “tasters” and 20 Americans are randomly selected, what is
the probability that

a at least 17 are “tasters”?

b fewer than 15 are “tasters”?

3.53 Tay-Sachs disease is a genetic disorder that is usually fatal in young children. If both parents are
carriers of the disease, the probability that their offspring will develop the disease is approxi-
mately .25. Suppose that a husband and wife are both carriers and that they have three children.
If the outcomes of the three pregnancies are mutually independent, what are the probabilities
of the following events?

a All three children develop Tay-Sachs.

b Only one child develops Tay-Sachs.

c The third child develops Tay-Sachs, given that the first two did not.
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3.54 Suppose that Y is a binomial random variable based on n trials with success probability p and
consider Y = = n − Y .

a Argue that for y= = 0, 1, . . . , n

P(Y = = y=) = P(n − Y = y=) = P(Y = n − y=).

b Use the result from part (a) to show that

P(Y = = y=) =
(

n

n − y=

)
pn−y=

q y= =
(

n

y=

)
q y=

pn−y=

.

c The result in part (b) implies that Y = has a binomial distribution based on n trials and
“success” probability p= = q = 1 − p. Why is this result “obvious”?

3.55 Suppose that Y is a binomial random variable with n > 2 trials and success probability p.
Use the technique presented in Theorem 3.7 and the fact that E{Y (Y − 1)(Y − 2)} = E(Y 3)−
3E(Y 2) + 2E(Y ) to derive E(Y 3).

3.56 An oil exploration firm is formed with enough capital to finance ten explorations. The probabil-
ity of a particular exploration being successful is .1. Assume the explorations are independent.
Find the mean and variance of the number of successful explorations.

3.57 Refer to Exercise 3.56. Suppose the firm has a fixed cost of $20,000 in preparing equipment prior
to doing its first exploration. If each successful exploration costs $30,000 and each unsuccessful
exploration costs $15,000, find the expected total cost to the firm for its ten explorations.

3.58 A particular sale involves four items randomly selected from a large lot that is known to contain
10% defectives. Let Y denote the number of defectives among the four sold. The purchaser of
the items will return the defectives for repair, and the repair cost is given by C = 3Y 2 + Y + 2.
Find the expected repair cost. [Hint: The result of Theorem 3.6 implies that, for any random
variable Y, E(Y 2) = σ 2 + μ2.]

3.59 Ten motors are packaged for sale in a certain warehouse. The motors sell for $100 each, but a
double-your-money-back guarantee is in effect for any defectives the purchaser may receive.
Find the expected net gain for the seller if the probability of any one motor being defective is
.08. (Assume that the quality of any one motor is independent of that of the others.)

3.60 A particular concentration of a chemical found in polluted water has been found to be lethal to
20% of the fish that are exposed to the concentration for 24 hours. Twenty fish are placed in a
tank containing this concentration of chemical in water.

a Find the probability that exactly 14 survive.

b Find the probability that at least 10 survive.

c Find the probability that at most 16 survive.

d Find the mean and variance of the number that survive.

3.61 Of the volunteers donating blood in a clinic, 80% have the Rhesus (Rh) factor present in their
blood.

a If five volunteers are randomly selected, what is the probability that at least one does not
have the Rh factor?

b If five volunteers are randomly selected, what is the probability that at most four have the
Rh factor?

c What is the smallest number of volunteers who must be selected if we want to be at least
90% certain that we obtain at least five donors with the Rh factor?
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3.62 Goranson and Hall (1980) explain that the probability of detecting a crack in an airplane wing
is the product of p1, the probability of inspecting a plane with a wing crack; p2, the probability
of inspecting the detail in which the crack is located; and p3, the probability of detecting the
damage.

a What assumptions justify the multiplication of these probabilities?

b Suppose p1 = .9, p2 = .8, and p3 = .5 for a certain fleet of planes. If three planes are
inspected from this fleet, find the probability that a wing crack will be detected on at least
one of them.

*3.63 Consider the binomial distribution with n trials and P(S) = p.

a Show that
p(y)

p(y − 1)
= (n − y + 1)p

yq
for y = 1, 2, . . . , n. Equivalently, for y =

1, 2, . . . , n, the equation p(y) = (n − y + 1)p

yq
p(y − 1) gives a recursive relationship

between the probabilities associated with successive values of Y .

b If n = 90 and p = .04, use the above relationship to find P(Y < 3).

c Show that
p(y)

p(y − 1)
= (n − y + 1)p

yq
> 1 if y < (n + 1)p, that

p(y)

p(y − 1)
< 1 if y >

(n+1)p, and that
p(y)

p(y − 1)
= 1 if (n+1)p is an integer and y = (n+1)p. This establishes

that p(y) > p(y − 1) if y is small (y < (n + 1)p) and p(y) < p(y − 1) if y is large
(y > (n + 1)p). Thus, successive binomial probabilities increase for a while and decrease
from then on.

d Show that the value of y assigned the largest probability is equal to the greatest integer less
than or equal to (n + 1)p. If (n + 1)p = m for some integer m, then p(m) = p(m − 1).

*3.64 Consider an extension of the situation discussed in Example 3.10. If there are n trials in a
binomial experiment and we observe y0 “successes,” show that P(Y = y0) is maximized when
p = y0/n. Again, we are determining (in general this time) the value of p that maximizes the
probability of the value of Y that we actually observed.

*3.65 Refer to Exercise 3.64. The maximum likelihood estimator for p is Y/n (note that Y is the
binomial random variable, not a particular value of it).

a Derive E(Y/n). In Chapter 9, we will see that this result implies that Y/n is an unbiased
estimator for p.

b Derive V (Y/n). What happens to V (Y/n) as n gets large?

3.5 The Geometric Probability Distribution
The random variable with the geometric probability distribution is associated with
an experiment that shares some of the characteristics of a binomial experiment. This
experiment also involves identical and independent trials, each of which can result in
one of two outcomes: success or failure. The probability of success is equal to p and
is constant from trial to trial. However, instead of the number of successes that occur
in n trials, the geometric random variable Y is the number of the trial on which the
first success occurs. Thus, the experiment consists of a series of trials that concludes
with the first success. Consequently, the experiment could end with the first trial if a
success is observed on the very first trial, or the experiment could go on indefinitely.
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3.5 The Geometric Probability Distribution 115

The sample space S for the experiment contains the countably infinite set of sample
points:

E1 : S (success on first trial)
E2 : F S (failure on first, success on second)
E3 : F F S (first success on the third trial)
E4 : F F F S (first success on the fourth trial)

.

.

.

Ek : F F F F . . . F︸ ︷︷ ︸
k−1

S (first success on the k th trial)

.

.

.

Because the random variable Y is the number of trials up to and including the first
success, the events (Y = 1), (Y = 2), and (Y = 3) contain only the sample points
E1, E2, and E3, respectively. More generally, the numerical event (Y = y) contains
only Ey . Because the trials are independent, for any y = 1, 2, 3, . . . ,

p(y) = P(Y = y) = P(Ey) = P(F F F F . . . F︸ ︷︷ ︸
y−1

S) = qqq · · · q︸ ︷︷ ︸
y−1

p = q y−1 p.

DEFINITION 3.8 A random variable Y is said to have a geometric probability distribution if and
only if

p(y) = q y−1 p, y = 1, 2, 3, . . . , 0 ≤ p ≤ 1.

A probability histogram for p(y), p = .5, is shown in Figure 3.5. Areas over
intervals correspond to probabilities, as they did for the frequency distributions of
data in Chapter 1, except that Y can assume only discrete values, y = 1, 2, . . . , ∞.
That p(y) ≥ 0 is obvious by inspection of the respective values. In Exercise 3.66
you will show that these probabilities add up to 1, as is required for any valid discrete
probability distribution.

2 43
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0

p ( y)

y1 5 6 7 8
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The geometric probability distribution is often used to model distributions of
lengths of waiting times. For example, suppose that a commercial aircraft engine
is serviced periodically so that its various parts are replaced at different points in
time and hence are of varying ages. Then the probability of engine malfunction, p,
during any randomly observed one-hour interval of operation might be the same as
for any other one-hour interval. The length of time prior to engine malfunction is
the number of one-hour intervals, Y , until the first malfunction. (For this application,
engine malfunction in a given one-hour period is defined as a success. Notice that, as
in the case of the binomial experiment, either of the two outcomes of a trial can be
defined as a success. Again, a “success” is not necessarily what would be considered
to be “good” in everyday conversation.)

EXAMPLE 3.11 Suppose that the probability of engine malfunction during any one-hour period is
p = .02. Find the probability that a given engine will survive two hours.

Solution Letting Y denote the number of one-hour intervals until the first malfunction, we have

P(survive two hours) = P(Y ≥ 3) =
∞∑

y=3

p(y).

Because
∞∑

y=1
p(y) = 1,

P(survive two hours) = 1 −
2∑

y=1

p(y)

= 1 − p − qp = 1 − .02 − (.98)(.02) = .9604.

If you examine the formula for the geometric distribution given in Definition 3.8,
you will see that larger values of p (and hence smaller values of q) lead to higher
probabilities for the smaller values of Y and hence lower probabilities for the larger
values of Y . Thus, the mean value of Y appears to be inversely proportional to p.
As we show in the next theorem, the mean of a random variable with a geometric
distribution is actually equal to 1/p.

THEOREM 3.8 If Y is a random variable with a geometric distribution,

μ = E(Y ) = 1

p
and σ 2 = V (Y ) = 1 − p

p2
.

Proof
E(Y ) =

∞∑
y=1

yq y−1 p = p
∞∑

y=1

yq y−1.
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3.5 The Geometric Probability Distribution 117

This series might seem to be difficult to sum directly. Actually, it can be summed
easily if we take into account that, for y ≥ 1,

d

dq
(q y) = yq y−1,

and, hence,

d

dq

( ∞∑
y=1

q y

)
=

∞∑
y=1

yq y−1.

(The interchanging of derivative and sum here can be justified.) Substituting,
we obtain

E(Y ) = p
∞∑

y=1

yq y−1 = p
d

dq

( ∞∑
y=1

q y

)
.

The latter sum is the geometric series, q + q2 + q3 + · · ·, which is equal to
q/(1 − q) (see Appendix A1.11). Therefore,

E(Y ) = p
d

dq

(
q

1 − q

)
= p

[
1

(1 − q)2

]
= p

p2
= 1

p
.

To summarize, our approach is to express a series that cannot be summed
directly as the derivative of a series for which the sum can be readily obtained.
Once we evaluate the more easily handled series, we differentiate to complete
the process.

The derivation of the variance is left as Exercise 3.85.

EXAMPLE 3.12 If the probability of engine malfunction during any one-hour period is p = .02 and
Y denotes the number of one-hour intervals until the first malfunction, find the mean
and standard deviation of Y .

Solution As in Example 3.11, it follows that Y has a geometric distribution with p = .02.
Thus, E(Y ) = 1/p = 1/(.02) = 50, and we expect to wait quite a few hours before
encountering a malfunction. Further, V (Y ) = .98/.0004 = 2450, and it follows that
the standard deviation of Y is σ = √

2450 = 49.497.

Although the computation of probabilities associated with geometric random vari-
ables can be accomplished by evaluating a single value or partial sums associated with
a geometric series, these probabilities can also be found using various computer soft-
ware packages. If Y has a geometric distribution with success probability p, P(Y =
y0) = p(y0) can be found by using the R (or S-Plus) command dgeom(y0-1,p),
whereas P(Y ≤ y0) is found by using the R (or S-Plus) commandpgeom(y0-1,p).
For example, the R (or S-Plus) command pgeom(1,0.02) yields the value for
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118 Chapter 3 Discrete Random Variables and Their Probability Distributions

P(Y ≤ 2) that was implicitly used in Example 3.11. Note that the argument in these
commands is the value y0 −1, not the value y0. This is because some authors prefer to
define the geometric distribution to be that of the random variable Y = = the number of
failures before the first success. In our formulation, the geometric random variable Y
is interpreted as the number of the trial on which the first success occurs. In Exercise
3.88, you will see that Y = = Y −1. Due to this relationship between the two versions of
geometric random variables, P(Y = y0) = P(Y −1 = y0 −1) = P(Y = = y0 −1). R
computes probabilities associated with Y =, explaining why the arguments for dgeom
and pgeom are y0 − 1 instead of y0.

The next example, similar to Example 3.10, illustrates how knowledge of the
geometric probability distribution can be used to estimate an unknown value of p,
the probability of a success.

EXAMPLE 3.13 Suppose that we interview successive individuals working for the large company
discussed in Example 3.10 and stop interviewing when we find the first person who
likes the policy. If the fifth person interviewed is the first one who favors the new
policy, find an estimate for p, the true but unknown proportion of employees who
favor the new policy.

Solution If Y denotes the number of individuals interviewed until we find the first person who
likes the new retirement plan, it is reasonable to conclude that Y has a geometric
distribution for some value of p. Whatever the true value for p, we conclude that the
probability of observing the first person in favor of the policy on the fifth trial is

P(Y = 5) = (1 − p)4 p.

We will use as our estimate for p the value that maximizes the probability of observing
the value that we actually observed (the first success on trial 5).

To find the value of p that maximizes P(Y = 5), we again observe that the value
of p that maximizes P(Y = 5) = (1 − p)4 p is the same as the value of p that
maximizes ln[(1 − p)4 p] = [4 ln(1 − p) + ln(p)].

If we take the derivative of [4 ln(1 − p) + ln(p)] with respect to p, we obtain

d[4 ln(1 − p) + ln(p)]

dp
= −4

1 − p
+ 1

p
.

Setting this derivative equal to 0 and solving, we obtain p = 1/5.
Because the second derivative of [4 ln(1 − p) + ln(p)] is negative when p = 1/5,

it follows that [4 ln(1 − p) + ln(p)] [and P(Y = 5)] is maximized when p = 1/5.
Our estimate for p, based on observing the first success on the fifth trial is 1/5.

Perhaps this result is a little more surprising than the answer we obtained in
Example 3.10 where we estimated p on the basis of observing 6 in favor of the new
plan in a sample of size 20. Again, this is an example of the use of the method of
maximum likelihood that will be studied in more detail in Chapter 9.
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Exercises
3.66 Suppose that Y is a random variable with a geometric distribution. Show that

a
∑

y p(y) = ∑∞
y=1 q y−1 p = 1.

b
p(y)

p(y − 1)
= q , for y = 2, 3, . . . . This ratio is less than 1, implying that the geomet-

ric probabilities are monotonically decreasing as a function of y. If Y has a geometric
distribution, what value of Y is the most likely (has the highest probability)?

3.67 Suppose that 30% of the applicants for a certain industrial job possess advanced training in com-
puter programming. Applicants are interviewed sequentially and are selected at random from
the pool. Find the probability that the first applicant with advanced training in programming
is found on the fifth interview.

3.68 Refer to Exercise 3.67. What is the expected number of applicants who need to be interviewed
in order to find the first one with advanced training?

3.69 About six months into George W. Bush’s second term as president, a Gallup poll indicated that
a near record (low) level of 41% of adults expressed “a great deal” or “quite a lot” of confidence
in the U.S. Supreme Court (http://www.gallup.com/poll/content/default.aspx?ci=17011, June
2005). Suppose that you conducted your own telephone survey at that time and randomly called
people and asked them to describe their level of confidence in the Supreme Court. Find the
probability distribution for Y , the number of calls until the first person is found who does not
express “a great deal” or “quite a lot” of confidence in the U.S. Supreme Court.

3.70 An oil prospector will drill a succession of holes in a given area to find a productive well. The
probability that he is successful on a given trial is .2.

a What is the probability that the third hole drilled is the first to yield a productive well?

b If the prospector can afford to drill at most ten wells, what is the probability that he will
fail to find a productive well?

3.71 Let Y denote a geometric random variable with probability of success p.

a Show that for a positive integer a,

P(Y > a) = qa .

b Show that for positive integers a and b,

P(Y > a + b|Y > a) = qb = P(Y > b).

This result implies that, for example, P(Y > 7|Y > 2) = P(Y > 5). Why do you think
this property is called the memoryless property of the geometric distribution?

c In the development of the distribution of the geometric random variable, we assumed
that the experiment consisted of conducting identical and independent trials until the first
success was observed. In light of these assumptions, why is the result in part (b) “obvious”?

3.72 Given that we have already tossed a balanced coin ten times and obtained zero heads, what is
the probability that we must toss it at least two more times to obtain the first head?

3.73 A certified public accountant (CPA) has found that nine of ten company audits contain sub-
stantial errors. If the CPA audits a series of company accounts, what is the probability that the
first account containing substantial errors

a is the third one to be audited?

b will occur on or after the third audited account?
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3.74 Refer to Exercise 3.73. What are the mean and standard deviation of the number of accounts
that must be examined to find the first one with substantial errors?

3.75 The probability of a customer arrival at a grocery service counter in any one second is equal
to .1. Assume that customers arrive in a random stream and hence that an arrival in any one
second is independent of all others. Find the probability that the first arrival

a will occur during the third one-second interval.

b will not occur until at least the third one-second interval.

3.76 If Y has a geometric distribution with success probability .3, what is the largest value, y0, such
that P(Y > y0) ≥ .1?

3.77 If Y has a geometric distribution with success probability p, show that

P(Y = an odd integer ) = p

1 − q2
.

3.78 Of a population of consumers, 60% are reputed to prefer a particular brand, A, of toothpaste.
If a group of randomly selected consumers is interviewed, what is the probability that exactly
five people have to be interviewed to encounter the first consumer who prefers brand A? At
least five people?

3.79 In responding to a survey question on a sensitive topic (such as “Have you ever tried
marijuana?”), many people prefer not to respond in the affirmative. Suppose that 80% of
the population have not tried marijuana and all of those individuals will truthfully answer no
to your question. The remaining 20% of the population have tried marijuana and 70% of those
individuals will lie. Derive the probability distribution of Y , the number of people you would
need to question in order to obtain a single affirmative response.

3.80 Two people took turns tossing a fair die until one of them tossed a 6. Person A tossed first, B
second, A third, and so on. Given that person B threw the first 6, what is the probability that B
obtained the first 6 on her second toss (that is, on the fourth toss overall)?

3.81 How many times would you expect to toss a balanced coin in order to obtain the first head?

3.82 Refer to Exercise 3.70. The prospector drills holes until he finds a productive well. How many
holes would the prospector expect to drill? Interpret your answer intuitively.

3.83 The secretary in Exercises 2.121 and 3.16 was given n computer passwords and tries the
passwords at random. Exactly one of the passwords permits access to a computer file. Suppose
now that the secretary selects a password, tries it, and—if it does not work—puts it back in
with the other passwords before randomly selecting the next password to try (not a very clever
secretary!). What is the probability that the correct password is found on the sixth try?

3.84 Refer to Exercise 3.83. Find the mean and the variance of Y , the number of the trial on which
the correct password is first identified.

*3.85 Find E[Y (Y − 1)] for a geometric random variable Y by finding d2/dq2
(∑∞

y=1 q y
)

. Use this
result to find the variance of Y .

*3.86 Consider an extension of the situation discussed in Example 3.13. If we observe y0 as the value
for a geometric random variable Y , show that P(Y = y0) is maximized when p = 1/y0. Again,
we are determining (in general this time) the value of p that maximizes the probability of the
value of Y that we actually observed.
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*3.87 Refer to Exercise 3.86. The maximum likelihood estimator for p is 1/Y (note that Y is the
geometric random variable, not a particular value of it). Derive E(1/Y ). [Hint: If |r | < 1,∑∞

i=1 r i/ i = − ln(1 − r).]

*3.88 If Y is a geometric random variable, define Y ∗ = Y − 1. If Y is interpreted as the number of
the trial on which the first success occurs, then Y ∗ can be interpreted as the number of failures
before the first success. If Y ∗ = Y − 1, P(Y ∗ = y) = P(Y − 1 = y) = P(Y = y + 1) for
y = 0, 1, 2, . . . . Show that

P(Y ∗ = y) = q y p, y = 0, 1, 2, . . . .

The probability distribution of Y ∗ is sometimes used by actuaries as a model for the distribution
of the number of insurance claims made in a specific time period.

*3.89 Refer to Exercise 3.88. Derive the mean and variance of the random variable Y ∗

a by using the result in Exercise 3.33 and the relationship Y ∗ = Y −1, where Y is geometric.

*b directly, using the probability distribution for Y ∗ given in Exercise 3.88.

3.6 The Negative Binomial Probability
Distribution (Optional)
A random variable with a negative binomial distribution originates from a context
much like the one that yields the geometric distribution. Again, we focus on inde-
pendent and identical trials, each of which results in one of two outcomes: success or
failure. The probability p of success stays the same from trial to trial. The geometric
distribution handles the case where we are interested in the number of the trial on
which the first success occurs. What if we are interested in knowing the number of
the trial on which the second, third, or fourth success occurs? The distribution that
applies to the random variable Y equal to the number of the trial on which the r th
success occurs (r = 2, 3, 4, etc.) is the negative binomial distribution.

The following steps closely resemble those in the previous section. Let us select
fixed values for r and y and consider events A and B, where

A = {the first (y − 1) trials contain (r − 1) successes}
and

B = {trial y results in a success}.
Because we assume that the trials are independent, it follows that A and B are inde-
pendent events, and previous assumptions imply that P(B) = p. Therefore,

p(y) = p(Y = y) = P(A ∩ B) = P(A) × P(B).

Notice that P(A) is 0 if (y − 1) < (r − 1) or, equivalently, if y < r . If y ≥ r , our
previous work with the binomial distribution implies that

P(A) =
(

y − 1

r − 1

)
pr−1q y−r .
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Finally,

p(y) =
(

y − 1

r − 1

)
pr q y−r , y = r, r + 1, r + 2, . . . .

DEFINITION 3.9 A random variable Y is said to have a negative binomial probability distribution
if and only if

p(y) =
(

y − 1

r − 1

)
pr q y−r , y = r, r + 1, r + 2, . . . , 0 ≤ p ≤ 1.

EXAMPLE 3.14 A geological study indicates that an exploratory oil well drilled in a particular region
should strike oil with probability .2. Find the probability that the third oil strike comes
on the fifth well drilled.

Solution Assuming independent drillings and probability .2 of striking oil with any one well,
let Y denote the number of the trial on which the third oil strike occurs. Then it is
reasonable to assume that Y has a negative binomial distribution with p = .2. Because
we are interested in r = 3 and y = 5,

P(Y = 5) = p(5) =
(

4

2

)
(.2)3(.8)2

= 6(.008)(.64) = .0307.

If r = 2, 3, 4, . . . and Y has a negative binomial distribution with success prob-
ability p, P(Y = y0) = p(y0) can be found by using the R (or S-Plus) command
dnbinom(y0-r,r,p). If we wanted to use R to obtain p(5) in Example 3.14, we
use the command dnbinom(2,3,.2). Alternatively, P(Y ≤ y0) is found by using
the R (or S-Plus) command pnbinom(y0-r,r,p). Note that the first argument in
these commands is the value y0 − r , not the value y0. This is because some authors
prefer to define the negative binomial distribution to be that of the random variable
Y = = the number of failures before the rth success. In our formulation, the negative
binomial random variable, Y , is interpreted as the number of the trial on which
the rth success occurs. In Exercise 3.100, you will see that Y = = Y − r . Due to
this relationship between the two versions of negative binomial random variables,
P(Y = y0) = P(Y − r = y0 − r) = P(Y = = y0 − r). R computes probabilities
associated with Y =, explaining why the arguments for dnbinom and pnbinom are
y0 − r instead of y0.

The mean and variance of a random variable with a negative binomial distribution
can be derived directly from Definitions 3.4 and 3.5 by using techniques like those
previously illustrated. However, summing the resulting infinite series is somewhat
tedious. These derivations will be much easier after we have developed some of the
techniques of Chapter 5. For now, we state the following theorem without proof.
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THEOREM 3.9 If Y is a random variable with a negative binomial distribution,

μ = E(Y ) = r

p
and σ 2 = V (Y ) = r(1 − p)

p2
.

EXAMPLE 3.15 A large stockpile of used pumps contains 20% that are in need of repair. A maintenance
worker is sent to the stockpile with three repair kits. She selects pumps at random and
tests them one at a time. If the pump works, she sets it aside for future use. However,
if the pump does not work, she uses one of her repair kits on it. Suppose that it takes
10 minutes to test a pump that is in working condition and 30 minutes to test and
repair a pump that does not work. Find the mean and variance of the total time it takes
the maintenance worker to use her three repair kits.

Solution Let Y denote the number of the trial on which the third nonfunctioning pump is
found. It follows that Y has a negative binomial distribution with p = .2. Thus,
E(Y ) = 3/(.2) = 15 and V (Y ) = 3(.8)/(.2)2 = 60. Because it takes an additional
20 minutes to repair each defective pump, the total time necessary to use the three
kits is

T = 10Y + 3(20).

Using the result derived in Exercise 3.33, we see that

E(T ) = 10E(Y ) + 60 = 10(15) + 60 = 210

and

V (T ) = 102V (Y ) = 100(60) = 6000.

Thus, the total time necessary to use all three kits has mean 210 and standard deviation√
6000 = 77.46.

Exercises
3.90 The employees of a firm that manufactures insulation are being tested for indications of asbestos

in their lungs. The firm is requested to send three employees who have positive indications
of asbestos on to a medical center for further testing. If 40% of the employees have positive
indications of asbestos in their lungs, find the probability that ten employees must be tested in
order to find three positives.

3.91 Refer to Exercise 3.90. If each test costs $20, find the expected value and variance of the total
cost of conducting the tests necessary to locate the three positives.

3.92 Ten percent of the engines manufactured on an assembly line are defective. If engines are
randomly selected one at a time and tested, what is the probability that the first nondefective
engine will be found on the second trial?
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3.93 Refer to Exercise 3.92. What is the probability that the third nondefective engine will be found

a on the fifth trial?

b on or before the fifth trial?

3.94 Refer to Exercise 3.92. Find the mean and variance of the number of the trial on which

a the first nondefective engine is found.

b the third nondefective engine is found.

3.95 Refer to Exercise 3.92. Given that the first two engines tested were defective, what is the
probability that at least two more engines must be tested before the first nondefective is found?

3.96 The telephone lines serving an airline reservation office are all busy about 60% of the time.

a If you are calling this office, what is the probability that you will complete your call on the
first try? The second try? The third try?

b If you and a friend must both complete calls to this office, what is the probability that a
total of four tries will be necessary for both of you to get through?

3.97 A geological study indicates that an exploratory oil well should strike oil with probability .2.

a What is the probability that the first strike comes on the third well drilled?

b What is the probability that the third strike comes on the seventh well drilled?

c What assumptions did you make to obtain the answers to parts (a) and (b)?

d Find the mean and variance of the number of wells that must be drilled if the company
wants to set up three producing wells.

*3.98 Consider the negative binomial distribution given in Definition 3.9.

a Show that if y ≥ r + 1,
p(y)

p(y − 1)
=

(
y − 1

y − r

)
q . This establishes a recursive relation-

ship between successive negative binomial probabilities, because p(y) = p(y − 1) ×(
y − 1

y − r

)
q .

b Show that
p(y)

p(y − 1)
=

(
y − 1

y − r

)
q > 1 if y <

r − q

1 − q
. Similarly,

p(y)

p(y − 1)
< 1 if

y >
r − q

1 − q
.

c Apply the result in part (b) for the case r = 7, p = .5 to determine the values of y for
which p(y) > p(y − 1).

*3.99 In a sequence of independent identical trials with two possible outcomes on each trial, S and
F , and with P(S) = p, what is the probability that exactly y trials will occur before the r th
success?

*3.100 If Y is a negative binomial random variable, define Y ∗ = Y − r . If Y is interpreted as the
number of the trial on which the r th success occurs, then Y ∗ can be interpreted as the number
of failures before the r th success.

a If Y ∗ = Y − r , P(Y ∗ = y) = P(Y − r = y) = P(Y = y + r) for y = 0, 1, 2, . . . , show

that P(Y ∗ = y) =
(

y + r − 1

r − 1

)
pr q y, y = 0, 1, 2, . . . .

b Derive the mean and variance of the random variable Y ∗ by using the relationship Y ∗ =
Y − r , where Y is negative binomial and the result in Exercise 3.33.
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3.7 The Hypergeometric Probability Distribution 125

*3.101 a We observe a sequence of independent identical trials with two possible outcomes on each
trial, S and F , and with P(S) = p. The number of the trial on which we observe the fifth
success, Y , has a negative binomial distribution with parameters r = 5 and p. Suppose
that we observe the fifth success on the eleventh trial. Find the value of p that maximizes
P(Y = 11).

b Generalize the result from part (a) to find the value of p that maximizes P(Y = y0) when
Y has a negative binomial distribution with parameters r (known) and p.

3.7 The Hypergeometric Probability
Distribution
In Example 3.6 we considered a population of voters, 40% of whom favored candidate
Jones. A sample of voters was selected, and Y (the number favoring Jones) was to be
observed. We concluded that if the sample size n was small relative to the population
size N , the distribution of Y could be approximated by a binomial distribution. We also
determined that if n was large relative to N , the conditional probability of selecting
a supporter of Jones on a later draw would be significantly affected by the observed
preferences of persons selected on earlier draws. Thus the trials were not independent
and the probability distribution for Y could not be approximated adequately by a
binomial probability distribution. Consequently, we need to develop the probability
distribution for Y when n is large relative to N .

Suppose that a population contains a finite number N of elements that possess
one of two characteristics. Thus, r of the elements might be red and b = N − r ,
black. A sample of n elements is randomly selected from the population, and the
random variable of interest is Y , the number of red elements in the sample. This
random variable has what is known as the hypergeometric probability distribution.
For example, the number of workers who are women, Y , in Example 3.1 has the
hypergeometric distribution.

The hypergeometric probability distribution can be derived by using the combina-
torial theorems given in Section 2.6 and the sample-point approach. A sample point
in the sample space S will correspond to a unique selection of n elements, some red
and the remainder black. As in the binomial experiment, each sample point can be
characterized by an n-tuple whose elements correspond to a selection of n elements
from the total of N . If each element in the population were numbered from 1 to N , the
sample point indicating the selection of items 5, 7, 8, 64, 17, . . . , 87 would appear
as the n-tuple

(5, 7, 8, 64, 17, . . . , 87︸ ︷︷ ︸
n positions

).

The total number of sample points in S, therefore, will equal the number of ways of
selecting a subset of n elements from a population of N , or

(
N
n

)
. Because random

selection implies that all sample points are equiprobable, the probability of a sample
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point in S is

P(Ei ) = 1(
N

n

) , all Ei ∈ S.

The total number of sample points in the numerical event Y = y is the number
of sample points in S that contain y red and (n − y) black elements. This num-
ber can be obtained by applying the mn rule (Section 2.6). The number of ways
of selecting y red elements to fill y positions in the n-tuple representing a sam-
ple point is the number of ways of selecting y from a total of r , or

(r
y

)
. [We use

the convention
(a

b

) = 0 if b > a.] The total number of ways of selecting (n − y)

black elements to fill the remaining (n − y) positions in the n-tuple is the number
of ways of selecting (n − y) black elements from a possible (N − r), or

(N−r
n−y

)
.

Then the number of sample points in the numerical event Y = y is the number of
ways of combining a set of y red and (n − y) black elements. By the mn rule, this
is the product

(r
y

) × (N−r
n−y

)
. Summing the probabilities of the sample points in the

numerical event Y = y (multiplying the number of sample points by the common
probability per sample point), we obtain the hypergeometric probability function.

DEFINITION 3.10 A random variable Y is said to have a hypergeometric probability distribution
if and only if

p(y) =

(
r

y

)(
N − r

n − y

)
(

N

n

) ,

where y is an integer 0, 1, 2, . . . , n, subject to the restrictions y ≤ r and
n − y ≤ N − r .

With the convention
(

a
b

) = 0 if b > a, it is clear that p(y) ≥ 0 for the hypergeo-
metric probabilities. The fact that the hypergeometric probabilities sum to 1 follows
from the fact that

n∑
i=0

(
r

i

)(
N − r

n − i

)
=

(
N

n

)
.

A sketch of the proof of this result is outlined in Exercise 3.216.

EXAMPLE 3.16 An important problem encountered by personnel directors and others faced with the
selection of the best in a finite set of elements is exemplified by the following scenario.
From a group of 20 Ph.D. engineers, 10 are randomly selected for employment. What
is the probability that the 10 selected include all the 5 best engineers in the group of 20?

Solution For this example N = 20, n = 10, and r = 5. That is, there are only 5 in the set of 5
best engineers, and we seek the probability that Y = 5, where Y denotes the number
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of best engineers among the ten selected. Then

p(5) =
(5

5

)(15
5

)(20
10

) =
(

15!

5!10!

) (
10!10!

20!

)
= 21

1292
= .0162.

Suppose that a population of size N consists of r units with the attribute and
N − r without. If a sample of size n it taken, without replacement, and Y is the
number of items with the attribute in the sample, P(Y = y0) = p(y0) can be
found by using the R (or S-Plus) command dhyper(y0,r,N-r,n). The command
dhyper(5,5,15,10) yields the value for p(5) in Example 3.16. Alternatively,
P(Y ≤ y0) is found by using the R (or S-Plus) command phyper(y0,r,N-r,n).

The mean and variance of a random variable with a hypergeometric distribution
can be derived directly from Definitions 3.4 and 3.5. However, deriving closed form
expressions for the resulting summations is somewhat tedious. In Chapter 5 we will
develop methods that permit a much simpler derivation of the results presented in the
following theorem.

THEOREM 3.10 If Y is a random variable with a hypergeometric distribution,

μ = E(Y ) = nr

N
and σ 2 = V (Y ) = n

( r

N

) (
N − r

N

) (
N − n

N − 1

)
.

Although the mean and the variance of the hypergeometric random variable seem to
be rather complicated, they bear a striking resemblance to the mean and variance of
a binomial random variable. Indeed, if we define p = r

N and q = 1 − p = N−r
N , we

can re-express the mean and variance of the hypergeometric as μ = np and

σ 2 = npq

(
N − n

N − 1

)
.

You can view the factor
N − n

N − 1
in V (Y ) as an adjustment that is appropriate when n is large relative to N . For fixed
n, as N → ∞,

N − n

N − 1
→ 1.

EXAMPLE 3.17 An industrial product is shipped in lots of 20. Testing to determine whether an item
is defective is costly, and hence the manufacturer samples his production rather than
using a 100% inspection plan. A sampling plan, constructed to minimize the number
of defectives shipped to customers, calls for sampling five items from each lot and
rejecting the lot if more than one defective is observed. (If the lot is rejected, each
item in it is later tested.) If a lot contains four defectives, what is the probability that
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128 Chapter 3 Discrete Random Variables and Their Probability Distributions

it will be rejected? What is the expected number of defectives in the sample of size 5?
What is the variance of the number of defectives in the sample of size 5?

Solution Let Y equal the number of defectives in the sample. Then N = 20, r = 4, and n = 5.
The lot will be rejected if Y = 2, 3, or 4. Then

P(rejecting the lot) = P(Y ≥ 2) = p(2) + p(3) + p(4)

= 1 − p(0) − p(1)

= 1 −
(4

0

)(16
5

)(20
5

) −
(4

1

)(16
4

)(20
5

)
= 1 − .2817 − .4696 = .2487.

The mean and variance of the number of defectives in the sample of size 5 are

μ = (5)(4)

20
= 1 and σ 2 = 5

(
4

20

) (
20 − 4

20

) (
20 − 5

20 − 1

)
= .632.

Example 3.17 involves sampling a lot of N industrial products, of which r are
defective. The random variable of interest is Y , the number of defectives in a sample
of size n. As noted in the beginning of this section, Y possesses an approximately
binomial distribution when N is large and n is relatively small. Consequently, we
would expect the probabilities assigned to values of Y by the hypergeometric distri-
bution to approach those assigned by the binomial distribution as N becomes large
and r/N , the fraction defective in the population, is held constant and equal to p.
You can verify this expectation by using limit theorems encountered in your calculus
courses to show that

lim
N→∞

(r
y

)(N−r
n−y

)(N
n

) =
(

n

y

)
py(1 − p)n−y,

where
r

N
= p.

(The proof of this result is omitted.) Hence, for a fixed fraction defective p = r/N , the
hypergeometric probability function converges to the binomial probability function
as N becomes large.

Exercises
3.102 An urn contains ten marbles, of which five are green, two are blue, and three are red. Three

marbles are to be drawn from the urn, one at a time without replacement. What is the probability
that all three marbles drawn will be green?

3.103 A warehouse contains ten printing machines, four of which are defective. A company selects
five of the machines at random, thinking all are in working condition. What is the probability
that all five of the machines are nondefective?
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3.104 Twenty identical looking packets of white power are such that 15 contain cocaine and 5 do
not. Four packets were randomly selected, and the contents were tested and found to contain
cocaine. Two additional packets were selected from the remainder and sold by undercover
police officers to a single buyer. What is the probability that the 6 packets randomly selected
are such that the first 4 all contain cocaine and the 2 sold to the buyer do not?

3.105 In southern California, a growing number of individuals pursuing teaching credentials are
choosing paid internships over traditional student teaching programs. A group of eight candi-
dates for three local teaching positions consisted of five who had enrolled in paid internships
and three who enrolled in traditional student teaching programs. All eight candidates appear
to be equally qualified, so three are randomly selected to fill the open positions. Let Y be the
number of internship trained candidates who are hired.

a Does Y have a binomial or hypergeometric distribution? Why?

b Find the probability that two or more internship trained candidates are hired.

c What are the mean and standard deviation of Y ?

3.106 Refer to Exercise 3.103. The company repairs the defective ones at a cost of $50 each. Find
the mean and variance of the total repair cost.

3.107 A group of six software packages available to solve a linear programming problem has been
ranked from 1 to 6 (best to worst). An engineering firm, unaware of the rankings, randomly se-
lected and then purchased two of the packages. Let Y denote the number of packages purchased
by the firm that are ranked 3, 4, 5, or 6. Give the probability distribution for Y.

3.108 A shipment of 20 cameras includes 3 that are defective. What is the minimum number of
cameras that must be selected if we require that P(at least 1 defective) ≥ .8?

3.109 Seed are often treated with fungicides to protect them in poor draining, wet environments.
A small-scale trial, involving five treated and five untreated seeds, was conducted prior to a
large-scale experiment to explore how much fungicide to apply. The seeds were planted in wet
soil, and the number of emerging plants were counted. If the solution was not effective and
four plants actually sprouted, what is the probability that

a all four plants emerged from treated seeds?

b three or fewer emerged from treated seeds?

c at least one emerged from untreated seeds?

3.110 A corporation is sampling without replacement for n = 3 firms to determine the one from
which to purchase certain supplies. The sample is to be selected from a pool of six firms, of
which four are local and two are not local. Let Y denote the number of nonlocal firms among
the three selected.

a P(Y = 1).

b P(Y ≥ 1).

c P(Y ≤ 1).

3.111 Specifications call for a thermistor to test out at between 9000 and 10,000 ohms at 25◦ Celcius.
Ten thermistors are available, and three of these are to be selected for use. Let Y denote the
number among the three that do not conform to specifications. Find the probability distributions
for Y (in tabular form) under the following conditions:

a Two thermistors do not conform to specifications among the ten that are available.

b Four thermistors do not conform to specifications among the ten that are available.
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3.112 Used photocopy machines are returned to the supplier, cleaned, and then sent back out on lease
agreements. Major repairs are not made, however, and as a result, some customers receive
malfunctioning machines. Among eight used photocopiers available today, three are malfunc-
tioning. A customer wants to lease four machines immediately. To meet the customer’s deadline,
four of the eight machines are randomly selected and, without further checking, shipped to the
customer. What is the probability that the customer receives

a no malfunctioning machines?

b at least one malfunctioning machine?

3.113 A jury of 6 persons was selected from a group of 20 potential jurors, of whom 8 were African
American and 12 were white. The jury was supposedly randomly selected, but it contained
only 1 African American member. Do you have any reason to doubt the randomness of the
selection?

3.114 Refer to Exercise 3.113. If the selection process were really random, what would be the mean
and variance of the number of African American members selected for the jury?

3.115 Suppose that a radio contains six transistors, two of which are defective. Three transistors
are selected at random, removed from the radio, and inspected. Let Y equal the number of
defectives observed, where Y = 0, 1, or 2. Find the probability distribution for Y . Express
your results graphically as a probability histogram.

3.116 Simulate the experiment described in Exercise 3.115 by marking six marbles or coins so that
two represent defectives and four represent nondefectives. Place the marbles in a hat, mix,
draw three, and record Y , the number of defectives observed. Replace the marbles and repeat
the process until n = 100 observations of Y have been recorded. Construct a relative frequency
histogram for this sample and compare it with the population probability distribution (Exercise
3.115).

3.117 In an assembly-line production of industrial robots, gearbox assemblies can be installed in
one minute each if holes have been properly drilled in the boxes and in ten minutes if
the holes must be redrilled. Twenty gearboxes are in stock, 2 with improperly drilled holes.
Five gearboxes must be selected from the 20 that are available for installation in the next five
robots.

a Find the probability that all 5 gearboxes will fit properly.

b Find the mean, variance, and standard deviation of the time it takes to install these
5 gearboxes.

3.118 Five cards are dealt at random and without replacement from a standard deck of 52 cards.
What is the probability that the hand contains all 4 aces if it is known that it contains at least
3 aces?

3.119 Cards are dealt at random and without replacement from a standard 52 card deck. What is the
probability that the second king is dealt on the fifth card?

*3.120 The sizes of animal populations are often estimated by using a capture–tag–recapture method.
In this method k animals are captured, tagged, and then released into the population. Some time
later n animals are captured, and Y , the number of tagged animals among the n, is noted. The
probabilities associated with Y are a function of N , the number of animals in the population,
so the observed value of Y contains information on this unknown N . Suppose that k = 4
animals are tagged and then released. A sample of n = 3 animals is then selected at random
from the same population. Find P(Y = 1) as a function of N . What value of N will maximize
P(Y = 1)?
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3.8 The Poisson Probability Distribution
Suppose that we want to find the probability distribution of the number of automobile
accidents at a particular intersection during a time period of one week. At first glance
this random variable, the number of accidents, may not seem even remotely related
to a binomial random variable, but we will see that an interesting relationship exists.

Think of the time period, one week in this example, as being split up into n
subintervals, each of which is so small that at most one accident could occur in it
with probability different from zero. Denoting the probability of an accident in any
subinterval by p, we have, for all practical purposes,

P(no accidents occur in a subinterval) = 1 − p,

P(one accident occurs in a subinterval) = p,

P(more than one accident occurs in a subinterval) = 0.

Then the total number of accidents in the week is just the total number of subin-
tervals that contain one accident. If the occurrence of accidents can be regarded as
independent from interval to interval, the total number of accidents has a binomial
distribution.

Although there is no unique way to choose the subintervals, and we therefore
know neither n nor p, it seems reasonable that as we divide the week into a greater
number n of subintervals, the probability p of one accident in one of these shorter
subintervals will decrease. Letting λ = np and taking the limit of the binomial
probability p(y) = (n

y

)
py(1 − p)n−y as n → ∞, we have

lim
n→∞

(
n

y

)
py(1 − p)n−y = lim

n→∞
n(n − 1) · · · (n − y + 1)

y!

(
λ

n

)y (
1 − λ

n

)n−y

= lim
n→∞

λy

y!

(
1 − λ

n

)n n(n − 1) · · · (n − y + 1)

ny

(
1 − λ

n

)−y

= λy

y!
lim

n→∞

(
1 − λ

n

)n (
1 − λ

n

)−y(
1 − 1

n

)
×

(
1 − 2

n

)
× · · · ×

(
1 − y − 1

n

)
.

Noting that

lim
n→∞

(
1 − λ

n

)n

= e−λ

and all other terms to the right of the limit have a limit of 1, we obtain

p(y) = λy

y!
e−λ.

(Note: e = 2.718. . . .) Random variables possessing this distribution are said to have
a Poisson distribution. Hence, Y , the number of accidents per week, has the Poisson
distribution just derived.
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Because the binomial probability function converges to the Poisson, the Poisson
probabilities can be used to approximate their binomial counterparts for large n,
small p, and λ = np less than, roughly, 7. Exercise 3.134 requires you to calculate
corresponding binomial and Poisson probabilities and will demonstrate the adequacy
of the approximation.

The Poisson probability distribution often provides a good model for the proba-
bility distribution of the number Y of rare events that occur in space, time, volume,
or any other dimension, where λ is the average value of Y . As we have noted, it
provides a good model for the probability distribution of the number Y of automobile
accidents, industrial accidents, or other types of accidents in a given unit of time.
Other examples of random variables with approximate Poisson distributions are the
number of telephone calls handled by a switchboard in a time interval, the number
of radioactive particles that decay in a particular time period, the number of errors a
typist makes in typing a page, and the number of automobiles using a freeway access
ramp in a ten-minute interval.

DEFINITION 3.11 A random variable Y is said to have a Poisson probability distribution if and
only if

p(y) = λy

y!
e−λ, y = 0, 1, 2, . . . , λ > 0.

As we will see in Theorem 3.11, the parameter λ that appears in the formula for
the Poisson distribution is actually the mean of the distribution.

EXAMPLE 3.18 Show that the probabilities assigned by the Poisson probability distribution satisfy
the requirements that 0 ≤ p(y) ≤ 1 for all y and

∑
y p(y) = 1.

Solution Because λ > 0, it is obvious that p(y) > 0 for y = 0, 1, 2, . . . , and that p(y) = 0
otherwise. Further,

∞∑
y=0

p(y) =
∞∑

y=0

λy

y!
e−λ = e−λ

∞∑
y=0

λy

y!
= e−λeλ = 1

because the infinite sum
∑∞

y=0 λy/y! is a series expansion of eλ. Sums of special

series are given in Appendix A1.11.

EXAMPLE 3.19 Suppose that a random system of police patrol is devised so that a patrol officer
may visit a given beat location Y = 0, 1, 2, 3, . . . times per half-hour period, with
each location being visited an average of once per time period. Assume that Y pos-
sesses, approximately, a Poisson probability distribution. Calculate the probability
that the patrol officer will miss a given location during a half-hour period. What is
the probability that it will be visited once? Twice? At least once?
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Solution For this example the time period is a half-hour, and the mean number of visits per
half-hour interval is λ = 1. Then

p(y) = (1)ye−1

y!
= e−1

y!
, y = 0, 1, 2, . . . .

The event that a given location is missed in a half-hour period corresponds to (Y = 0),
and

P(Y = 0) = p(0) = e−1

0!
= e−1 = .368.

Similarly,

p(1) = e−1

1!
= e−1 = .368,

and

p(2) = e−1

2!
= e−1

2
= .184.

The probability that the location is visited at least once is the event (Y ≥ 1). Then

P(Y ≥ 1) =
∞∑

y=1

p(y) = 1 − p(0) = 1 − e−1 = .632.

If Y has a Poisson distribution with mean λ, P(Y = y0) = p(y0) can be found by
using the R (or S-Plus) command dpois(y0, λ). If we wanted to use R to obtain
p(2) in Example 3.19, we use the commanddpois(2,1). Alternatively, P(Y ≤ y0)

is found by using the R (or S-Plus) command ppois(y0, λ).

EXAMPLE 3.20 A certain type of tree has seedlings randomly dispersed in a large area, with the mean
density of seedlings being approximately five per square yard. If a forester randomly
locates ten 1-square-yard sampling regions in the area, find the probability that none
of the regions will contain seedlings.

Solution If the seedlings really are randomly dispersed, the number of seedlings per region,
Y , can be modeled as a Poisson random variable with λ = 5. (The average density is
five per square yard.) Thus,

P(Y = 0) = p(0) = λ0e−λ

0!
= e−5 = .006738.

The probability that Y = 0 on ten independently selected regions is (e−5)10 because
the probability of the intersection of independent events is equal to the product of the
respective probabilities. The resulting probability is extremely small. Thus, if this
event actually occurred, we would seriously question the assumption of randomness,
the stated average density of seedlings, or both.
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134 Chapter 3 Discrete Random Variables and Their Probability Distributions

For your convenience, we provide in Table 3, Appendix 3, the partial sums∑a
y=0 p(y) for the Poisson probability distribution for many values of λ between

.02 and 25. This table is laid out similarly to the table of partial sums for the bino-
mial distribution, Table 1, Appendix 3. The following example illustrates the use of
Table 3 and demonstrates that the Poisson probability distribution can approximate
the binomial probability distribution.

EXAMPLE 3.21 Suppose that Y possesses a binomial distribution with n = 20 and p = .1. Find the
exact value of P(Y ≤ 3)using the table of binomial probabilities, Table 1, Appendix 3.
Use Table 3, Appendix 3, to approximate this probability, using a corresponding
probability given by the Poisson distribution. Compare the exact and approximate
values for P(Y ≤ 3).

Solution According to Table 1, Appendix 3, the exact (accurate to three decimal places) value
of P(Y ≤ 3) = .867. If W is a Poisson-distributed random variable with λ = np =
20(.1) = 2, previous discussions indicate that P(Y ≤ 3) is approximately equal
to P(W ≤ 3). Table 3, Appendix 3, [or the R command ppois(3,2)], gives
P(W ≤ 3) = .857. Thus, you can see that the Poisson approximation is quite good,
yielding a value that differs from the exact value by only .01.

In our derivation of the mean and variance of a random variable with the Poisson
distribution, we again use the fundamental property that

∑
y p(y) = 1 for any discrete

probability distribution.

THEOREM 3.11 If Y is a random variable possessing a Poisson distribution with parameter λ,
then

μ = E(Y ) = λ and σ 2 = V (Y ) = λ.

Proof By definition,

E(Y ) =
∑

y

yp(y) =
∞∑

y=0

y
λye−λ

y!
.

Notice that the first term in this sum is equal to 0 (when y = 0), and, hence,

E(Y ) =
∞∑

y=1

y
λye−λ

y!
=

∞∑
y=1

λye−λ

(y − 1)!
.

As it stands, this quantity is not equal to the sum of the values of a probability
function p(y) over all values of y, but we can change it to the proper form
by factoring λ out of the expression and letting z = y − 1. Then the limits of
summation become z = 0 (when y = 1) and z = ∞ (when y = ∞), and

E(Y ) = λ

∞∑
y=1

λy−1e−λ

(y − 1)!
= λ

∞∑
z=0

λze−λ

z!
.
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3.8 The Poisson Probability Distribution 135

Notice that p(z) = λze−λ/z! is the probability function for a Poisson random
variable, and

∑∞
z=0 p(z) = 1. Therefore, E(Y ) = λ. Thus, the mean of a

Poisson random variable is the single parameter λ that appears in the expression
for the Poisson probability function.

We leave the derivation of the variance as Exercise 3.138.

A common way to encounter a random variable with a Poisson distribution is
through a model called a Poisson process. A Poisson process is an appropriate model
for situations as described at the beginning of this section. If we observe a Poisson
process and λ is the mean number of occurrences per unit (length, area, etc.), then
Y = the number of occurrences in a units has a Poisson distribution with mean aλ. A
key assumption in the development of the theory of Poisson process is independence
of the numbers of occurrences in disjoint intervals (areas, etc.). See Hogg, Craig, and
McKean (2005) for a theoretical development of the Poisson process.

EXAMPLE 3.22 Industrial accidents occur according to a Poisson process with an average of three
accidents per month. During the last two months, ten accidents occurred. Does this
number seem highly improbable if the mean number of accidents per month, μ, is
still equal to 3? Does it indicate an increase in the mean number of accidents per
month?

Solution The number of accidents in two months, Y , has a Poisson probability distribution with
mean λ= = 2(3) = 6. The probability that Y is as large as 10 is

P(Y ≥ 10) =
∞∑

y=10

6ye−6

y!
.

The tedious calculation required to find P(Y ≥ 10) can be avoided by using Table 3,
Appendix 3, software such as R [ppois(9,6) yields P(Y ≤ 9)]; or the empirical
rule. From Theorem 3.11,

μ = λ= = 6, σ 2 = λ= = 6, σ =
√

6 = 2.45.

The empirical rule tells us that we should expect Y to take values in the interval
μ ± 2σ with a high probability.

Notice that μ + 2σ = 6 + (2)(2.45) = 10.90. The observed number of acci-
dents, Y = 10, does not lie more than 2σ from μ, but it is close to the boundary.
Thus, the observed result is not highly improbable, but it may be sufficiently impro-
bable to warrant an investigation. See Exercise 3.210 for the exact probability
P(|Y − λ| ≤ 2σ ).
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Exercises
3.121 Let Y denote a random variable that has a Poisson distribution with mean λ = 2. Find

a P(Y = 4).

b P(Y ≥ 4).

c P(Y < 4).

d P(Y ≥ 4|Y ≥ 2).

3.122 Customers arrive at a checkout counter in a department store according to a Poisson distribution
at an average of seven per hour. During a given hour, what are the probabilities that

a no more than three customers arrive?

b at least two customers arrive?

c exactly five customers arrive?

3.123 The random variable Y has a Poisson distribution and is such that p(0) = p(1). What is p(2)?

3.124 Approximately 4% of silicon wafers produced by a manufacturer have fewer than two large
flaws. If Y , the number of flaws per wafer, has a Poisson distribution, what proportion of the
wafers have more than five large flaws? [Hint: Use Table 3, Appendix 3.]

3.125 Refer to Exercise 3.122. If it takes approximately ten minutes to serve each customer, find
the mean and variance of the total service time for customers arriving during a 1-hour period.
(Assume that a sufficient number of servers are available so that no customer must wait for
service.) Is it likely that the total service time will exceed 2.5 hours?

3.126 Refer to Exercise 3.122. Assume that arrivals occur according to a Poisson process with an
average of seven per hour. What is the probability that exactly two customers arrive in the
two-hour period of time between

a 2:00 P.M. and 4:00 P.M. (one continuous two-hour period)?

b 1:00 P.M. and 2:00 P.M. or between 3:00 P.M. and 4:00 P.M. (two separate one-hour periods
that total two hours)?

3.127 The number of typing errors made by a typist has a Poisson distribution with an average of
four errors per page. If more than four errors appear on a given page, the typist must retype the
whole page. What is the probability that a randomly selected page does not need to be retyped?

3.128 Cars arrive at a toll both according to a Poisson process with mean 80 cars per hour. If the
attendant makes a one-minute phone call, what is the probability that at least 1 car arrives
during the call?

*3.129 Refer to Exercise 3.128. How long can the attendant’s phone call last if the probability is at
least .4 that no cars arrive during the call?

3.130 A parking lot has two entrances. Cars arrive at entrance I according to a Poisson distribution at
an average of three per hour and at entrance II according to a Poisson distribution at an average
of four per hour. What is the probability that a total of three cars will arrive at the parking lot in
a given hour? (Assume that the numbers of cars arriving at the two entrances are independent.)

3.131 The number of knots in a particular type of wood has a Poisson distribution with an average of
1.5 knots in 10 cubic feet of the wood. Find the probability that a 10-cubic-foot block of the
wood has at most 1 knot.

3.132 The mean number of automobiles entering a mountain tunnel per two-minute period is one. An
excessive number of cars entering the tunnel during a brief period of time produces a hazardous
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situation. Find the probability that the number of autos entering the tunnel during a two-minute
period exceeds three. Does the Poisson model seem reasonable for this problem?

3.133 Assume that the tunnel in Exercise 3.132 is observed during ten two-minute intervals, thus
giving ten independent observations Y1, Y2, . . . , Y10, on the Poisson random variable. Find the
probability that Y > 3 during at least one of the ten two-minute intervals.

3.134 Consider a binomial experiment for n = 20, p = .05. Use Table 1, Appendix 3, to calculate
the binomial probabilities for Y = 0, 1, 2, 3, and 4. Calculate the same probabilities by using
the Poisson approximation with λ = np. Compare.

3.135 A salesperson has found that the probability of a sale on a single contact is approximately .03.
If the salesperson contacts 100 prospects, what is the approximate probability of making at
least one sale?

3.136 Increased research and discussion have focused on the number of illnesses involving the organ-
ism Escherichia coli (10257:H7), which causes a breakdown of red blood cells and intestinal
hemorrhages in its victims (http://www.hsus.org/ace/11831, March 24, 2004). Sporadic out-
breaks of E.coli have occurred in Colorado at a rate of approximately 2.4 per 100,000 for a
period of two years.

a If this rate has not changed and if 100,000 cases from Colorado are reviewed for this year,
what is the probability that at least 5 cases of E.coli will be observed?

b If 100,000 cases from Colorado are reviewed for this year and the number of E.coli cases
exceeded 5, would you suspect that the state’s mean E.coli rate has changed? Explain.

3.137 The probability that a mouse inoculated with a serum will contract a certain disease is .2.
Using the Poisson approximation, find the probability that at most 3 of 30 inoculated mice will
contract the disease.

3.138 Let Y have a Poisson distribution with mean λ. Find E[Y (Y − 1)] and then use this to show
that V (Y ) = λ.

3.139 In the daily production of a certain kind of rope, the number of defects per foot Y is assumed
to have a Poisson distribution with mean λ = 2. The profit per foot when the rope is sold is
given by X , where X = 50 − 2Y − Y 2. Find the expected profit per foot.

∗3.140 A store owner has overstocked a certain item and decides to use the following promotion to
decrease the supply. The item has a marked price of $100. For each customer purchasing the
item during a particular day, the owner will reduce the price by a factor of one-half. Thus,
the first customer will pay $50 for the item, the second will pay $25, and so on. Suppose that
the number of customers who purchase the item during the day has a Poisson distribution with
mean 2. Find the expected cost of the item at the end of the day. [Hint: The cost at the end of
the day is 100(1/2)Y , where Y is the number of customers who have purchased the item.]

3.141 A food manufacturer uses an extruder (a machine that produces bite-size cookies and snack
food) that yields revenue for the firm at a rate of $200 per hour when in operation. However, the
extruder breaks down an average of two times every day it operates. If Y denotes the number
of breakdowns per day, the daily revenue generated by the machine is R = 1600 − 50Y 2. Find
the expected daily revenue for the extruder.

∗3.142 Let p(y) denote the probability function associated with a Poisson random variable with
mean λ.

a Show that the ratio of successive probabilities satisfies
p(y)

p(y − 1)
= λ

y
, for y = 1, 2, . . . .

b For which values of y is p(y) > p(y − 1)?
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138 Chapter 3 Discrete Random Variables and Their Probability Distributions

c Notice that the result in part (a) implies that Poisson probabilities increase for awhile as y
increases and decrease thereafter. Show that p(y) maximized when y = the greatest integer
less than or equal to λ.

3.143 Refer to Exercise 3.142 (c). If the number of phone calls to the fire department, Y , in a day has
a Poisson distribution with mean 5.3, what is the most likely number of phone calls to the fire
department on any day?

3.144 Refer to Exercises 3.142 and 3.143. If the number of phone calls to the fire department, Y , in
a day has a Poisson distribution with mean 6, show that p(5) = p(6) so that 5 and 6 are the
two most likely values for Y .

3.9 Moments and Moment-Generating
Functions
The parameters μ and σ are meaningful numerical descriptive measures that locate
the center and describe the spread associated with the values of a random variable
Y . They do not, however, provide a unique characterization of the distribution of Y .
Many different distributions possess the same means and standard deviations. We
now consider a set of numerical descriptive measures that (at least under certain
conditions) uniquely determine p(y).

DEFINITION 3.12 The kth moment of a random variable Y taken about the origin is defined to be
E(Y k) and is denoted by μ′

k .

Notice in particular that the first moment about the origin, is E(Y ) = μ′
1 = μ and

that μ′
2 = E(Y 2) is employed in Theorem 3.6 for finding σ 2.

Another useful moment of a random variable is one taken about its mean.

DEFINITION 3.13 The kth moment of a random variable Y taken about its mean, or the kth central
moment of Y , is defined to be E[(Y − μ)k] and is denoted by μk .

In particular, σ 2 = μ2.
Let us concentrate on moments μ′

k about the origin where k = 1, 2, 3, . . . .

Suppose that two random variables Y and Z possess finite moments with μ′
1Y =

μ′
1Z , μ′

2Y = μ′
2Z , . . . , μ′

jY = μ′
j Z , where j can assume any integer value. That is,

the two random variables possess identical corresponding moments about the origin.
Under some fairly general conditions, it can be shown that Y and Z have identical
probability distributions. Thus, a major use of moments is to approximate the prob-
ability distribution of a random variable (usually an estimator or a decision maker).
Consequently, the moments μ′

k , where k = 1, 2, 3, . . . , are primarily of theoretical
value for k > 3.

Yet another interesting expectation is the moment-generating function for a random
variable, which, figuratively speaking, packages all the moments for a random variable
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3.9 Moments and Moment-Generating Functions 139

into one simple expression. We will first define the moment-generating function and
then explain how it works.

DEFINITION 3.14 The moment-generating function m(t) for a random variable Y is defined to be
m(t) = E(etY ). We say that a moment-generating function for Y exists if there
exists a positive constant b such that m(t) is finite for |t | ≤ b.

Why is E(etY ) called the moment-generating function for Y ? From a series expan-
sion for et y , we have

et y = 1 + t y + (t y)2

2!
+ (t y)3

3!
+ (t y)4

4!
+ · · · .

Then, assuming that μ′
k is finite for k = 1, 2, 3, . . . , we have

E(etY ) =
∑

y

et y p(y) =
∑

y

[
1 + t y + (t y)2

2!
+ (t y)3

3!
+ · · ·

]
p(y)

=
∑

y

p(y) + t
∑

y

yp(y) + t2

2!

∑
y

y2 p(y) + t3

3!

∑
y

y3 p(y) + · · ·

= 1 + tμ′
1 + t2

2!
μ′

2 + t3

3!
μ′

3 + · · · .
This argument involves an interchange of summations, which is justifiable if m(t)
exists. Thus, E(etY ) is a function of all the moments μ′

k about the origin, for k =
1, 2, 3, . . . . In particular, μ′

k is the coefficient of tk/k! in the series expansion of
m(t).

The moment-generating function possesses two important applications. First, if
we can find E(etY ), we can find any of the moments for Y .

THEOREM 3.12 If m(t) exists, then for any positive integer k,

dkm(t)

dtk

]
t=0

= m(k)(0) = μ′
k .

In other words, if you find the kth derivative of m(t) with respect to t and
then set t = 0, the result will be μ′

k .

Proof dkm(t)/dtk , or m(k)(t), is the kth derivative of m(t) with respect to t . Because

m(t) = E(etY ) = 1 + tμ′
1 + t2

2!
μ′

2 + t3

3!
μ′

3 + · · · ,
it follows that

m(1)(t) = μ′
1 + 2t

2!
μ′

2 + 3t2

3!
μ′

3 + · · · ,

m(2)(t) = μ′
2 + 2t

2!
μ′

3 + 3t2

3!
μ′

4 + · · · ,
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and, in general,

m(k)(t) = μ′
k + 2t

2!
μ′

k+1 + 3t2

3!
μ′

k+2 + · · · .
Setting t = 0 in each of the above derivatives, we obtain

m(1)(0) = μ′
1, m(2)(0) = μ′

2,

and, in general,

m(k)(0) = μ′
k .

These operations involve interchanging derivatives and infinite sums, which
can be justified if m(t) exists.

EXAMPLE 3.23 Find the moment-generating function m(t) for a Poisson distributed random variable
with mean λ.

Solution
m(t) = E(etY ) =

∞∑
y=0

et y p(y) =
∞∑

y=0

et y λye−λ

y!

=
∞∑

y=0

(λet )ye−λ

y!
= e−λ

∞∑
y=0

(λet )y

y!
.

To complete the summation, consult Appendix A1.11 to find the Taylor series
expansion

∞∑
y=0

(λet )y

y!
= eλet

or employ the method of Theorem 3.11. Thus, multiply and divide by eλet
. Then

m(t) = e−λeλet
∞∑

y=0

(λet )ye−λet

y!
.

The quantity to the right of the summation sign is the probability function for a Poisson
random variable with mean λet . Hence,∑

y

p(y) = 1 and m(t) = e−λeλet
(1) = eλ(et −1).

The calculations in Example 3.23 are no more difficult than those in Theorem 3.11,
where only the expected value for a Poisson random variable Y was calculated. Direct
evaluation of the variance of Y through the use of Theorem 3.6 required that E(Y 2) be
found by summing another series [actually, we obtained E(Y 2) from E[Y (Y − 1)] in
Exercise 3.138]. Example 3.24 illustrates the use of the moment-generating function
of the Poisson random variable to calculate its mean and variance.
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EXAMPLE 3.24 Use the moment-generating function of Example 3.23 and Theorem 3.12 to find the
mean, μ, and variance, σ 2, for the Poisson random variable.

Solution According to Theorem 3.12, μ = μ′
1 = m(1)(0) and μ′

2 = m(2)(0). Taking the first
and second derivatives of m(t), we obtain

m(1)(t) = d

dt
[eλ(et −1)] = eλ(et −1) · λet ,

m(2)(t) = d2

dt2
[eλ(et −1)] = d

dt
[eλ(et −1) · λet ]

= eλ(et −1) · (λet )2 + eλ(et −1) · λet .

Then, because

μ = m(1)(0) =
{

eλ(et −1) · λet
}]

t=0
= λ,

μ′
2 = m(2)(0) =

{
eλ(et −1) · (λet )2 + eλ(et −1) · λet

}]
t=0

= λ2 + λ,

Theorem 3.6 tells us that σ 2 = E(Y 2)−μ2 = μ′
2 −μ2 = λ2 +λ− (λ)2 = λ. Notice

how easily we obtained μ′
2 from m(t).

The second (but primary) application of a moment-generating function is to prove
that a random variable possesses a particular probability distribution p(y). If m(t)
exists for a probability distribution p(y), it is unique. Also, if the moment-generating
functions for two random variables Y and Z are equal (for all |t | < b for some
b > 0), then Y and Z must have the same probability distribution. It follows that, if
we can recognize the moment-generating function of a random variable Y to be one
associated with a specific distribution, then Y must have that distribution.

In summary, a moment-generating function is a mathematical expression that
sometimes (but not always) provides an easy way to find moments associated with
random variables. More important, it can be used to establish the equivalence of two
probability distributions.

EXAMPLE 3.25 Suppose that Y is a random variable with moment-generating function mY (t) =
e3.2(et −1). What is the distribution of Y ?

Solution In Example 3.23, we showed that the moment-generating function of a Poisson dis-
tributed random variable with mean λ is m(t) = eλ(et −1). Note that the moment-
generating function of Y is exactly equal to the moment-generating function of a
Poisson distributed random variable with λ = 3.2. Because moment-generating func-
tions are unique, Y must have a Poisson distribution with mean 3.2.
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Exercises
3.145 If Y has a binomial distribution with n trials and probability of success p, show that the

moment-generating function for Y is

m(t) = (pet + q)n, where q = 1 − p.

3.146 Differentiate the moment-generating function in Exercise 3.145 to find E(Y ) and E(Y 2). Then
find V (Y ).

3.147 If Y has a geometric distribution with probability of success p, show that the moment-generating
function for Y is

m(t) = pet

1 − qet
, where q = 1 − p.

3.148 Differentiate the moment-generating function in Exercise 3.147 to find E(Y ) and E(Y 2). Then
find V (Y ).

3.149 Refer to Exercise 3.145. Use the uniqueness of moment-generating functions to give the dis-
tribution of a random variable with moment-generating function m(t) = (.6et + .4)3.

3.150 Refer to Exercise 3.147. Use the uniqueness of moment-generating functions to give the dis-

tribution of a random variable with moment-generating function m(t) = .3et

1 − .7et
.

3.151 Refer to Exercise 3.145. If Y has moment-generating function m(t) = (.7et + .3)10, what is
P(Y ≤ 5)?

3.152 Refer to Example 3.23. If Y has moment-generating function m(t) = e6(et −1), what is
P(|Y − μ| ≤ 2σ)?

3.153 Find the distributions of the random variables that have each of the following moment-
generating functions:

a m(t) = [(1/3)et + (2/3)]5.

b m(t) = et

2 − et
.

c m(t) = e2(et −1).

3.154 Refer to Exercise 3.153. By inspection, give the mean and variance of the random variables
associated with the moment-generating functions given in parts (a), (b), and (c).

3.155 Let m(t) = (1/6)et + (2/6)e2t + (3/6)e3t . Find the following:

a E(Y )

b V (Y )

c The distribution of Y

3.156 Suppose that Y is a random variable with moment-generating function m(t).

a What is m(0)?

b If W = 3Y , show that the moment-generating function of W is m(3t).

c If X = Y − 2, show that the moment-generating function of X is e−2t m(t).

3.157 Refer to Exercise 3.156.

a If W = 3Y , use the moment-generating function of W to show that E(W ) = 3E(Y ) and
V (W ) = 9V (Y ).

b If X = Y − 2, use the moment-generating function of X to show that E(X) = E(Y ) − 2
and V (X) = V (Y ).
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3.158 If Y is a random variable with moment-generating function m(t) and if W is given by
W = aY + b, show that the moment-generating function of W is etbm(at).

3.159 Use the result in Exercise 3.158 to prove that, if W = aY + b, then E(W ) = aE(Y ) + b and
V (W ) = a2V (Y ).

3.160 Suppose that Y is a binomial random variable based on n trials with success probability p and
let Y = = n − Y .

a Use the result in Exercise 3.159 to show that E(Y =) = nq and V (Y =) = npq , where
q = 1 − p.

b Use the result in Exercise 3.158 to show that the moment-generating function of Y = is
m=(t) = (qet + p)n , where q = 1 − p.

c Based on your answer to part (b), what is the distribution of Y =?

d If Y is interpreted as the number of successes in a sample of size n, what is the interpretation
of Y =?

e Based on your answer in part (d), why are the answers to parts (a), (b), and (c) “obvious”?

3.161 Refer to Exercises 3.147 and 3.158. If Y has a geometric distribution with success probability p,

consider Y = = Y − 1. Show that the moment-generating function of Y = is m=(t) = p

1 − qet
,

where q = 1 − p.

∗3.162 Let r(t) = ln[m(t)] and r (k)(0) denote the kth derivative of r(t) evaluated for t = 0. Show that
r (1)(0) = μ′

1 = μ and r (2)(0) = μ′
2 − (μ′

1)
2 = σ 2 [Hint: m(0) = 1.]

∗3.163 Use the results of Exercise 3.162 to find the mean and variance of a Poisson random variable
with m(t) = e5(et −1). Notice that r(t) is easier to differentiate than m(t) in this case.

3.10 Probability-Generating
Functions (Optional)
An important class of discrete random variables is one in which Y represents a count
and consequently takes integer values: Y = 0, 1, 2, 3, . . . . The binomial, geometric,
hypergeometric, and Poisson random variables all fall in this class. The following
examples give practical situations that result in integer-valued random variables. One,
involving the theory of queues (waiting lines), is concerned with the number of persons
(or objects) awaiting service at a particular point in time. Knowledge of the behavior of
this random variable is important in designing manufacturing plants where production
consists of a sequence of operations, each taking a different length of time to complete.
An insufficient number of service stations for a particular production operation can
result in a bottleneck, the formation of a queue of products waiting to be serviced,
and a resulting slowdown in the manufacturing operation. Queuing theory is also
important in determining the number of checkout counters needed for a supermarket
and in designing hospitals and clinics.

Integer-valued random variables are also important in studies of population growth.
For example, epidemiologists are interested in the growth of bacterial populations and
the growth of the number of persons afflicted by a particular disease. The numbers of
elements in each of these populations are integer-valued random variables.
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A mathematical device useful in finding the probability distributions and other
properties of integer-valued random variables is the probability-generating function.

DEFINITION 3.15 Let Y be an integer-valued random variable for which P(Y = i) = pi , where
i = 0, 1, 2, . . . . The probability-generating function P(t) for Y is defined to
be

P(t) = E(tY ) = p0 + p1t + p2t2 + · · · =
∞∑

i=0

pi t
i

for all values of t such that P(t) is finite.

The reason for calling P(t) a probability-generating function is clear when we
compare P(t) with the moment-generating function m(t). In particular, the coefficient
of t i in P(t) is the probability pi . Correspondingly, the coefficient of t i for m(t) is a
constant times the i th moment μ′

i . If we know P(t) and can expand it into a series,
we can determine p(y) as the coefficient of t y .

Repeated differentiation of P(t) yields factorial moments for the random
variable Y .

DEFINITION 3.16 The kth factorial moment for a random variable Y is defined to be

μ[k] = E[Y (Y − 1)(Y − 2) · · · (Y − k + 1)],

where k is a positive integer.

Notice that μ[1] = E(Y ) = μ. The second factorial moment, μ[2] = E[Y (Y −1)],
was useful in finding the variance for binomial, geometric, and Poisson random
variables in Theorem 3.7, Exercise 3.85, and Exercise 3.138, respectively.

THEOREM 3.13 If P(t) is the probability-generating function for an integer-valued random
variable, Y , then the kth factorial moment of Y is given by

dk P(t)

dtk

]
t=1

= P (k)(1) = μ[k].

Proof Because

P(t) = p0 + p1t + p2t2 + p3t3 + p4t4 + · · · ,
it follows that

P (1)(t) = d P(t)

dt
= p1 + 2p2t + 3p3t2 + 4p4t3 + · · · ,

P (2)(t) = d2 P(t)

dt2
= (2)(1)p2 + (3)(2)p3t + (4)(3)p4t2 + · · · ,
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and, in general,

P (k)(t) = dk P(t)

dtk
=

∞∑
y=k

y(y − 1)(y − 2) · · · (y − k + 1)p(y)t y−k .

Setting t = 1 in each of these derivatives, we obtain

P (1)(1) = p1 + 2p2 + 3p3 + 4p4 + · · · = μ[1] = E(Y ),

P (2)(1) = (2)(1)p2 + (3)(2)p3 + (4)(3)p4 + · · · = μ[2] = E[Y (Y − 1)],

and, in general,

P (k)(1) =
∞∑

y=k

y(y − 1)(y − 2) · · · (y − k + 1)p(y)

= E[Y (Y − 1)(Y − 2) · · · (Y − k + 1)] = μ[k].

EXAMPLE 3.26 Find the probability-generating function for a geometric random variable.

Solution Notice that p0 = 0 because Y cannot assume this value. Then

P(t) = E(tY ) =
∞∑

y=1

t yq y−1 p =
∞∑

y=1

p

q
(qt)y

= p

q
[qt + (qt)2 + (qt)3 + · · ·].

The terms in the series are those of an infinite geometric progression. If qt < 1, then

P(t) = p

q

(
qt

1 − qt

)
= pt

1 − qt
, if t < 1/q.

(For summation of the series, consult Appendix A1.11.)

EXAMPLE 3.27 Use P(t), Example 3.26, to find the mean of a geometric random variable.

Solution From Theorem 3.13, μ[1] = μ = P (1)(1). Using the result in Example 3.26,

P (1)(t) = d

dt

(
pt

1 − qt

)
= (1 − qt)p − (pt)(−q)

(1 − qt)2
.

Setting t = 1, we obtain

P (1)(1) = p2 + pq

p2
= p(p + q)

p2
= 1

p
.
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146 Chapter 3 Discrete Random Variables and Their Probability Distributions

Because we already have the moment-generating function to assist in finding the
moments of a random variable, of what value is P(t)? The answer is that it may be
difficult to find m(t) but much easier to find P(t). Thus, P(t) provides an additional
tool for finding the moments of a random variable. It may or may not be useful in a
given situation.

Finding the moments of a random variable is not the major use of the probability-
generating function. Its primary application is in deriving the probability function (and
hence the probability distribution) for other related integer-valued random variables.
For these applications, see Feller (1968) and Parzen (1992).

Exercises
∗3.164 Let Y denote a binomial random variable with n trials and probability of success p. Find the

probability-generating function for Y and use it to find E(Y ).

∗3.165 Let Y denote a Poisson random variable with mean λ. Find the probability-generating function
for Y and use it to find E(Y ) and V (Y ).

∗3.166 Refer to Exercise 3.165. Use the probability-generating function found there to find E(Y 3).

3.11 Tchebysheff’s Theorem
We have seen in Section 1.3 and Example 3.22 that if the probability or population
histogram is roughly bell-shaped and the mean and variance are known, the empirical
rule is of great help in approximating the probabilities of certain intervals. However,
in many instances, the shapes of probability histograms differ markedly from a mound
shape, and the empirical rule may not yield useful approximations to the probabilities
of interest. The following result, known as Tchebysheff’s theorem, can be used to
determine a lower bound for the probability that the random variable Y of interest
falls in an interval μ ± kσ .

THEOREM 3.14 Tchebysheff’s Theorem Let Y be a random variable with mean μ and finite
variance σ 2. Then, for any constant k > 0,

P(|Y − μ| < kσ) ≥ 1 − 1

k2
or P(|Y − μ| ≥ kσ) ≤ 1

k2
.

Two important aspects of this result should be pointed out. First, the result applies
for any probability distribution, whether the probability histogram is bell-shaped or
not. Second, the results of the theorem are very conservative in the sense that the
actual probability that Y is in the interval μ ± kσ usually exceeds the lower bound
for the probability, 1 − 1/k2, by a considerable amount. However, as discussed in
Exercise 3.169, for any k > 1, it is possible to construct a probability distribu-
tion so that, for that k, the bound provided by Tchebysheff’s theorem is actually at-
tained. (You should verify that the results of the empirical rule do not contradict those
given by Theorem 3.14.) The proof of this theorem will be deferred to Section 4.10.
The usefulness of this theorem is illustrated in the following example.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises 147

EXAMPLE 3.28 The number of customers per day at a sales counter, Y , has been observed for a long
period of time and found to have mean 20 and standard deviation 2. The probability
distribution of Y is not known. What can be said about the probability that, tomorrow,
Y will be greater than 16 but less than 24?

Solution We want to find P(16 < Y < 24). From Theorem 3.14 we know that, for any k ≥ 0,
P(|Y − μ| < kσ) ≥ 1 − 1/k2, or

P[(μ − kσ) < Y < (μ + kσ)] ≥ 1 − 1

k2
.

Because μ = 20 and σ = 2, it follows that μ − kσ = 16 and μ + kσ = 24 if k = 2.
Thus,

P(16 < Y < 24) = P(μ − 2σ < Y < μ + 2σ) ≥ 1 − 1

(2)2
= 3

4
.

In other words, tomorrow’s customer total will be between 16 and 24 with a fairly
high probability (at least 3/4).

Notice that if σ were 1, k would be 4, and

P(16 < Y < 24) = P(μ − 4σ < Y < μ + 4σ) ≥ 1 − 1

(4)2
= 15

16
.

Thus, the value of σ has considerable effect on probabilities associated with intervals.

Exercises
3.167 Let Y be a random variable with mean 11 and variance 9. Using Tchebysheff’s theorem, find

a a lower bound for P(6 < Y < 16).

b the value of C such that P(|Y − 11| ≥ C) ≤ .09.

3.168 Would you rather take a multiple-choice test or a full-recall test? If you have absolutely no
knowledge of the test material, you will score zero on a full-recall test. However, if you are
given 5 choices for each multiple-choice question, you have at least one chance in five of
guessing each correct answer! Suppose that a multiple-choice exam contains 100 questions,
each with 5 possible answers, and guess the answer to each of the questions.

a What is the expected value of the number Y of questions that will be correctly answered?

b Find the standard deviation of Y .

c Calculate the intervals μ ± 2σ and μ ± 3σ .

d If the results of the exam are curved so that 50 correct answers is a passing score, are you
likely to receive a passing score? Explain.

3.169 This exercise demonstrates that, in general, the results provided by Tchebysheff’s theorem
cannot be improved upon. Let Y be a random variable such that

p(−1) = 1

18
, p(0) = 16

18
, p(1) = 1

18
.
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a Show that E(Y ) = 0 and V (Y ) = 1/9.

b Use the probability distribution of Y to calculate P(|Y − μ| ≥ 3σ). Compare this exact
probability with the upper bound provided by Tchebysheff’s theorem to see that the bound
provided by Tchebysheff’s theorem is actually attained when k = 3.

*c In part (b) we guaranteed E(Y ) = 0 by placing all probability mass on the values −1, 0,
and 1, with p(−1) = p(1). The variance was controlled by the probabilities assigned
to p(−1) and p(1). Using this same basic idea, construct a probability distribution for a
random variable X that will yield P(|X − μX | ≥ 2σX ) = 1/4.

*d If any k > 1 is specified, how can a random variable W be constructed so that P(|W −μW | ≥
kσW ) = 1/k2?

3.170 The U.S. mint produces dimes with an average diameter of .5 inch and standard deviation .01.
Using Tchebysheff’s theorem, find a lower bound for the number of coins in a lot of 400 coins
that are expected to have a diameter between .48 and .52.

3.171 For a certain type of soil the number of wireworms per cubic foot has a mean of 100. Assuming
a Poisson distribution of wireworms, give an interval that will include at least 5/9 of the sample
values of wireworm counts obtained from a large number of 1-cubic-foot samples.

3.172 Refer to Exercise 3.115. Using the probability histogram, find the fraction of values in the
population that fall within 2 standard deviations of the mean. Compare your result with that of
Tchebysheff’s theorem.

3.173 A balanced coin is tossed three times. Let Y equal the number of heads observed.

a Use the formula for the binomial probability distribution to calculate the probabilities
associated with Y = 0, 1, 2, and 3.

b Construct a probability distribution similar to the one in Table 3.1.

c Find the expected value and standard deviation of Y , using the formulas E(Y ) = np and
V (Y ) = npq .

d Using the probability distribution from part (b), find the fraction of the population mea-
surements lying within 1 standard deviation of the mean. Repeat for 2 standard deviations.
How do your results compare with the results of Tchebysheff’s theorem and the empirical
rule?

3.174 Suppose that a coin was definitely unbalanced and that the probability of a head was equal to
p = .1. Follow instructions (a), (b), (c), and (d) as stated in Exercise 3.173. Notice that the
probability distribution loses its symmetry and becomes skewed when p is not equal to 1/2.

3.175 In May 2005, Tony Blair was elected to an historic third term as the British prime minister.
A Gallop U.K. poll (http://gallup.com/poll/content/default.aspx?ci=1710, June 28, 2005) con-
ducted after Blair’s election indicated that only 32% of British adults would like to see their son
or daughter grow up to become prime minister. If the same proportion of Americans would pre-
fer that their son or daughter grow up to be president and 120 American adults are interviewed,

a what is the expected number of Americans who would prefer their child grow up to be
president?

b what is the standard deviation of the number Y who would prefer that their child grow up
to be president?

c is it likely that the number of Americans who prefer that their child grow up to be president
exceeds 40?

3.176 A national poll of 549 teenagers (aged 13 to 17) by the Gallop poll (http://gallup.com/content/
default.aspx?ci=17110), April, 2005) indicated that 85% “think that clothes that display gang
symbols” should be banned at school. If teenagers were really evenly split in their opinions
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regarding banning of clothes that display gang symbols, comment on the probability of ob-
serving this survey result (that is, observing 85% or more in a sample of 549 who are in favor
of banning clothes that display gang symbols). What assumption must be made about the sam-
pling procedure in order to calculate this probability? [Hint: Recall Tchebysheff’s theorem and
the empirical rule.]

3.177 For a certain section of a pine forest, the number of diseased trees per acre, Y , has a Poisson
distribution with mean λ = 10. The diseased trees are sprayed with an insecticide at a cost of
$3 per tree, plus a fixed overhead cost for equipment rental of $50. Letting C denote the total
spraying cost for a randomly selected acre, find the expected value and standard deviation for
C . Within what interval would you expect C to lie with probability at least .75?

3.178 It is known that 10% of a brand of television tubes will burn out before their guarantee has
expired. If 1000 tubes are sold, find the expected value and variance of Y , the number of original
tubes that must be replaced. Within what limits would Y be expected to fall?

3.179 Refer to Exercise 3.91. In this exercise, we determined that the mean and variance of the costs
necessary to find three employees with positive indications of asbestos poisoning were 150 and
4500, respectively. Do you think it is highly unlikely that the cost of completing the tests will
exceed $350?

3.12 Summary
This chapter has explored discrete random variables, their probability distributions,
and their expected values. Calculating the probability distribution for a discrete ran-
dom variable requires the use of the probabilistic methods of Chapter 2 to evaluate
the probabilities of numerical events. Probability functions, p(y) = P(Y = y),
were derived for binomial, geometric, negative binomial, hypergeometric, and Pois-
son random variables. These probability functions are sometimes called probability
mass functions because they give the probability (mass) assigned to each of the finite
or countably infinite possible values for these discrete random variables.

The expected values of random variables and functions of random variables pro-
vided a method for finding the mean and variance of Y and consequently measures
of centrality and variation for p(y). Much of the remaining material in the chapter
was devoted to the techniques for acquiring expectations, which sometimes involved
summing apparently intractable series. The techniques for obtaining closed-form ex-
pressions for some of the resulting expected values included (1) use of the fact that∑

y p(y) = 1 for any discrete random variable and (2) E(Y 2) = E[Y (Y −1)]+E(Y ).
The means and variances of several of the more common discrete distributions are
summarized in Table 3.4. These results and more are also found in Table A2.1 in
Appendix 2 and inside the back cover of this book.

Table 3.5 gives the R (and S-Plus) procedures that yield p(y0) = P(Y = y0)

and P(Y ≤ y0) for random variables with binomial, geometric, negative binomial,
hypergeometric, and Poisson distributions.

We then discussed the moment-generating function associated with a random vari-
able. Although sometimes useful in finding μ and σ , the moment-generating function
is of primary value to the theoretical statistician for deriving the probability distribu-
tion of a random variable. The moment-generating functions for most of the common
random variables are found in Appendix 2 and inside the back cover of this book.
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Table 3.4 Means and variances for some common discrete random variables

Distribution E(Y ) V (Y )

Binomial np np(1 − p) = npq

Geometric
1

p

1 − p

p2
= q

p2

Hypergeometric n
( r

N

)
n
( r

N

) (
N − r

N

) (
N − n

N − 1

)
Poisson λ λ

Negative binomial
r

p

r(1 − p)

p2
= rq

p2

Table 3.5 R (and S-Plus) procedures giving probabilities for some common discrete distributions

Distribution P(Y = y0) = p(y0) P(Y ≤ y0)

Binomial dbinom(y0,n,p) pbinom(y0,n,p)

Geometric dgeom(y0-1,p) pgeom(y0-1,p)

Hypergeometric dhyper(y0,r,N-r,n) phyper(y0,r,N-r,n)

Poisson dpois(y0, λ) ppois(y0, λ)

Negative binomial dnbinom(y0-r,r,p) pnbinom(y0-r,r,p)

The probability-generating function is a useful device for deriving moments and
probability distributions of integer-valued random variables.

Finally, we gave Tchebysheff’s theorem a very useful result that permits approxi-
mating certain probabilities when only the mean and variance are known.

To conclude this summary, we recall the primary objective of statistics: to make
an inference about a population based on information contained in a sample. Draw-
ing the sample from the population is the experiment. The sample is often a set of
measurements of one or more random variables, and it is the observed event resulting
from a single repetition of the experiment. Finally, making the inference about the
population requires knowledge of the probability of occurrence of the observed sam-
ple, which in turn requires knowledge of the probability distributions of the random
variables that generated the sample.
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Supplementary Exercises
3.180 Four possibly winning numbers for a lottery—AB-4536, NH-7812, SQ-7855, and ZY-3221—

arrive in the mail. You will win a prize if one of your numbers matches one of the winning
numbers contained on a list held by those conducting the lottery. One first prize of $100,000,
two second prizes of $50,000 each, and ten third prizes of $1000 each will be awarded. To be
eligible to win, you need to mail the coupon back to the company at a cost of 33¢ for postage.
No purchase is required. From the structure of the numbers that you received, it is obvious the
numbers sent out consist of two letters followed by four digits. Assuming that the numbers
you received were generated at random, what are your expected winnings from the lottery? Is
it worth 33¢ to enter this lottery?

3.181 Sampling for defectives from large lots of manufactured product yields a number of defectives,
Y , that follows a binomial probability distribution. A sampling plan consists of specifying the
number of items n to be included in a sample and an acceptance number a. The lot is accepted
if Y ≤ a and rejected if Y > a. Let p denote the proportion of defectives in the lot. For n = 5
and a = 0, calculate the probability of lot acceptance if (a) p = 0, (b) p = .1, (c) p = .3,
(d) p = .5, (e) p = 1.0. A graph showing the probability of lot acceptance as a function of lot
fraction defective is called the operating characteristic curve for the sample plan. Construct
the operating characteristic curve for the plan n = 5, a = 0. Notice that a sampling plan is an
example of statistical inference. Accepting or rejecting a lot based on information contained in
the sample is equivalent to concluding that the lot is either good or bad. “Good” implies that a
low fraction is defective and that the lot is therefore suitable for shipment.

3.182 Refer to Exercise 3.181. Use Table 1, Appendix 3, to construct the operating characteristic
curves for the following sampling plans:

a n = 10, a = 0.

b n = 10, a = 1.

c n = 10, a = 2.

For each sampling plan, calculate P(lot acceptance) for p = 0, .05, .1, .3, .5, and 1.0. Our
intuition suggests that sampling plan (a) would be much less likely to accept bad lots than
plans (b) and (c). A visual comparison of the operating characteristic curves will confirm this
intuitive conjecture.
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3.183 A quality control engineer wishes to study alternative sampling plans: n = 5, a = 1 and
n = 25, a = 5. On a sheet of graph paper, construct the operating characteristic curves for
both plans, making use of acceptance probabilities at p = .05, p = .10, p = .20, p = .30,
and p = .40 in each case.

a If you were a seller producing lots with fraction defective ranging from p = 0 to p = .10,
which of the two sampling plans would you prefer?

b If you were a buyer wishing to be protected against accepting lots with fraction defective
exceeding p = .30, which of the two sampling plans would you prefer?

3.184 A city commissioner claims that 80% of the people living in the city favor garbage collection
by contract to a private company over collection by city employees. To test the commissioner’s
claim, 25 city residents are randomly selected, yielding 22 who prefer contracting to a private
company.

a If the commissioner’s claim is correct, what is the probability that the sample would contain
at least 22 who prefer contracting to a private company?

b If the commissioner’s claim is correct, what is the probability that exactly 22 would prefer
contracting to a private company?

c Based on observing 22 in a sample of size 25 who prefer contracting to a private company,
what do you conclude about the commissioner’s claim that 80% of city residents prefer
contracting to a private company?

3.185 Twenty students are asked to select an integer between 1 and 10. Eight choose either 4, 5 or 6.

a If the students make their choices independently and each is as likely to pick one integer
as any other, what is the probability that 8 or more will select 4,5 or 6?

b Having observed eight students who selected 4, 5, or 6, what conclusion do you draw based
on your answer to part (a)?

3.186 Refer to Exercises 3.67 and 3.68. Let Y denote the number of the trial on which the first
applicant with computer training was found. If each interview costs $30, find the expected
value and variance of the total cost incurred interviewing candidates until an applicant with
advanced computer training is found. Within what limits would you expect the interview costs
to fall?

3.187 Consider the following game: A player throws a fair die repeatedly until he rolls a 2, 3, 4, 5, or
6. In other words, the player continues to throw the die as long as he rolls 1s. When he rolls a
“non-1,” he stops.

a What is the probability that the player tosses the die exactly three times?

b What is the expected number of rolls needed to obtain the first non-1?

c If he rolls a non-1 on the first throw, the player is paid $1. Otherwise, the payoff is doubled
for each 1 that the player rolls before rolling a non-1. Thus, the player is paid $2 if he rolls
a 1 followed by a non-1; $4 if he rolls two 1s followed by a non-1; $8 if he rolls three 1s
followed by a non-1; etc. In general, if we let Y be the number of throws needed to obtain
the first non-1, then the player rolls (Y − 1) 1s before rolling his first non-1, and he is paid
2Y−1 dollars. What is the expected amount paid to the player?

3.188 If Y is a binomial random variable based on n trials and success probability p, show that

P(Y > 1|Y ≥ 1) = 1 − (1 − p)n − np(1 − p)n−1

1 − (1 − p)n
.
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3.189 A starter motor used in a space vehicle has a high rate of reliability and was reputed to start on
any given occasion with probability .99999. What is the probability of at least one failure in
the next 10,000 starts?

3.190 Refer to Exercise 3.115. Find μ, the expected value of Y , for the theoretical population by
using the probability distribution obtained in Exercise 3.115. Find the sample mean y for the
n = 100 measurements generated in Exercise 3.116. Does y provide a good estimate of μ?

3.191 Find the population variance σ 2 for Exercise 3.115 and the sample variance s2 for Exercise
3.116. Compare.

3.192 Toss a balanced die and let Y be the number of dots observed on the upper face. Find the mean
and variance of Y . Construct a probability histogram, and locate the interval μ ± 2σ . Verify
that Tchebysheff’s theorem holds.

3.193 Two assembly lines I and II have the same rate of defectives in their production of voltage
regulators. Five regulators are sampled from each line and tested. Among the total of ten tested
regulators, four are defective. Find the probability that exactly two of the defective regulators
came from line I.

3.194 One concern of a gambler is that she will go broke before achieving her first win. Suppose that
she plays a game in which the probability of winning is .1 (and is unknown to her). It costs her
$10 to play and she receives $80 for a win. If she commences with $30, what is the probability
that she wins exactly once before she loses her initial capital?

3.195 The number of imperfections in the weave of a certain textile has a Poisson distribution with
a mean of 4 per square yard. Find the probability that a

a 1-square-yard sample will contain at least one imperfection.

b 3-square-yard sample will contain at least one imperfection.

3.196 Refer to Exercise 3.195. The cost of repairing the imperfections in the weave is $10 per
imperfection. Find the mean and standard deviation of the repair cost for an 8-square-yard bolt
of the textile.

3.197 The number of bacteria colonies of a certain type in samples of polluted water has a Poisson
distribution with a mean of 2 per cubic centimeter (cm3).

a If four 1-cm3 samples are independently selected from this water, find the probability that
at least one sample will contain one or more bacteria colonies.

b How many 1-cm3 samples should be selected in order to have a probability of approximately
.95 of seeing at least one bacteria colony?

3.198 One model for plant competition assumes that there is a zone of resource depletion around
each plant seedling. Depending on the size of the zones and the density of the plants, the zones
of resource depletion may overlap with those of other seedlings in the vicinity. When the seeds
are randomly dispersed over a wide area, the number of neighbors that any seedling has within
an area of size A usually follows a Poisson distribution with mean equal to A × d , where d is
the density of seedlings per unit area. Suppose that the density of seedlings is four per square
meter. What is the probability that a specified seeding has

a no neighbors within 1 meter?

b at most three neighbors within 2 meters?

3.199 Insulin-dependent diabetes (IDD) is a common chronic disorder in children. The disease occurs
most frequently in children of northern European descent, but the incidence ranges from a low
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154 Chapter 3 Discrete Random Variables and Their Probability Distributions

of 1–2 cases per 100,000 per year to a high of more than 40 cases per 100,000 in parts of
Finland.4 Let us assume that a region in Europe has an incidence of 30 cases per 100,000 per
year and that we randomly select 1000 children from this region.

a Can the distribution of the number of cases of IDD among those in the sample be approx-
imated by a Poisson distribution? If so, what is the mean of the approximating Poisson
distribution?

b What is the probability that we will observe at least two cases of IDD among the 1000
children in the sample?

3.200 Using the fact that

ez = 1 + z + z2

2!
+ z3

3!
+ z4

4!
+ · · · ,

expand the moment-generating function for the binomial distribution

m(t) = (q + pet )n

into a power series in t . (Acquire only the low-order terms in t .) Identify μ′
i as the coefficient

of t i/ i! appearing in the series. Specifically, find μ′
1 and μ′

2 and compare them with the results
of Exercise 3.146.

3.201 Refer to Exercises 3.103 and 3.106. In what interval would you expect the repair costs on these
five machines to lie? (Use Tchebysheff’s theorem.)

∗3.202 The number of cars driving past a parking area in a one-minute time interval has a Poisson
distribution with mean λ. The probability that any individual driver actually wants to park his
or her car is p. Assume that individuals decide whether to park independently of one another.

a If one parking place is available and it will take you one minute to reach the parking area,
what is the probability that a space will still be available when you reach the lot? (Assume
that no one leaves the lot during the one-minute interval.)

b Let W denote the number of drivers who wish to park during a one-minute interval. Derive
the probability distribution of W .

3.203 A type of bacteria cell divides at a constant rate λ over time. (That is, the probability that a cell
divides in a small interval of time t is approximately λt .) Given that a population starts out at
time zero with k cells of this bacteria and that cell divisions are independent of one another,
the size of the population at time t , Y (t), has the probability distribution

P[Y (t) = n] =
(

n − 1

k − 1

)
e−λkt

(
1 − e−λt

)n−k
, n = k, k + 1, . . . .

a Find the expected value and variance of Y (t) in terms of λ and t .

b If, for a type of bacteria cell, λ = .1 per second and the population starts out with two cells
at time zero, find the expected value and variance of the population after five seconds.

3.204 The probability that any single driver will turn left at an intersection is .2. The left turn lane at
this intersection has room for three vehicles. If the left turn lane is empty when the light turns
red and five vehicles arrive at this intersection while the light is red, find the probability that
the left turn lane will hold the vehicles of all of the drivers who want to turn left.

3.205 An experiment consists of tossing a fair die until a 6 occurs four times. What is the probability
that the process ends after exactly ten tosses with a 6 occurring on the ninth and tenth tosses?

4. M. A. Atkinson,“Diet, Genetics, and Diabetes,” Food Technology 51(3), (1997): 77.
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3.206 Accident records collected by an automobile insurance company give the following informa-
tion. The probability that an insured driver has an automobile accident is .15. If an accident has
occurred, the damage to the vehicle amounts to 20% of its market value with a probability of
.80, to 60% of its market value with a probability of .12, and to a total loss with a probability
of .08. What premium should the company charge on a $12,000 car so that the expected gain
by the company is zero?

3.207 The number of people entering the intensive care unit at a hospital on any single day possesses
a Poisson distribution with a mean equal to five persons per day.

a What is the probability that the number of people entering the intensive care unit on a
particular day is equal to 2? Is less than or equal to 2?

b Is it likely that Y will exceed 10? Explain.

3.208 A recent survey suggests that Americans anticipate a reduction in living standards and that a
steadily increasing level of consumption no longer may be as important as it was in the past.
Suppose that a poll of 2000 people indicated 1373 in favor of forcing a reduction in the size of
American automobiles by legislative means. Would you expect to observe as many as 1373 in
favor of this proposition if, in fact, the general public was split 50–50 on the issue? Why?

3.209 A supplier of heavy construction equipment has found that new customers are normally obtained
through customer requests for a sales call and that the probability of a sale of a particular piece
of equipment is .3. If the supplier has three pieces of the equipment available for sale, what is
the probability that it will take fewer than five customer contacts to clear the inventory?

3.210 Calculate P(|Y −λ| ≤ 2σ) for the Poisson probability distribution of Example 3.22. Does this
agree with the empirical rule?

*3.211 A merchant stocks a certain perishable item. She knows that on any given day she will have a
demand for either two, three, or four of these items with probabilities .1, .4, and .5, respectively.
She buys the items for $1.00 each and sells them for $1.20 each. If any are left at the end of
the day, they represent a total loss. How many items should the merchant stock in order to
maximize her expected daily profit?

*3.212 Show that the hypergeometric probability function approaches the binomial in the limit as
N → ∞ and p = r/N remains constant. That is, show that

lim
N→∞

(r
y

)(N−r
n−y

)(N
n

) =
(

n

y

)
pyqn−y,

for p = r/N constant.

3.213 A lot of N = 100 industrial products contains 40 defectives. Let Y be the number of defectives in
a random sample of size 20. Find p(10) by using (a) the hypergeometric probability distribution
and (b) the binomial probability distribution. Is N large enough that the value for p(10)

obtained from the binomial distribution is a good approximation to that obtained using the
hypergeometric distribution?

*3.214 For simplicity, let us assume that there are two kinds of drivers. The safe drivers, who are 70%
of the population, have probability .1 of causing an accident in a year. The rest of the population
are accident makers, who have probability .5 of causing an accident in a year. The insurance
premium is $400 times one’s probability of causing an accident in the following year. A new
subscriber has an accident during the first year. What should be his insurance premium for the
next year?
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156 Chapter 3 Discrete Random Variables and Their Probability Distributions

*3.215 It is known that 5% of the members of a population have disease A, which can be discovered
by a blood test. Suppose that N (a large number) people are to be tested. This can be done in
two ways: (1) Each person is tested separately, or (2) the blood samples of k people are pooled
together and analyzed. (Assume that N = nk, with n an integer.) If the test is negative, all
of them are healthy (that is, just this one test is needed). If the test is positive, each of the k
persons must be tested separately (that is, a total of k + 1 tests are needed).

a For fixed k, what is the expected number of tests needed in option 2?

b Find the k that will minimize the expected number of tests in option 2.

c If k is selected as in part (b), on the average how many tests does option 2 save in comparison
with option 1?

*3.216 Let Y have a hypergeometric distribution

p(y) =
(r

y

)(N−r
n−y

)(N
n

) , y = 0, 1, 2, . . . , n.

a Show that

P(Y = n) = p(n) =
( r

N

) (
r − 1

N − 1

) (
r − 2

N − 2

)
· · ·

(
r − n + 1

N − n + 1

)
.

b Write p(y) as p(y|r). Show that if r1 < r2, then

p(y|r1)

p(y|r2)
>

p(y + 1|r1)

p(y + 1|r2)
.

c Apply the binomial expansion to each factor in the following equation:

(1 + a)N1(1 + a)N2 = (1 + a)N1+N2 .

Now compare the coefficients of an on both sides to prove that(
N1

0

)(
N2

n

)
+

(
N1

1

)(
N2

n − 1

)
+ · · · +

(
N1

n

)(
N2

0

)
=

(
N1 + N2

n

)
.

d Using the result of part (c), conclude that
n∑

y=0

p(y) = 1.

*3.217 Use the result derived in Exercise 3.216(c) and Definition 3.4 to derive directly the mean of a
hypergeometric random variable.

*3.218 Use the results of Exercises 3.216(c) and 3.217 to show that, for a hypergeometric random
variable,

E[Y (Y − 1)] = r(r − 1)n(n − 1)

N (N − 1)
.
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4.1 Introduction
A moment of reflection on random variables encountered in the real world should
convince you that not all random variables of interest are discrete random variables.
The number of days that it rains in a period of n days is a discrete random variable
because the number of days must take one of the n + 1 values 0, 1, 2, . . . , or n.
Now consider the daily rainfall at a specified geographical point. Theoretically, with
measuring equipment of perfect accuracy, the amount of rainfall could take on any
value between 0 and 5 inches. As a result, each of the uncountably infinite number
of points in the interval (0, 5) represents a distinct possible value of the amount of
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rainfall in a day. A random variable that can take on any value in an interval is called
continuous, and the purpose of this chapter is to study probability distributions for
continuous random variables. The yield of an antibiotic in a fermentation process is
a continuous random variable, as is the length of life, in years, of a washing machine.
The line segments over which these two random variables are defined are contained
in the positive half of the real line. This does not mean that, if we observed enough
washing machines, we would eventually observe an outcome corresponding to every
value in the interval (3, 7); rather it means that no value between 3 and 7 can be ruled
out as as a possible value for the number of years that a washing machine remains in
service.

The probability distribution for a discrete random variable can always be given by
assigning a nonnegative probability to each of the possible values the variable may
assume. In every case, of course, the sum of all the probabilities that we assign must be
equal to 1. Unfortunately, the probability distribution for a continuous random variable
cannot be specified in the same way. It is mathematically impossible to assign nonzero
probabilities to all the points on a line interval while satisfying the requirement that
the probabilities of the distinct possible values sum to 1. As a result, we must develop
a different method to describe the probability distribution for a continuous random
variable.

4.2 The Probability Distribution
for a Continuous Random Variable
Before we can state a formal definition for a continuous random variable, we must
define the distribution function (or cumulative distribution function) associated with
a random variable.

DEFINITION 4.1 Let Y denote any random variable. The distribution function of Y , denoted by
F(y), is such that F(y) = P(Y ≤ y) for −∞ < y < ∞.

The nature of the distribution function associated with a random variable deter-
mines whether the variable is continuous or discrete. Consequently, we will commence
our discussion by examining the distribution function for a discrete random variable
and noting the characteristics of this function.

EXAMPLE 4.1 Suppose that Y has a binomial distribution with n = 2 and p = 1/2. Find F(y).

Solution The probability function for Y is given by

p(y) =
(

2

y

) (
1

2

)y (
1

2

)2−y

, y = 0, 1, 2,

which yields

p(0) = 1/4, p(1) = 1/2, p(2) = 1/4.
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1 2

1

1/2

3/4

1/4

0

F( y)

y

F I G U R E 4.1
Binomial distribution

function,
n = 2, p = 1/2

What is F(−2) = P(Y ≤ −2)? Because the only values of Y that are assigned
positive probabilities are 0, 1, and 2 and none of these values are less than or equal
to −2, F(−2) = 0. Using similar logic, F(y) = 0 for all y < 0. What is F(1.5)?
The only values of Y that are less than or equal to 1.5 and have nonzero probabilities
are the values 0 and 1. Therefore,

F(1.5) = P(Y ≤ 1.5) = P(Y = 0) + P(Y = 1)

= (1/4) + (1/2) = 3/4.

In general,

F(y) = P(Y ≤ y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for y < 0,

1/4, for 0 ≤ y < 1,

3/4, for 1 ≤ y < 2,

1, for y ≥ 2.

A graph of F(y) is given in Figure 4.1.

In Example 4.1 the points between 0 and 1 or between 1 and 2 all had probability 0
and contributed nothing to the cumulative probability depicted by the distribution
function. As a result, the cumulative distribution function stayed flat between the
possible values of Y and increased in jumps or steps at each of the possible values
of Y . Functions that behave in such a manner are called step functions. Distribution
functions for discrete random variables are always step functions because the cumu-
lative distribution function increases only at the finite or countable number of points
with positive probabilities.

Because the distribution function associated with any random variable is such
that F(y) = P(Y ≤ y), from a practical point of view it is clear that F(−∞) =
limy→−∞ P(Y ≤ y) must equal zero. If we consider any two values y1 < y2, then
P(Y ≤ y1) ≤ P(Y ≤ y2)—that is, F(y1) ≤ F(y2). So, a distribution function, F(y),
is always a monotonic, nondecreasing function. Further, it is clear that F(∞) =
limy→∞ P(Y ≤ y) = 1. These three characteristics define the properties of any
distribution function and are summarized in the following theorem.
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160 Chapter 4 Continuous Variables and Their Probability Distributions

THEOREM 4.1 Properties of a Distribution Function1 If F(y) is a distribution function, then

1. F(−∞) ≡ lim
y→−∞F(y) = 0.

2. F(∞) ≡ lim
y→∞F(y) = 1.

3. F(y) is a nondecreasing function of y. [If y1 and y2 are any values such
that y1 < y2, then F(y1) ≤ F(y2).]

You should check that the distribution function developed in Example 4.1 has each
of these properties.

Let us now examine the distribution function for a continuous random variable.
Suppose that, for all practical purposes, the amount of daily rainfall, Y , must be
less than 6 inches. For every 0 ≤ y1 < y2 ≤ 6, the interval (y1, y2) has a positive
probability of including Y , no matter how close y1 gets to y2. It follows that F(y) in
this case should be a smooth, increasing function over some interval of real numbers,
as graphed in Figure 4.2.

We are thus led to the definition of a continuous random variable.

DEFINITION 4.2 A random variable Y with distribution function F(y) is said to be continuous
if F(y) is continuous, for −∞ < y < ∞.2

y1 y2

1

F ( y2)

F ( y1)

0

F( y)

y

F I G U R E 4.2
Distribution function

for a continuous
random variable

1. To be mathematically rigorous, if F(y) is a valid distribution function, then F(y) also must be right
continuous.

2. To be mathematically precise, we also need the first derivative of F(y) to exist and be continuous except
for, at most, a finite number of points in any finite interval. The distribution functions for the continuous
random variables discussed in this text satisfy this requirement.
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If Y is a continuous random variable, then for any real number y,

P(Y = y) = 0.

If this were not true and P(Y = y0) = p0 > 0, then F(y) would have a discontinuity
( jump) of size p0 at the point y0, violating the assumption that Y was continuous.
Practically speaking, the fact that continuous random variables have zero probability
at discrete points should not bother us. Consider the example of measuring daily
rainfall. What is the probability that we will see a daily rainfall measurement of
exactly 2.193 inches? It is quite likely that we would never observe that exact value
even if we took rainfall measurements for a lifetime, although we might see many
days with measurements between 2 and 3 inches.

The derivative of F(y) is another function of prime importance in probability
theory and statistics.

DEFINITION 4.3 Let F(y) be the distribution function for a continuous random variable Y . Then
f (y), given by

f (y) = dF(y)

dy
= F ′(y)

wherever the derivative exists, is called the probability density function for the
random variable Y .

It follows from Definitions 4.2 and 4.3 that F(y) can be written as

F(y) =
∫ y

−∞
f (t) dt,

where f (·) is the probability density function and t is used as the variable of in-
tegration. The relationship between the distribution and density functions is shown
graphically in Figure 4.3.

The probability density function is a theoretical model for the frequency distri-
bution (histogram) of a population of measurements. For example, observations of
the lengths of life of washers of a particular brand will generate measurements that
can be characterized by a relative frequency histogram, as discussed in Chapter 1.
Conceptually, the experiment could be repeated ad infinitum, thereby generating a
relative frequency distribution (a smooth curve) that would characterize the popu-
lation of interest to the manufacturer. This theoretical relative frequency distribu-
tion corresponds to the probability density function for the length of life of a single
machine, Y .

f ( y)

F ( y0 )

y0 y

F I G U R E 4.3
The distribution

function
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162 Chapter 4 Continuous Variables and Their Probability Distributions

Because the distribution function F(y) for any random variable always has the
properties given in Theorem 4.1, density functions must have some corresponding
properties. Because F(y) is a nondecreasing function, the derivative f (y) is never
negative. Further, we know that F(∞) = 1 and, therefore, that

∫ ∞
−∞ f (t) dt = 1. In

summary, the properties of a probability density function are as given in the following
theorem.

THEOREM 4.2 Properties of a Density Function If f (y) is a density function for a continuous
random variable, then

1. f (y) ≥ 0 for all y, −∞ < y < ∞.

2.
∫ ∞
−∞ f (y) dy = 1.

The next example gives the distribution function and density function for a
continuous random variable.

EXAMPLE 4.2 Suppose that

F(y) =

⎧⎪⎨⎪⎩
0, for y < 0,

y, for 0 ≤ y ≤ 1,

1, for y > 1.

Find the probability density function for Y and graph it.

Solution Because the density function f (y) is the derivative of the distribution function F(y),
when the derivative exists,

f (y) = dF(y)

dy
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d(0)

dy
= 0, for y < 0,

d(y)

dy
= 1, for 0 < y < 1,

d(1)

dy
= 0, for y > 1,

and f (y) is undefined at y = 0 and y = 1. A graph of F(y) is shown in Figure 4.4.

F( y)

y

1

10

F I G U R E 4.4
Distribution function
F (y) for Example 4.2

The graph of f (y) for Example 4.2 is shown in Figure 4.5. Notice that the dis-
tribution and density functions given in Example 4.2 have all the properties required

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.2 The Probability Distribution for a Continuous Random Variable 163

f (y)

y

1

10

F I G U R E 4.5
Density function

f (y) for Example 4.2

of distribution and density functions, respectively. Moreover, F(y) is a continuous
function of y, but f (y) is discontinuous at the points y = 0, 1. In general, the distri-
bution function for a continuous random variable must be continuous, but the density
function need not be everywhere continuous.

EXAMPLE 4.3 Let Y be a continuous random variable with probability density function given by

f (y) =
{

3y2, 0 ≤ y ≤ 1,

0, elsewhere.
Find F(y). Graph both f (y) and F(y).

Solution The graph of f (y) appears in Figure 4.6. Because

F(y) =
∫ y

−∞
f (t) dt,

we have, for this example,

F(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ y
−∞ 0 dt = 0, for y < 0,∫ 0
−∞ 0 dt + ∫ y

0 3t2 dt = 0 + t3
]y

0 = y3, for 0 ≤ y ≤ 1,∫ 0
−∞ 0 dt + ∫ 1

0 3t2 dt + ∫ y
1 0 dt = 0 + t3

]1
0 + 0 = 1, for 1 < y.

Notice that some of the integrals that we evaluated yield a value of 0. These are
included for completeness in this initial example. In future calculations, we will
not explicitly display any integral that has value 0. The graph of F(y) is given in
Figure 4.7.

f (y)

y

3

2

1

10

F I G U R E 4.6
Density function
for Example 4.3

F(y0) gives the probability that Y ≤ y0. As you will see in subsequent chapters, it
is often of interest to determine the value, y, of a random variable Y that is such that
P(Y ≤ y) equals or exceeds some specified value.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



164 Chapter 4 Continuous Variables and Their Probability Distributions

F( y)

y

1

10

F I G U R E 4.7
Distribution function

for Example 4.3

DEFINITION 4.4 Let Y denote any random variable. If 0 < p < 1, the pth quantile of Y ,
denoted by φp, is the smallest value such that P(Y ≤ φq) = F(φp) ≥ p. If Y
is continuous, φp is the smallest value such that F(φp) = P(Y ≤ φp) = p.
Some prefer to call φp the 100pth percentile of Y .

An important special case is p = 1/2, and φ.5 is the median of the random variable
Y . In Example 4.3, the median of the random variable is such that F(φ.5) = .5 and
is easily seen to be such that (φ.5)

3 = .5, or equivalently, that the median of Y is
φ.5 = (.5)1/3 = .7937.

The next step is to find the probability that Y falls in a specific interval; that is,
P(a ≤ Y ≤ b). From Chapter 1 we know that this probability corresponds to the area
under the frequency distribution over the interval a ≤ y ≤ b. Because f (y) is the
theoretical counterpart of the frequency distribution, we would expect P(a ≤ Y ≤ b)

to equal a corresponding area under the density function f (y). This indeed is true
because, if a < b,

P(a < Y ≤ b) = P(Y ≤ b) − P(Y ≤ a) = F(b) − F(a) =
∫ b

a
f (y) dy.

Because P(Y = a) = 0, we have the following result.

THEOREM 4.3 If the random variable Y has density function f (y) and a < b, then the proba-
bility that Y falls in the interval [a, b] is

P(a ≤ Y ≤ b) =
∫ b

a
f (y) dy.

This probability is the shaded area in Figure 4.8.

f (y)

a0 b y

F I G U R E 4.8
P (a ≤ Y ≤ b)
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4.2 The Probability Distribution for a Continuous Random Variable 165

If Y is a continuous random variable and a and b are constants such that a < b,
then P(Y = a) = 0 and P(Y = b) = 0 and Theorem 4.3 implies that

P(a < Y < b) = P(a ≤ Y < b) = P(a < Y ≤ b)

= P(a ≤ Y ≤ b) =
∫ b

a
f (y) dy.

The fact that the above string of equalities is not, in general, true for discrete random
variables is illustrated in Exercise 4.7.

EXAMPLE 4.4 Given f (y) = cy2, 0 ≤ y ≤ 2, and f (y) = 0 elsewhere, find the value of c for which
f (y) is a valid density function.

Solution We require a value for c such that

F(∞) =
∫ ∞

−∞
f (y) dy = 1

=
∫ 2

0
cy2 dy = cy3

3

]2

0

=
(

8

3

)
c.

Thus, (8/3)c = 1, and we find that c = 3/8.

EXAMPLE 4.5 Find P(1 ≤ Y ≤ 2) for Example 4.4. Also find P(1 < Y < 2).

Solution P(1 ≤ Y ≤ 2) =
∫ 2

1
f (y) dy = 3

8

∫ 2

1
y2 dy =

(
3

8

)
y3

3

]2

1

= 7

8
.

Because Y has a continuous distribution, it follows that P(Y = 1) = P(Y = 2) = 0
and, therefore, that

P(1 < Y < 2) = P(1 ≤ Y ≤ 2) = 3

8

∫ 2

1
y2 dy = 7

8
.

Probability statements regarding a continuous random variable Y are meaningful
only if, first, the integral defining the probability exists and, second, the resulting
probabilities agree with the axioms of Chapter 2. These two conditions will always
be satisfied if we consider only probabilities associated with a finite or countable
collection of intervals. Because we almost always are interested in probabilities that
continuous variables fall in intervals, this consideration will cause us no practical diffi-
culty. Some density functions that provide good models for population frequency dis-
tributions encountered in practical applications are presented in subsequent sections.
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Exercises
4.1 Let Y be a random variable with p(y) given in the table below.

y 1 2 3 4

p(y) .4 .3 .2 .1

a Give the distribution function, F(y). Be sure to specify the value of F(y) for all y, −∞ <

y < ∞.

b Sketch the distribution function given in part (a).

4.2 A box contains five keys, only one of which will open a lock. Keys are randomly selected and
tried, one at a time, until the lock is opened (keys that do not work are discarded before another
is tried). Let Y be the number of the trial on which the lock is opened.

a Find the probability function for Y .

b Give the corresponding distribution function.

c What is P(Y < 3)? P(Y ≤ 3)? P(Y = 3)?

d If Y is a continuous random variable, we argued that, for all −∞ < a < ∞, P(Y = a) = 0.

Do any of your answers in part (c) contradict this claim? Why?

4.3 A Bernoulli random variable is one that assumes only two values, 0 and 1 with p(1) = p and
p(0) = 1 − p ≡ q.

a Sketch the corresponding distribution function.

b Show that this distribution function has the properties given in Theorem 4.1.

4.4 Let Y be a binomial random variable with n = 1 and success probability p.

a Find the probability and distribution function for Y .

b Compare the distribution function from part (a) with that in Exercise 4.3(a). What do you
conclude?

4.5 Suppose that Y is a random variable that takes on only integer values 1, 2, . . . and has distribution
function F(y). Show that the probability function p(y) = P(Y = y) is given by

p(y) =
{

F(1), y = 1,

F(y) − F(y − 1), y = 2, 3, . . . .

4.6 Consider a random variable with a geometric distribution (Section 3.5); that is,

p(y) = q y−1 p, y = 1, 2, 3, . . . , 0 < p < 1.

a Show that Y has distribution function F(y) such that F(i) = 1 − q i , i = 0, 1, 2, . . . and
that, in general,

F(y) =
{

0, y < 0,

1 − q i , i ≤ y < i + 1, for i = 0, 1, 2, . . . .

b Show that the preceding cumulative distribution function has the properties given in
Theorem 4.1.

4.7 Let Y be a binomial random variable with n = 10 and p = .2.

a Use Table 1, Appendix 3, to obtain P(2 < Y < 5) and P(2 ≤ Y < 5). Are the probabilities
that Y falls in the intevals (2, 5) and [2, 5) equal? Why or why not?
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b Use Table 1, Appendix 3, to obtain P(2 < Y ≤ 5) and P(2 ≤ Y ≤ 5). Are these two
probabilities equal? Why or why not?

c Earlier in this section, we argued that if Y is continuous and a < b, then P(a < Y < b) =
P(a ≤ Y < b). Does the result in part (a) contradict this claim? Why?

4.8 Suppose that Y has density function

f (y) =
{

ky(1 − y), 0 ≤ y ≤ 1,

0, elsewhere.

a Find the value of k that makes f (y) a probability density function.

b Find P(.4 ≤ Y ≤ 1).

c Find P(.4 ≤ Y < 1).

d Find P(Y ≤ .4|Y ≤ .8).

e Find P(Y < .4|Y < .8).

4.9 A random variable Y has the following distribution function:

F(y) = P(Y ≤ y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for y < 2,

1/8, for 2 ≤ y < 2.5,

3/16, for 2.5 ≤ y < 4,

1/2 for 4 ≤ y < 5.5,

5/8, for 5.5 ≤ y < 6,

11/16, for 6 ≤ y < 7,

1, for y ≥ 7.

a Is Y a continuous or discrete random variable? Why?

b What values of Y are assigned positive probabilities?

c Find the probability function for Y .

d What is the median, φ.5, of Y ?

4.10 Refer to the density function given in Exercise 4.8.

a Find the .95-quantile, φ.95, such that P(Y ≤ φ.95) = .95.

b Find a value y0 so that P(Y < y0) = .95.

c Compare the values for φ.95 and y0 that you obtained in parts (a) and (b). Explain the
relationship between these two values.

4.11 Suppose that Y possesses the density function

f (y) =
{

cy, 0 ≤ y ≤ 2,

0, elsewhere.

a Find the value of c that makes f (y) a probability density function.

b Find F(y).

c Graph f (y) and F(y).

d Use F(y) to find P(1 ≤ Y ≤ 2).

e Use f (y) and geometry to find P(1 ≤ Y ≤ 2).

4.12 The length of time to failure (in hundreds of hours) for a transistor is a random variable Y with
distribution function given by

F(y) =
{ 0, y < 0,

1 − e−y2
, y ≥ 0.
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a Show that F(y) has the properties of a distribution function.

b Find the .30-quantile, φ.30, of Y .

c Find f (y).

d Find the probability that the transistor operates for at least 200 hours.

e Find P(Y > 100|Y ≤ 200).

4.13 A supplier of kerosene has a 150-gallon tank that is filled at the beginning of each week. His
weekly demand shows a relative frequency behavior that increases steadily up to 100 gallons
and then levels off between 100 and 150 gallons. If Y denotes weekly demand in hundreds of
gallons, the relative frequency of demand can be modeled by

f (y) =

⎧⎪⎨⎪⎩
y, 0 ≤ y ≤ 1,

1, 1 < y ≤ 1.5,

0, elsewhere.

a Find F(y).

b Find P(0 ≤ Y ≤ .5).

c Find P(.5 ≤ Y ≤ 1.2).

4.14 A gas station operates two pumps, each of which can pump up to 10,000 gallons of gas in
a month. The total amount of gas pumped at the station in a month is a random variable Y
(measured in 10,000 gallons) with a probability density function given by

f (y) =

⎧⎪⎨⎪⎩
y, 0 < y < 1,

2 − y, 1 ≤ y < 2,

0, elsewhere.

a Graph f (y).

b Find F(y) and graph it.

c Find the probability that the station will pump between 8000 and 12,000 gallons in a
particular month.

d Given that the station pumped more than 10,000 gallons in a particular month, find the
probability that the station pumped more than 15,000 gallons during the month.

4.15 As a measure of intelligence, mice are timed when going through a maze to reach a reward
of food. The time (in seconds) required for any mouse is a random variable Y with a density
function given by

f (y) =
⎧⎨⎩

b

y2
, y ≥ b,

0, elsewhere,

where b is the minimum possible time needed to traverse the maze.

a Show that f (y) has the properties of a density function.

b Find F(y).

c Find P(Y > b + c) for a positive constant c.

d If c and d are both positive constants such that d > c, find P(Y > b + d|Y > b + c).

4.16 Let Y possess a density function

f (y) =
{

c(2 − y), 0 ≤ y ≤ 2,

0, elsewhere.
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a Find c.

b Find F(y).

c Graph f (y) and F(y).

d Use F(y) in part (b) to find P(1 ≤ Y ≤ 2).

e Use geometry and the graph for f (y) to calculate P(1 ≤ Y ≤ 2).

4.17 The length of time required by students to complete a one-hour exam is a random variable with
a density function given by

f (y) =
{

cy2 + y, 0 ≤ y ≤ 1,

0, elsewhere.

a Find c.

b Find F(y).

c Graph f (y) and F(y).

d Use F(y) in part (b) to find F(−1), F(0), and F(1).

e Find the probability that a randomly selected student will finish in less than half an hour.

f Given that a particular student needs at least 15 minutes to complete the exam, find the
probability that she will require at least 30 minutes to finish.

4.18 Let Y have the density function given by

f (y) =

⎧⎪⎨⎪⎩
.2, −1 < y ≤ 0,

.2 + cy, 0 < y ≤ 1,

0, elsewhere.

a Find c.

b Find F(y).

c Graph f (y) and F(y).

d Use F(y) in part (b) to find F(−1), F(0), and F(1).

e Find P(0 ≤ Y ≤ .5).

f Find P(Y > .5|Y > .1).

4.19 Let the distribution function of a random variable Y be

F(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, y ≤ 0,

y

8
, 0 < y < 2,

y2

16
, 2 ≤ y < 4,

1, y ≥ 4.

a Find the density function of Y .

b Find P(1 ≤ Y ≤ 3).

c Find P(Y ≥ 1.5).

d Find P(Y ≥ 1|Y ≤ 3).
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4.3 Expected Values for Continuous
Random Variables
The next step in the study of continuous random variables is to find their means,
variances, and standard deviations, thereby acquiring numerical descriptive measures
associated with their distributions. Many times it is difficult to find the probabil-
ity distribution for a random variable Y or a function of a random variable, g(Y ).
Even if the density function for a random variable is known, it can be difficult
to evaluate appropriate integrals (we will see this to be the case when a random
variable has a gamma distribution, Section 4.6). When we encounter these situa-
tions, the approximate behavior of variables of interest can be established by us-
ing their moments and the empirical rule or Tchebysheff’s theorem (Chapters 1
and 3).

DEFINITION 4.5 The expected value of a continuous random variable Y is

E(Y ) =
∫ ∞

−∞
yf(y) dy,

provided that the integral exists.3

If the definition of the expected value for a discrete random variable Y , E(Y ) =∑
y yp(y), is meaningful, then Definition 4.4 also should agree with our intuitive

notion of a mean. The quantity f (y) dy corresponds to p(y) for the discrete case, and
integration evolves from and is analogous to summation. Hence, E(Y ) in Definition
4.5 agrees with our notion of an average, or mean.

As in the discrete case, we are sometimes interested in the expected value of a
function of a random variable. A result that permits us to evaluate such an expected
value is given in the following theorem.

THEOREM 4.4 Let g(Y ) be a function of Y ; then the expected value of g(Y ) is given by

E [g(Y )] =
∫ ∞

−∞
g(y) f (y) dy,

provided that the integral exists.

The proof of Theorem 4.4 is similar to that of Theorem 3.2 and is omitted. The
expected values of three important functions of a continuous random variable Y evolve

3. Technically, E(Y ) is said to exist if ∫ ∞

−∞
|y| f (y) dy < ∞.

This will be the case in all expectations that we discuss, and we will not mention this additional condition
each time that we define an expected value.
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4.3 Expected Values for Continuous Random Variables 171

as a consequence of well-known theorems of integration. As expected, these results
lead to conclusions analogous to those contained in Theorems 3.3, 3.4, and 3.5. As a
consequence, the proof of Theorem 4.5 will be left as an exercise.

THEOREM 4.5 Let c be a constant and let g(Y ), g1(Y ), g2(Y ), . . . , gk(Y ) be functions of a
continuous random variable Y . Then the following results hold:

1. E(c) = c.
2. E[cg(Y )] = cE[g(Y )].
3. E[g1(Y )+g2(Y )+· · ·+gk(Y )] = E[g1(Y )]+E[g2(Y )]+· · ·+E[gk(Y )].

As in the case of discrete random variables, we often seek the expected value
of the function g(Y ) = (Y − μ)2. As before, the expected value of this function
is the variance of the random variable Y . That is, as in Definition 3.5, V (Y ) =
E(Y − μ)2. It is a simple exercise to show that Theorem 4.5 implies that V (Y ) =
E(Y 2) − μ2.

EXAMPLE 4.6 In Example 4.4 we determined that f (y) = (3/8)y2 for 0 ≤ y ≤ 2, f (y) = 0
elsewhere, is a valid density function. If the random variable Y has this density
function, find μ = E(Y ) and σ 2 = V (Y ).

Solution According to Definition 4.5,

E(Y ) =
∫ ∞

−∞
y f (y) dy

=
∫ 2

0
y

(
3

8

)
y2 dy

=
(

3

8

) (
1

4

)
y4

]2

0

= 1.5.

The variance of Y can be found once we determine E(Y 2). In this case,

E(Y 2) =
∫ ∞

−∞
y2 f (y) dy

=
∫ 2

0
y2

(
3

8

)
y2 dy

=
(

3

8

) (
1

5

)
y5

]2

0

= 2.4.

Thus, σ 2 = V (Y ) = E(Y 2) − [E(Y )]2 = 2.4 − (1.5)2 = 0.15.
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Exercises
4.20 If, as in Exercise 4.16, Y has density function

f (y) =
{

(1/2)(2 − y), 0 ≤ y ≤ 2,

0, elsewhere,

find the mean and variance of Y .

4.21 If, as in Exercise 4.17, Y has density function

f (y) =
{

(3/2)y2 + y, 0 ≤ y ≤ 1,

0, elsewhere,

find the mean and variance of Y .

4.22 If, as in Exercise 4.18, Y has density function

f (y) =

⎧⎪⎨⎪⎩
.2, −1 < y ≤ 0,

.2 + (1.2)y, 0 < y ≤ 1,

0, elsewhere,

find the mean and variance of Y .

4.23 Prove Theorem 4.5.

4.24 If Y is a continuous random variable with density function f (y), use Theorem 4.5 to prove
that σ 2 = V (Y ) = E(Y 2) − [E(Y )]2.

4.25 If, as in Exercise 4.19, Y has distribution function

F(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, y ≤ 0,
y

8
, 0 < y < 2,

y2

16
, 2 ≤ y < 4,

1, y ≥ 4,

find the mean and variance of Y .

4.26 If Y is a continuous random variable with mean μ and variance σ 2 and a and b are constants,
use Theorem 4.5 to prove the following:

a E(aY + b) = aE(Y ) + b = aμ + b.

b V (aY + b) = a2V (Y ) = a2σ 2.

4.27 For certain ore samples, the proportion Y of impurities per sample is a random variable with
density function given in Exercise 4.21. The dollar value of each sample is W = 5 − .5Y . Find
the mean and variance of W .

4.28 The proportion of time per day that all checkout counters in a supermarket are busy is a random
variable Y with density function

f (y) =
{

cy2(1 − y)4, 0 ≤ y ≤ 1,

0, elsewhere.

a Find the value of c that makes f (y) a probability density function.

b Find E(Y ).
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4.29 The temperature Y at which a thermostatically controlled switch turns on has probability density
function given by

f (y) =
{

1/2, 59 ≤ y ≤ 61,

0, elsewhere.
Find E(Y ) and V (Y ).

4.30 The proportion of time Y that an industrial robot is in operation during a 40-hour week is a
random variable with probability density function

f (y) =
{

2y, 0 ≤ y ≤ 1,

0, elsewhere.
a Find E(Y ) and V (Y ).

b For the robot under study, the profit X for a week is given by X = 200Y − 60. Find E(X)

and V (X).

c Find an interval in which the profit should lie for at least 75% of the weeks that the robot
is in use.

4.31 Daily total solar radiation for a specified location in Florida in October has probability density
function given by

f (y) =
{

(3/32)(y − 2)(6 − y), 2 ≤ y ≤ 6,

0, elsewhere,

with measurements in hundreds of calories. Find the expected daily solar radiation for October.

4.32 Weekly CPU time used by an accounting firm has probability density function (measured in
hours) given by

f (y) =
{

(3/64)y2(4 − y), 0 ≤ y ≤ 4,

0, elsewhere.

a Find the expected value and variance of weekly CPU time.

b The CPU time costs the firm $200 per hour. Find the expected value and variance of the
weekly cost for CPU time.

c Would you expect the weekly cost to exceed $600 very often? Why?

4.33 The pH of water samples from a specific lake is a random variable Y with probability density
function given by

f (y) =
{

(3/8)(7 − y)2, 5 ≤ y ≤ 7,

0, elsewhere.

a Find E(Y ) and V (Y ).

b Find an interval shorter than (5, 7) in which at least three-fourths of the pH measurements
must lie.

c Would you expect to see a pH measurement below 5.5 very often? Why?

*4.34 Suppose that Y is a continuous random variable with density f (y) that is positive only if y ≥ 0.
If F(y) is the distribution function, show that

E(Y ) =
∫ ∞

0
y f (y) dy =

∫ ∞

0
[1 − F(y)] dy.

[Hint: If y > 0, y = ∫ y
0 dt, and E(Y ) = ∫ ∞

0 y f (y) dy = ∫ ∞
0

{∫ y
0 dt

}
f (y) dy. Exchange the

order of integration to obtain the desired result.]4

4. Exercises preceded by an asterisk are optional.
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*4.35 If Y is a continuous random variable such that E[(Y −a)2] < ∞ for all a, show that E[(Y −a)2]
is minimized when a = E(Y ). [Hint: E[(Y − a)2] = E({[Y − E(Y )] + [E(Y ) − a]}2).]

*4.36 Is the result obtained in Exercise 4.35 also valid for discrete random variables? Why?

*4.37 If Y is a continuous random variable with density function f (y) that is symmetric about 0
(that is, f (y) = f (−y) for all y) and E(Y ) exists, show that E(Y ) = 0. [Hint: E(Y ) =∫ 0

−∞ y f (y) dy + ∫ ∞
0 y f (y) dy. Make the change of variable w = −y in the first integral.]

4.4 The Uniform Probability Distribution
Suppose that a bus always arrives at a particular stop between 8:00 and 8:10 A.M.
and that the probability that the bus will arrive in any given subinterval of time is
proportional only to the length of the subinterval. That is, the bus is as likely to arrive
between 8:00 and 8:02 as it is to arrive between 8:06 and 8:08. Let Y denote the
length of time a person must wait for the bus if that person arrived at the bus stop at
exactly 8:00. If we carefully measured in minutes how long after 8:00 the bus arrived
for several mornings, we could develop a relative frequency histogram for the data.

From the description just given, it should be clear that the relative frequency with
which we observed a value of Y between 0 and 2 would be approximately the same
as the relative frequency with which we observed a value of Y between 6 and 8. A
reasonable model for the density function of Y is given in Figure 4.9. Because areas
under curves represent probabilities for continuous random variables and A1 = A2

(by inspection), it follows that P(0 ≤ Y ≤ 2) = P(6 ≤ Y ≤ 8), as desired.
The random variable Y just discussed is an example of a random variable that has

a uniform distribution. The general form for the density function of a random variable
with a uniform distribution is as follows.

DEFINITION 4.6 If θ1 < θ2, a random variable Y is said to have a continuous uniform probability
distribution on the interval (θ1, θ2) if and only if the density function of Y is

f (y) =

⎧⎪⎨⎪⎩
1

θ2 − θ1
, θ1 ≤ y ≤ θ2,

0, elsewhere.

f ( y)

y

A1 A2

0 1 2 3 4 5 6 7 8 9 10

F I G U R E 4.9
Density function

for Y
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4.4 The Uniform Probability Distribution 175

In the bus problem we can take θ1 = 0 and θ2 = 10 because we are interested only
in a particular ten-minute interval. The density function discussed in Example 4.2 is
a uniform distribution with θ1 = 0 and θ2 = 1. Graphs of the distribution function
and density function for the random variable in Example 4.2 are given in Figures 4.4
and 4.5, respectively.

DEFINITION 4.7 The constants that determine the specific form of a density function are called
parameters of the density function.

The quantities θ1 and θ2 are parameters of the uniform density function and are
clearly meaningful numerical values associated with the theoretical density function.
Both the range and the probability that Y will fall in any given interval depend on the
values of θ1 and θ2.

Some continuous random variables in the physical, management, and biological
sciences have approximately uniform probability distributions. For example, suppose
that the number of events, such as calls coming into a switchboard, that occur in the
time interval (0, t) has a Poisson distribution. If it is known that exactly one such event
has occurred in the interval (0, t), then the actual time of occurrence is distributed
uniformly over this interval.

EXAMPLE 4.7 Arrivals of customers at a checkout counter follow a Poisson distribution. It is known
that, during a given 30-minute period, one customer arrived at the counter. Find
the probability that the customer arrived during the last 5 minutes of the 30-minute
period.

Solution As just mentioned, the actual time of arrival follows a uniform distribution over the
interval of (0, 30). If Y denotes the arrival time, then

P(25 ≤ Y ≤ 30) =
∫ 30

25

1

30
dy = 30 − 25

30
= 5

30
= 1

6
.

The probability of the arrival occurring in any other 5-minute interval is also 1/6.

As we will see, the uniform distribution is very important for theoretical reasons.
Simulation studies are valuable techniques for validating models in statistics. If we
desire a set of observations on a random variable Y with distribution function F(y),
we often can obtain the desired results by transforming a set of observations on a
uniform random variable. For this reason most computer systems contain a random
number generator that generates observed values for a random variable that has a
continuous uniform distribution.
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176 Chapter 4 Continuous Variables and Their Probability Distributions

THEOREM 4.6 If θ1 < θ2 and Y is a random variable uniformly distributed on the interval
(θ1, θ2), then

μ = E(Y ) = θ1 + θ2

2
and σ 2 = V (Y ) = (θ2 − θ1)

2

12
.

Proof By Definition 4.5,

E(Y ) =
∫ ∞

−∞
y f (y) dy

=
∫ θ2

θ1

y

(
1

θ2 − θ1

)
dy

=
(

1

θ2 − θ1

)
y2

2

]θ2

θ1

= θ2
2 − θ2

1

2(θ2 − θ1)

= θ2 + θ1

2
.

Note that the mean of a uniform random variable is simply the value midway
between the two parameter values, θ1 and θ2. The derivation of the variance is
left as an exercise.

Exercises
4.38 Suppose that Y has a uniform distribution over the interval (0, 1).

a Find F(y).

b Show that P(a ≤ Y ≤ a + b), for a ≥ 0, b ≥ 0, and a + b ≤ 1 depends only upon the
value of b.

4.39 If a parachutist lands at a random point on a line between markers A and B, find the probability
that she is closer to A than to B. Find the probability that her distance to A is more than three
times her distance to B.

4.40 Suppose that three parachutists operate independently as described in Exercise 4.39. What is
the probability that exactly one of the three lands past the midpoint between A and B?

4.41 A random variable Y has a uniform distribution over the interval (θ1, θ2). Derive the variance
of Y .

4.42 The median of the distribution of a continuous random variable Y is the value φ.5 such that
P(Y ≤ φ.5) = 0.5. What is the median of the uniform distribution on the interval (θ1, θ2)?

4.43 A circle of radius r has area A = πr 2. If a random circle has a radius that is uniformly dis-
tributed on the interval (0, 1), what are the mean and variance of the area of the circle?

4.44 The change in depth of a river from one day to the next, measured (in feet) at a specific location,
is a random variable Y with the following density function:

f (y) =
{ k, −2 ≤ y ≤ 2

0, elsewhere.
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a Determine the value of k.

b Obtain the distribution function for Y .

4.45 Upon studying low bids for shipping contracts, a microcomputer manufacturing company finds
that intrastate contracts have low bids that are uniformly distributed between 20 and 25, in units
of thousands of dollars. Find the probability that the low bid on the next intrastate shipping
contract

a is below $22,000.

b is in excess of $24,000.

4.46 Refer to Exercise 4.45. Find the expected value of low bids on contracts of the type described
there.

4.47 The failure of a circuit board interrupts work that utilizes a computing system until a new board
is delivered. The delivery time, Y , is uniformly distributed on the interval one to five days. The
cost of a board failure and interruption includes the fixed cost c0 of a new board and a cost that
increases proportionally to Y 2. If C is the cost incurred, C = c0 + c1Y 2.

a Find the probability that the delivery time exceeds two days.

b In terms of c0 and c1, find the expected cost associated with a single failed circuit board.

4.48 If a point is randomly located in an interval (a, b) and if Y denotes the location of the point,
then Y is assumed to have a uniform distribution over (a, b). A plant efficiency expert randomly
selects a location along a 500-foot assembly line from which to observe the work habits of the
workers on the line. What is the probability that the point she selects is

a within 25 feet of the end of the line?

b within 25 feet of the beginning of the line?

c closer to the beginning of the line than to the end of the line?

4.49 A telephone call arrived at a switchboard at random within a one-minute interval. The switch
board was fully busy for 15 seconds into this one-minute period. What is the probability that
the call arrived when the switchboard was not fully busy?

4.50 Beginning at 12:00 midnight, a computer center is up for one hour and then down for two hours
on a regular cycle. A person who is unaware of this schedule dials the center at a random time
between 12:00 midnight and 5:00 A.M. What is the probability that the center is up when the
person’s call comes in?

4.51 The cycle time for trucks hauling concrete to a highway construction site is uniformly distributed
over the interval 50 to 70 minutes. What is the probability that the cycle time exceeds 65 minutes
if it is known that the cycle time exceeds 55 minutes?

4.52 Refer to Exercise 4.51. Find the mean and variance of the cycle times for the trucks.

4.53 The number of defective circuit boards coming off a soldering machine follows a Poisson
distribution. During a specific eight-hour day, one defective circuit board was found.

a Find the probability that it was produced during the first hour of operation during that day.

b Find the probability that it was produced during the last hour of operation during that day.

c Given that no defective circuit boards were produced during the first four hours of operation,
find the probability that the defective board was manufactured during the fifth hour.

4.54 In using the triangulation method to determine the range of an acoustic source, the test equip-
ment must accurately measure the time at which the spherical wave front arrives at a receiving
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178 Chapter 4 Continuous Variables and Their Probability Distributions

sensor. According to Perruzzi and Hilliard (1984), measurement errors in these times can be
modeled as possessing a uniform distribution from −0.05 to +0.05 μs (microseconds).

a What is the probability that a particular arrival-time measurement will be accurate to within
0.01 μs?

b Find the mean and variance of the measurement errors.

4.55 Refer to Exercise 4.54. Suppose that measurement errors are uniformly distributed between
−0.02 to +0.05 μs.

a What is the probability that a particular arrival-time measurement will be accurate to within
0.01 μs?

b Find the mean and variance of the measurement errors.

4.56 Refer to Example 4.7. Find the conditional probability that a customer arrives during the last
5 minutes of the 30-minute period if it is known that no one arrives during the first 10 minutes
of the period.

4.57 According to Zimmels (1983), the sizes of particles used in sedimentation experiments often
have a uniform distribution. In sedimentation involving mixtures of particles of various sizes,
the larger particles hinder the movements of the smaller ones. Thus, it is important to study
both the mean and the variance of particle sizes. Suppose that spherical particles have diameters
that are uniformly distributed between .01 and .05 centimeters. Find the mean and variance of
the volumes of these particles. (Recall that the volume of a sphere is (4/3)πr 3.)

4.5 The Normal Probability Distribution
The most widely used continuous probability distribution is the normal distribution,
a distribution with the familiar bell shape that was discussed in connection with the
empirical rule. The examples and exercises in this section illustrate some of the many
random variables that have distributions that are closely approximated by a normal
probability distribution. In Chapter 7 we will present an argument that at least partially
explains the common occurrence of normal distributions of data in nature. The normal
density function is as follows:

DEFINITION 4.8 A random variable Y is said to have a normal probability distribution if and
only if, for σ > 0 and −∞ < μ < ∞, the density function of Y is

f (y) = 1

σ
√

2π
e−(y−μ)2/(2σ 2), −∞ < y < ∞.

Notice that the normal density function contains two parameters, μ and σ .

THEOREM 4.7 If Y is a normally distributed random variable with parameters μ and σ , then

E(Y ) = μ and V (Y ) = σ 2.
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f (y)

y&

F I G U R E 4.10
The normal
probability

density function

The proof of this theorem will be deferred to Section 4.9, where we derive the
moment-generating function of a normally distributed random variable. The results
contained in Theorem 4.7 imply that the parameter μ locates the center of the distri-
bution and that σ measures its spread. A graph of a normal density function is shown
in Figure 4.10.

Areas under the normal density function corresponding to P(a ≤ Y ≤ b) require
evaluation of the integral ∫ b

a

1

σ
√

2π
e−(y−μ)2/(2σ 2) dy.

Unfortunately, a closed-form expression for this integral does not exist; hence, its
evaluation requires the use of numerical integration techniques. Probabilities and
quantiles for random variables with normal distributions are easily found using R
and S-Plus. If Y has a normal distribution with mean μ and standard deviation
σ , the R (or S-Plus) command pnorm(y0,μ,σ) generates P(Y ≤ y0) whereas
qnorm(p,μ,σ) yields the pth quantile, the value of φp such that P(Y ≤ φp) = p.
Although there are infinitely many normal distributions (μ can take on any finite value,
whereas σ can assume any positive finite value), we need only one table—Table 4,
Appendix 3—to compute areas under normal densities. Probabilities and quantiles
associated with normally distributed random variables can also be found using the ap-
plet Normal Tail Areas and Quantiles accessible at academic.cengage.com/statistics/
wackerly. The only real benefit associated with using software to obtain probabil-
ities and quantiles associated with normally distributed random variables is that
the software provides answers that are correct to a greater number of decimal
places.

The normal density function is symmetric around the value μ, so areas need be
tabulated on only one side of the mean. The tabulated areas are to the right of points z,
where z is the distance from the mean, measured in standard deviations. This area is
shaded in Figure 4.11.

EXAMPLE 4.8 Let Z denote a normal random variable with mean 0 and standard deviation 1.

a Find P(Z > 2).
b Find P(−2 ≤ Z ≤ 2).
c Find P(0 ≤ Z ≤ 1.73).
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f (y)

y& + z& '
z'

F I G U R E 4.11
Tabulated area
for the normal

density function

Solution a Since μ = 0 and σ = 1, the value 2 is actually z = 2 standard deviations
above the mean. Proceed down the first (z) column in Table 4, Appendix 3,
and read the area opposite z = 2.0. This area, denoted by the symbol A(z), is
A(2.0) = .0228. Thus, P(Z > 2) = .0228.

b Refer to Figure 4.12, where we have shaded the area of interest. In part (a)
we determined that A1 = A(2.0) = .0228. Because the density function is
symmetric about the mean μ = 0, it follows that A2 = A1 = .0228 and hence
that

P(−2 ≤ Z ≤ 2) = 1 − A1 − A2 = 1 − 2(.0228) = .9544.

c Because P(Z > 0) = A(0) = .5, we obtain that P(0 ≤ Z ≤ 1.73) =
.5 − A(1.73), where A(1.73) is obtained by proceeding down the z column in
Table 4, Appendix 3, to the entry 1.7 and then across the top of the table to the
column labeled .03 to read A(1.73) = .0418. Thus,

P(0 ≤ Z ≤ 1.73) = .5 − .0418 = .4582.

y

A2
A1

20–2

F I G U R E 4.12
Desired area for
Example 4.8(b)

EXAMPLE 4.9 The achievement scores for a college entrance examination are normally distributed
with mean 75 and standard deviation 10. What fraction of the scores lies between 80
and 90?

Solution Recall that z is the distance from the mean of a normal distribution expressed in units
of standard deviation. Thus,

z = y − μ

σ
.
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z

A

1.5.50

F I G U R E 4.13
Required area for

Example 4.9

Then the desired fraction of the population is given by the area between

z1 = 80 − 75

10
= .5 and z2 = 90 − 75

10
= 1.5.

This area is shaded in Figure 4.13.
You can see from Figure 4.13 that A = A(.5)− A(1.5) = .3085− .0668 = .2417.

We can always transform a normal random variable Y to a standard normal random
variable Z by using the relationship

Z = Y − μ

σ
.

Table 4, Appendix 3, can then be used to compute probabilities, as shown here.
Z locates a point measured from the mean of a normal random variable, with the
distance expressed in units of the standard deviation of the original normal random
variable. Thus, the mean value of Z must be 0, and its standard deviation must equal 1.
The proof that the standard normal random variable, Z , is normally distributed with
mean 0 and standard deviation 1 is given in Chapter 6.

The applet Normal Probabilities, accessible at academic.cengage.com/statistics/
wackerly, illustrates the correspondence between normal probabilities on the original
and transformed (z) scales. To answer the question posed in Example 4.9, locate the
interval of interest, (80, 90), on the lower horizontal axis labeled Y . The correspond-
ing z-scores are given on the upper horizontal axis, and it is clear that the shaded area
gives P(80 < Y < 90) = P(0.5 < Z < 1.5) = 0.2417 (see Figure 4.14). A few
of the exercises at the end of this section suggest that you use this applet to rein-
force the calculations of probabilities associated with normally distributed random
variables.

Exercises
4.58 Use Table 4, Appendix 3, to find the following probabilities for a standard normal random

variable Z:

a P(0 ≤ Z ≤ 1.2)

b P(−.9 ≤ Z ≤ 0)

c P(.3 ≤ Z ≤ 1.56)
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P(80.0000 < Y < 90.0000) = P (0.50 < Z < 1.50) = 0.2417

Prob = 0.2417

F I G U R E 4.14
Required area for

Example 4.9, using
both the original and

transformed (z) scales

d P(−.2 ≤ Z ≤ .2)

e P(−1.56 ≤ Z ≤ −.2)

f Applet Exercise Use the applet Normal Probabilities to obtain P(0 ≤ Z ≤ 1.2). Why
are the values given on the two horizontal axes identical?

4.59 If Z is a standard normal random variable, find the value z0 such that

a P(Z > z0) = .5.

b P(Z < z0) = .8643.

c P(−z0 < Z < z0) = .90.

d P(−z0 < Z < z0) = .99.

4.60 A normally distributed random variable has density function

f (y) = 1

σ
√

2π
e−(y−μ)2/(2σ 2), −∞ < y < ∞.

Using the fundamental properties associated with any density function, argue that the parameter
σ must be such that σ > 0.

4.61 What is the median of a normally distributed random variable with mean μ and standard
deviation σ?

4.62 If Z is a standard normal random variable, what is

a P(Z 2 < 1)?

b P(Z 2 < 3.84146)?

4.63 A company that manufactures and bottles apple juice uses a machine that automatically fills
16-ounce bottles. There is some variation, however, in the amounts of liquid dispensed into the
bottles that are filled. The amount dispensed has been observed to be approximately normally
distributed with mean 16 ounces and standard deviation 1 ounce.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises 183

a Use Table 4, Appendix 3, to determine the proportion of bottles that will have more than
17 ounces dispensed into them.

b Applet Exercise Use the applet Normal Probabilities to obtain the answer to part (a).

4.64 The weekly amount of money spent on maintenance and repairs by a company was observed,
over a long period of time, to be approximately normally distributed with mean $400 and
standard deviation $20. If $450 is budgeted for next week, what is the probability that the
actual costs will exceed the budgeted amount?

a Answer the question, using Table 4, Appendix 3.

b Applet Exercise Use the applet Normal Probabilities to obtain the answer.

c Why are the labeled values different on the two horizontal axes?

4.65 In Exercise 4.64, how much should be budgeted for weekly repairs and maintenance to provide
that the probability the budgeted amount will be exceeded in a given week is only .1?

4.66 A machining operation produces bearings with diameters that are normally distributed with
mean 3.0005 inches and standard deviation .0010 inch. Specifications require the bearing diam-
eters to lie in the interval 3.000± .0020 inches. Those outside the interval are considered scrap
and must be remachined. With the existing machine setting, what fraction of total production
will be scrap?

a Answer the question, using Table 4, Appendix 3.

b Applet Exercise Obtain the answer, using the applet Normal Probabilities.

4.67 In Exercise 4.66, what should the mean diameter be in order that the fraction of bearings
scrapped be minimized?

4.68 The grade point averages (GPAs) of a large population of college students are approximately
normally distributed with mean 2.4 and standard deviation .8. What fraction of the students
will possess a GPA in excess of 3.0?

a Answer the question, using Table 4, Appendix 3.

b Applet Exercise Obtain the answer, using the applet Normal Tail Areas and Quantiles.

4.69 Refer to Exercise 4.68. If students possessing a GPA less than 1.9 are dropped from college,
what percentage of the students will be dropped?

4.70 Refer to Exercise 4.68. Suppose that three students are randomly selected from the student
body. What is the probability that all three will possess a GPA in excess of 3.0?

4.71 Wires manufactured for use in a computer system are specified to have resistances between
.12 and .14 ohms. The actual measured resistances of the wires produced by company A have
a normal probability distribution with mean .13 ohm and standard deviation .005 ohm.

a What is the probability that a randomly selected wire from company A’s production will
meet the specifications?

b If four of these wires are used in each computer system and all are selected from com-
pany A, what is the probability that all four in a randomly selected system will meet the
specifications?

4.72 One method of arriving at economic forecasts is to use a consensus approach. A forecast is
obtained from each of a large number of analysts; the average of these individual forecasts is
the consensus forecast. Suppose that the individual 1996 January prime interest–rate forecasts
of all economic analysts are approximately normally distributed with mean 7% and standard
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deviation 2.6%. If a single analyst is randomly selected from among this group, what is the
probability that the analyst’s forecast of the prime interest rate will

a exceed 11%?

b be less than 9%?

4.73 The width of bolts of fabric is normally distributed with mean 950 mm (millimeters) and
standard deviation 10 mm.

a What is the probability that a randomly chosen bolt has a width of between 947 and 958 mm?

b What is the appropriate value for C such that a randomly chosen bolt has a width less than
C with probability .8531?

4.74 Scores on an examination are assumed to be normally distributed with mean 78 and variance 36.

a What is the probability that a person taking the examination scores higher than 72?

b Suppose that students scoring in the top 10% of this distribution are to receive an A grade.
What is the minimum score a student must achieve to earn an A grade?

c What must be the cutoff point for passing the examination if the examiner wants only the
top 28.1% of all scores to be passing?

d Approximately what proportion of students have scores 5 or more points above the score
that cuts off the lowest 25%?

e Applet Exercise Answer parts (a)–(d), using the applet Normal Tail Areas and Quantiles.

f If it is known that a student’s score exceeds 72, what is the probability that his or her score
exceeds 84?

4.75 A soft-drink machine can be regulated so that it discharges an average of μ ounces per cup. If
the ounces of fill are normally distributed with standard deviation 0.3 ounce, give the setting
for μ so that 8-ounce cups will overflow only 1% of the time.

4.76 The machine described in Exercise 4.75 has standard deviation σ that can be fixed at certain
levels by carefully adjusting the machine. What is the largest value of σ that will allow the
actual amount dispensed to fall within 1 ounce of the mean with probability at least .95?

4.77 The SAT and ACT college entrance exams are taken by thousands of students each year. The
mathematics portions of each of these exams produce scores that are approximately normally
distributed. In recent years, SAT mathematics exam scores have averaged 480 with standard
deviation 100. The average and standard deviation for ACT mathematics scores are 18 and 6,
respectively.

a An engineering school sets 550 as the minimum SAT math score for new students. What
percentage of students will score below 550 in a typical year?

b What score should the engineering school set as a comparable standard on the ACT
math test?

4.78 Show that the maximum value of the normal density with parameters μ and σ is 1/(σ
√

2π)

and occurs when y = μ.

4.79 Show that the normal density with parameters μ and σ has inflection points at the values μ−σ

and μ + σ . (Recall that an inflection point is a point where the curve changes direction from
concave up to concave down, or vice versa, and occurs when the second derivative changes
sign. Such a change in sign may occur when the second derivative equals zero.)

4.80 Assume that Y is normally distributed with mean μ and standard deviation σ . After observing
a value of Y , a mathematician constructs a rectangle with length L = |Y | and width W = 3|Y |.
Let A denote the area of the resulting rectangle. What is E(A)?
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4.6 The Gamma Probability Distribution
Some random variables are always nonnegative and for various reasons yield dis-
tributions of data that are skewed (nonsymmetric) to the right. That is, most of the
area under the density function is located near the origin, and the density function
drops gradually as y increases. A skewed probability density function is shown in
Figure 4.15.

The lengths of time between malfunctions for aircraft engines possess a skewed
frequency distribution, as do the lengths of time between arrivals at a supermarket
checkout queue (that is, the line at the checkout counter). Similarly, the lengths of
time to complete a maintenance checkup for an automobile or aircraft engine possess
a skewed frequency distribution. The populations associated with these random vari-
ables frequently possess density functions that are adequately modeled by a gamma
density function.

DEFINITION 4.9 A random variable Y is said to have a gamma distribution with parameters
α > 0 and β > 0 if and only if the density function of Y is

f (y) =

⎧⎪⎨⎪⎩
yα−1e−y/β

βα"(α)
, 0 ≤ y < ∞,

0, elsewhere,

where

"(α) =
∫ ∞

0
yα−1e−y dy.

The quantity "(α) is known as the gamma function. Direct integration will verify
that "(1) = 1. Integration by parts will verify that "(α) = (α − 1)"(α − 1) for any
α > 1 and that "(n) = (n − 1)!, provided that n is an integer.

Graphs of gamma density functions for α = 1, 2, and 4 and β = 1 are given in
Figure 4.16. Notice in Figure 4.16 that the shape of the gamma density differs for
the different values of α. For this reason, α is sometimes called the shape parameter
associated with a gamma distribution. The parameter β is generally called the scale
parameter because multiplying a gamma-distributed random variable by a positive
constant (and thereby changing the scale on which the measurement is made) produces

f ( y )

0 y

F I G U R E 4.15
A skewed probability

density function
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= 1#

= 2#

= 4#

1

0 y

f ( y )F I G U R E 4.16
Gamma density
functions, β = 1

a random variable that also has a gamma distribution with the same value of α (shape
parameter) but with an altered value of β.

In the special case when α is an integer, the distribution function of a gamma-
distributed random variable can be expressed as a sum of certain Poisson probabilities.
You will find this representation in Exercise 4.99. If α is not an integer and 0 < c <

d < ∞, it is impossible to give a closed-form expression for∫ d

c

yα−1e−y/β

βα"(α)
dy.

As a result, except when α = 1 (an exponential distribution), it is impossible
to obtain areas under the gamma density function by direct integration. Tabulated
values for integrals like the above are given in Tables of the Incomplete Gamma
Function (Pearson 1965). By far the easiest way to compute probabilities associ-
ated with gamma-distributed random variables is to use available statistical soft-
ware. If Y is a gamma-distributed random variable with parameters α and β, the
R (or S-Plus) command pgamma(y0,α,1/β) generates P(Y ≤ y0), whereas
qgamma(q,α,1/β) yields the pth quantile, the value of φp such that P(Y ≤ φp) =
p. In addition, one of the applets, Gamma Probabilities and Quantites, accessible at
academic.cengage.com/statistics/wackerly, can be used to determine probabilities and
quantiles associated with gamma-distributed random variables. Another applet at the
Cengage Learning website, Comparison of Gamma Density Functions, will permit
you to visualize and compare gamma density functions with different values for α

and/or β. These applets will be used to answer some of the exercises at the end of
this section.

As indicated in the next theorem, the mean and variance of gamma-distributed
random variables are easy to compute.

THEOREM 4.8 If Y has a gamma distribution with parameters α and β, then

μ = E(Y ) = αβ and σ 2 = V (Y ) = αβ2.
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Proof

E(Y ) =
∫ ∞

−∞
y f (y) dy =

∫ ∞

0
y

(
yα−1e−y/β

βα"(α)

)
dy.

By definition, the gamma density function is such that∫ ∞

0

yα−1e−y/β

βα"(α)
dy = 1.

Hence, ∫ ∞

0
yα−1e−y/β dy = βα"(α),

and

E(Y ) =
∫ ∞

0

yαe−y/β dy

βα"(α)
= 1

βα"(α)

∫ ∞

0
yαe−y/β dy

= 1

βα"(α)
[βα+1"(α + 1)] = βα"(α)

"(α)
= αβ.

From Exercise 4.24, V (Y ) = E[Y 2] − [E(Y )]2. Further,

E(Y 2) =
∫ ∞

0
y2

(
yα−1e−y/β

βα"(α)

)
dy = 1

βα"(α)

∫ ∞

0
yα+1e−y/β dy

= 1

βα"(α)
[βα+2"(α + 2)] = β2(α + 1)α"(α)

"(α)
= α(α + 1)β2.

Then V (Y ) = E[Y 2]−[E(Y )]2 where, from the earlier part of the derivation,
E(Y ) = αβ. Substituting E[Y 2] and E(Y ) into the formula for V (Y ), we obtain

V (Y ) = α(α + 1)β2 − (αβ)2 = α2β2 + αβ2 − α2β2 = αβ2.

Two special cases of gamma-distributed random variables merit particular consid-
eration.

DEFINITION 4.10 Let ν be a positive integer. A random variable Y is said to have a chi-square
distribution with ν degrees of freedom if and only if Y is a gamma-distributed
random variable with parameters α = ν/2 and β = 2.

A random variable with a chi-square distribution is called a chi-square (χ2) random
variable. Such random variables occur often in statistical theory. The motivation
behind calling the parameter ν the degrees of freedom of the χ2 distribution rests on
one of the major ways for generating a random variable with this distribution and is
given in Theorem 6.4. The mean and variance of a χ2 random variable follow directly
from Theorem 4.8.
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THEOREM 4.9 If Y is a chi-square random variable with ν degrees of freedom, then

μ = E(Y ) = ν and σ 2 = V (Y ) = 2ν.

Proof Apply Theorem 4.8 with α = ν/2 and β = 2.

Tables that give probabilities associated with χ2 distributions are readily available
in most statistics texts. Table 6, Appendix 3, gives percentage points associated with
χ2 distributions for many choices of ν. Tables of the general gamma distribution
are not so readily available. However, we will show in Exercise 6.46 that if Y has a
gamma distribution with α = n/2 for some integer n, then 2Y/β has a χ2 distribution
with n degrees of freedom. Hence, for example, if Y has a gamma distribution with
α = 1.5 = 3/2 and β = 4, then 2Y/β = 2Y/4 = Y/2 has a χ2 distribution with
3 degrees of freedom. Thus, P(Y < 3.5) = P([Y/2] < 1.75) can be found by using
readily available tables of the χ2 distribution.

The gamma density function in which α = 1 is called the exponential density
function.

DEFINITION 4.11 A random variable Y is said to have an exponential distribution with parameter
β > 0 if and only if the density function of Y is

f (y) =
⎧⎨⎩

1

β
e−y/β, 0 ≤ y < ∞,

0, elsewhere.

The exponential density function is often useful for modeling the length of life
of electronic components. Suppose that the length of time a component already has
operated does not affect its chance of operating for at least b additional time units.
That is, the probability that the component will operate for more than a + b time units,
given that it has already operated for at least a time units, is the same as the probability
that a new component will operate for at least b time units if the new component is put
into service at time 0. A fuse is an example of a component for which this assumption
often is reasonable. We will see in the next example that the exponential distribution
provides a model for the distribution of the lifetime of such a component.

THEOREM 4.10 If Y is an exponential random variable with parameter β, then

μ = E(Y ) = β and σ 2 = V (Y ) = β2.

Proof The proof follows directly from Theorem 4.8 with α = 1.

EXAMPLE 4.10 Suppose that Y has an exponential probability density function. Show that, if a > 0
and b > 0,

P(Y > a + b|Y > a) = P(Y > b).
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Solution From the definition of conditional probability, we have that

P(Y > a + b|Y > a) = P(Y > a + b)

P(Y > a)

because the intersection of the events (Y > a + b) and (Y > a) is the event (Y >

a + b). Now

P(Y > a + b) =
∫ ∞

a+b

1

β
e−y/β dy = −e−y/β

]∞

a+b

= e−(a+b)/β .

Similarly,

P(Y > a) =
∫ ∞

a

1

β
e−y/β dy = e−a/β,

and

P(Y > a + b|Y > a) = e−(a+b)/β

e−a/β
= e−b/β = P(Y > b).

This property of the exponential distribution is often called the memoryless property
of the distribution.

You will recall from Chapter 3 that the geometric distribution, a discrete distri-
bution, also had this memoryless property. An interesting relationship between the
exponential and geometric distributions is given in Exercise 4.95.

Exercises
4.81 a If α > 0, "(α) is defined by "(α) = ∫ ∞

0 yα−1e−y dy, show that "(1) = 1.

*b If α > 1, integrate by parts to prove that "(α) = (α − 1)"(α − 1).

4.82 Use the results obtained in Exercise 4.81 to prove that if n is a positive integer, then "(n) =
(n − 1)!. What are the numerical values of "(2), "(4), and "(7)?

4.83 Applet Exercise Use the applet Comparison of Gamma Density Functions to obtain the results
given in Figure 4.16.

4.84 Applet Exercise Refer to Exercise 4.83. Use the applet Comparison of Gamma Density Func-
tions to compare gamma density functions with (α = 4, β = 1), (α = 40, β = 1), and
(α = 80, β = 1).

a What do you observe about the shapes of these three density functions? Which are less
skewed and more symmetric?

b What differences do you observe about the location of the centers of these density functions?

c Give an explanation for what you observed in part (b).
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190 Chapter 4 Continuous Variables and Their Probability Distributions

4.85 Applet Exercise Use the applet Comparison of Gamma Density Functions to compare gamma
density functions with (α = 1, β = 1), (α = 1, β = 2), and (α = 1, β = 4).

a What is another name for the density functions that you observed?

b Do these densities have the same general shape?

c The parameter β is a “scale” parameter. What do you observe about the “spread” of these
three density functions?

4.86 Applet Exercise When we discussed the χ 2 distribution in this section, we presented (with
justification to follow in Chapter 6) the fact that if Y is gamma distributed with α = n/2 for
some integer n, then 2Y/β has a χ 2 distribution. In particular, it was stated that when α = 1.5
and β = 4, W = Y/2 has a χ2 distribution with 3 degrees of freedom.

a Use the applet Gamma Probabilities and Quantiles to find P(Y < 3.5).

b Use the applet Gamma Probabilities and Quantiles to find P(W < 1.75). [Hint: Recall that
the χ2 distribution with ν degrees of freedom is just a gamma distribution with α = ν/2
and β = 2.]

c Compare your answers to parts (a) and (b).

4.87 Applet Exercise Let Y and W have the distributions given in Exercise 4.86.

a Use the applet Gamma Probabilities and Quantiles to find the .05-quantile of the distribution
of Y .

b Use the applet Gamma Probabilities and Quantiles to find the .05-quantile of the χ 2

distribution with 3 degrees of freedom.

c What is the relationship between the .05-quantile of the gamma (α = 1.5, β = 4) distri-
bution and the .05-quantile of the χ 2 distribution with 3 degrees of freedom? Explain this
relationship.

4.88 The magnitude of earthquakes recorded in a region of North America can be modeled as
having an exponential distribution with mean 2.4, as measured on the Richter scale. Find the
probability that an earthquake striking this region will

a exceed 3.0 on the Richter scale.

b fall between 2.0 and 3.0 on the Richter scale.

4.89 If Y has an exponential distribution and P(Y > 2) = .0821, what is

a β = E(Y )?

b P(Y ≤ 1.7)?

4.90 Refer to Exercise 4.88. Of the next ten earthquakes to strike this region, what is the probability
that at least one will exceed 5.0 on the Richter scale?

4.91 The operator of a pumping station has observed that demand for water during early after-
noon hours has an approximately exponential distribution with mean 100 cfs (cubic feet per
second).

a Find the probability that the demand will exceed 200 cfs during the early afternoon on a
randomly selected day.

b What water-pumping capacity should the station maintain during early afternoons so
that the probability that demand will exceed capacity on a randomly selected day is
only .01?

4.92 The length of time Y necessary to complete a key operation in the construction of houses has
an exponential distribution with mean 10 hours. The formula C = 100 + 40Y + 3Y 2 relates
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the cost C of completing this operation to the square of the time to completion. Find the mean
and variance of C .

4.93 Historical evidence indicates that times between fatal accidents on scheduled American do-
mestic passenger flights have an approximately exponential distribution. Assume that the mean
time between accidents is 44 days.

a If one of the accidents occurred on July 1 of a randomly selected year in the study period,
what is the probability that another accident occurred that same month?

b What is the variance of the times between accidents?

4.94 One-hour carbon monoxide concentrations in air samples from a large city have an approxi-
mately exponential distribution with mean 3.6 ppm (parts per million).

a Find the probability that the carbon monoxide concentration exceeds 9 ppm during a
randomly selected one-hour period.

b A traffic-control strategy reduced the mean to 2.5 ppm. Now find the probability that the
concentration exceeds 9 ppm.

4.95 Let Y be an exponentially distributed random variable with mean β. Define a random variable
X in the following way: X = k if k − 1 ≤ Y < k for k = 1, 2, . . . .

a Find P(X = k) for each k = 1, 2, . . . .

b Show that your answer to part (a) can be written as

P(X = k) = (
e−1/β

)k−1 (
1 − e−1/β

)
, k = 1, 2, . . .

and that X has a geometric distribution with p = (
1 − e−1/β

)
.

4.96 Suppose that a random variable Y has a probability density function given by

f (y) =
{

ky3e−y/2, y > 0,

0, elsewhere.

a Find the value of k that makes f (y) a density function.

b Does Y have a χ 2 distribution? If so, how many degrees of freedom?

c What are the mean and standard deviation of Y ?

d Applet Exercise What is the probability that Y lies within 2 standard deviations of its
mean?

4.97 A manufacturing plant uses a specific bulk product. The amount of product used in one day
can be modeled by an exponential distribution with β = 4 (measurements in tons). Find the
probability that the plant will use more than 4 tons on a given day.

4.98 Consider the plant of Exercise 4.97. How much of the bulk product should be stocked so that
the plant’s chance of running out of the product is only .05?

4.99 If λ > 0 and α is a positive integer, the relationship between incomplete gamma integrals and
sums of Poisson probabilities is given by

1

"(α)

∫ ∞

λ

yα−1e−y dy =
α−1∑
x=0

λx e−λ

x!
.
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192 Chapter 4 Continuous Variables and Their Probability Distributions

a If Y has a gamma distribution with α = 2 and β = 1, find P(Y > 1) by using the preceding
equality and Table 3 of Appendix 3.

b Applet Exercise If Y has a gamma distribution with α = 2 and β = 1, find P(Y > 1) by
using the applet Gamma Probabilities.

*4.100 Let Y be a gamma-distributed random variable where α is a positive integer and β = 1. The
result given in Exercise 4.99 implies that that if y > 0,

α−1∑
x=0

yx e−y

x!
= P(Y > y).

Suppose that X1 is Poisson distributed with mean λ1 and X2 is Poisson distributed with mean
λ2, where λ2 > λ1.

a Show that P(X1 = 0) > P(X2 = 0).

b Let k be any fixed positive integer. Show that P(X1 ≤ k) = P(Y > λ1) and P(X2 ≤ k) =
P(Y > λ2), where Y is has a gamma distribution with α = k + 1 and β = 1.

c Let k be any fixed positive integer. Use the result derived in part (b) and the fact that λ2 > λ1

to show that P(X1 ≤ k) > P(X2 ≤ k).

d Because the result in part (c) is valid for any k = 1, 2, 3, . . . and part (a) is also valid, we
have established that P(X1 ≤ k) > P(X2 ≤ k) for all k = 0, 1, 2, . . . . Interpret this result.

4.101 Applet Exercise Refer to Exercise 4.88. Suppose that the magnitude of earthquakes striking
the region has a gamma distribution with α = .8 and β = 2.4.

a What is the mean magnitude of earthquakes striking the region?

b What is the probability that the magnitude an earthquake striking the region will exceed
3.0 on the Richter scale?

c Compare your answers to Exercise 4.88(a). Which probability is larger? Explain.

d What is the probability that an earthquake striking the regions will fall between 2.0 and 3.0
on the Richter scale?

4.102 Applet Exercise Refer to Exercise 4.97. Suppose that the amount of product used in one day
has a gamma distribution with α = 1.5 and β = 3.

a Find the probability that the plant will use more than 4 tons on a given day.
b How much of the bulk product should be stocked so that the plant’s chance of running out

of the product is only .05?

4.103 Explosive devices used in mining operations produce nearly circular craters when detonated.
The radii of these craters are exponentially distributed with mean 10 feet. Find the mean and
variance of the areas produced by these explosive devices.

4.104 The lifetime (in hours) Y of an electronic component is a random variable with density function
given by

f (y) =
⎧⎨⎩

1

100
e−y/100, y > 0,

0, elsewhere.

Three of these components operate independently in a piece of equipment. The equipment fails
if at least two of the components fail. Find the probability that the equipment will operate for
at least 200 hours without failure.

4.105 Four-week summer rainfall totals in a section of the Midwest United States have approximately
a gamma distribution with α = 1.6 and β = 2.0.
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a Find the mean and variance of the four-week rainfall totals.

b Applet Exercise What is the probability that the four-week rainfall total exceeds
4 inches?

4.106 The response times on an online computer terminal have approximately a gamma distribution
with mean four seconds and variance eight seconds2.

a Write the probability density function for the response times.

b Applet Exercise What is the probability that the response time on the terminal is less than
five seconds?

4.107 Refer to Exercise 4.106.

a Use Tchebysheff’s theorem to give an interval that contains at least 75% of the response
times.

b Applet Exercise What is the actual probability of observing a response time in the interval
you obtained in part (a)?

4.108 Annual incomes for heads of household in a section of a city have approximately a gamma
distribution with α = 20 and β = 1000.

a Find the mean and variance of these incomes.

b Would you expect to find many incomes in excess of $30,000 in this section of the city?

c Applet Exercise What proportion of heads of households in this section of the city have
incomes in excess of $30,000?

4.109 The weekly amount of downtime Y (in hours) for an industrial machine has approximately a
gamma distribution with α = 3 and β = 2. The loss L (in dollars) to the industrial operation
as a result of this downtime is given by L = 30Y + 2Y 2. Find the expected value and variance
of L .

4.110 If Y has a probability density function given by

f (y) =
{

4y2e−2y, y > 0,

0, elsewhere,

obtain E(Y ) and V (Y ) by inspection.

4.111 Suppose that Y has a gamma distribution with parameters α and β.

a If a is any positive or negative value such that α + a > 0, show that

E(Y a) = βa"(α + a)

"(α)
.

b Why did your answer in part (a) require that α + a > 0?

c Show that, with a = 1, the result in part (a) gives E(Y ) = αβ.

d Use the result in part (a) to give an expression for E(
√

Y ). What do you need to assume
about α?

e Use the result in part (a) to give an expression for E(1/Y ), E(1/
√

Y ), and E(1/Y 2). What
do you need to assume about α in each case?

4.112 Suppose that Y has a χ 2 distribution with ν degrees of freedom. Use the results in Exercise
4.111 in your answers to the following. These results will be useful when we study the t and
F distributions in Chapter 7.
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194 Chapter 4 Continuous Variables and Their Probability Distributions

a Give an expression for E(Y a) if ν > −2a.

b Why did your answer in part (a) require that ν > −2a?

c Use the result in part (a) to give an expression for E(
√

Y ). What do you need to assume
about ν?

d Use the result in part (a) to give an expression for E(1/Y ), E(1/
√

Y ), and E(1/Y 2). What
do you need to assume about ν in each case?

4.7 The Beta Probability Distribution
The beta density function is a two-parameter density function defined over the closed
interval 0 ≤ y ≤ 1. It is often used as a model for proportions, such as the proportion
of impurities in a chemical product or the proportion of time that a machine is under
repair.

DEFINITION 4.12 A random variable Y is said to have a beta probability distribution with param-
eters α > 0 and β > 0 if and only if the density function of Y is

f (y) =

⎧⎪⎨⎪⎩
yα−1(1 − y)β−1

B(α, β)
, 0 ≤ y ≤ 1,

0, elsewhere,

where

B(α, β) =
∫ 1

0
yα−1(1 − y)β−1 dy = "(α)"(β)

"(α + β)
.

The graphs of beta density functions assume widely differing shapes for various
values of the two parameters α and β. Some of these are shown in Figure 4.17. Some
of the exercises at the end of this section ask you to use the applet Comparison of Beta
Density Functions accessible at academic.cengage.com/statistics/wackerly to explore
and compare the shapes of more beta densities.

Notice that defining y over the interval 0 ≤ y ≤ 1 does not restrict the use of
the beta distribution. If c ≤ y ≤ d, then y∗ = (y − c)/(d − c) defines a new
variable such that 0 ≤ y∗ ≤ 1. Thus, the beta density function can be applied to a
random variable defined on the interval c ≤ y ≤ d by translation and a change of
scale.

The cumulative distribution function for the beta random variable is commonly
called the incomplete beta function and is denoted by

F(y) =
∫ y

0

tα−1(1 − t)β−1

B(α, β)
dt = Iy(α, β).

A tabulation of Iy(α, β) is given in Tables of the Incomplete Beta Function (Pearson,
1968). When α and β are both positive integers, Iy(α, β) is related to the binomial
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probability function. Integration by parts can be used to show that for 0 < y < 1,
and α and β both integers,

F(y) =
∫ y

0

tα−1(1 − t)β−1

B(α, β)
dt =

n∑
i=α

(
n
i

)
yi (1 − y)n−i ,

where n = α + β − 1. Notice that the sum on the right-hand side of this expres-
sion is just the sum of probabilities associated with a binomial random variable
with n = α + β − 1 and p = y. The binomial cumulative distribution function
is presented in Table 1, Appendix 3, for n = 5, 10, 15, 20, and 25 and p = .01,

.05, .10, .20, .30, .40, .50, .60, .70, .80, .90, .95, and .99. The most efficient way
to obtain binomial probabilities is to use statistical software such as R or S-Plus
(see Chapter 3). An even easier way to find probabilities and quantiles associ-
ated with beta-distributed random variables is to use appropriate software directly.
The Cengage Learning website provides an applet, Beta Probabilities, that gives
“upper-tail” probabilities [that is, P(Y > y0)] and quantiles associated with beta-
distributed random variables. In addition, if Y is a beta-distributed random variable
with parameters α and β, the R (or S-Plus) command pbeta(y0,α,1/β) gener-
ates P(Y ≤ y0), whereas qbeta(p,α,1/β) yields the pth quantile, the value of
φp such that P(Y ≤ φp) = p.

THEOREM 4.11 If Y is a beta-distributed random variable with parameters α > 0 and β > 0,
then

μ = E(Y ) = α

α + β
and σ 2 = V (Y ) = αβ

(α + β)2(α + β + 1)
.
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Proof By definition,

E(Y ) =
∫ ∞

−∞
y f (y) dy

=
∫ 1

0
y

[
yα−1(1 − y)β−1

B(α, β)

]
dy

= 1

B(α, β)

∫ 1

0
yα(1 − y)β−1 dy

= B(α + 1, β)

B(α, β)
(because α > 0 implies that α + 1 > 0)

= "(α + β)

"(α)"(β)
× "(α + 1)"(β)

"(α + β + 1)

= "(α + β)

"(α)"(β)
× α"(α)"(β)

(α + β)"(α + β)
= α

(α + β)
.

The derivation of the variance is left to the reader (see Exercise 4.130).

We will see in the next example that the beta density function can be integrated
directly in the case when α and β are both integers.

EXAMPLE 4.11 A gasoline wholesale distributor has bulk storage tanks that hold fixed supplies and
are filled every Monday. Of interest to the wholesaler is the proportion of this supply
that is sold during the week. Over many weeks of observation, the distributor found
that this proportion could be modeled by a beta distribution with α = 4 and β = 2.
Find the probability that the wholesaler will sell at least 90% of her stock in a given
week.

Solution If Y denotes the proportion sold during the week, then

f (y) =

⎧⎪⎨⎪⎩
"(4 + 2)

"(4)"(2)
y3(1 − y), 0 ≤ y ≤ 1,

0, elsewhere,

and

P(Y > .9) =
∫ ∞

.9
f (y) dy =

∫ 1

.9
20(y3 − y4) dy

= 20

{
y4

4

]1

.9

− y5

5

]1

.9

}
= 20(.004) = .08.

It is not very likely that 90% of the stock will be sold in a given week.
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Exercises
4.113 Applet Exercise Use the applet Comparison of Beta Density Functions to obtain the results

given in Figure 4.17.

4.114 Applet Exercise Refer to Exercise 4.113. Use the applet Comparison of Beta Density
Functions to compare beta density functions with (α = 1, β = 1), (α = 1, β = 2), and
(α = 2, β = 1).

a What have we previously called the beta distribution with (α = 1, β = 1)?

b Which of these beta densities is symmetric?

c Which of these beta densities is skewed right?

d Which of these beta densities is skewed left?

*e In Chapter 6 we will see that if Y is beta distributed with parameters α and β, then
Y ∗ = 1 − Y has a beta distribution with parameters α∗ = β and β∗ = α. Does this explain
the differences in the graphs of the beta densities?

4.115 Applet Exercise Use the applet Comparison of Beta Density Functions to compare beta den-
sity functions with (α = 2, β = 2), (α = 3, β = 3), and (α = 9, β = 9).

a What are the means associated with random variables with each of these beta distributions?

b What is similar about these densities?

c How do these densities differ? In particular, what do you observe about the “spread” of
these three density functions?

d Calculate the standard deviations associated with random variables with each of these beta
densities. Do the values of these standard deviations explain what you observed in part (c)?
Explain.

e Graph some more beta densities with α = β. What do you conjecture about the shape of
beta densities with α = β?

4.116 Applet Exercise Use the applet Comparison of Beta Density Functions to compare beta den-
sity functions with (α = 1.5, β = 7), (α = 2.5, β = 7), and (α = 3.5, β = 7).

a Are these densities symmetric? Skewed left? Skewed right?

b What do you observe as the value of α gets closer to 7?

c Graph some more beta densities with α > 1, β > 1, and α < β. What do you conjecture
about the shape of beta densities when both α > 1, β > 1, and α < β?

4.117 Applet Exercise Use the applet Comparison of Beta Density Functions to compare beta den-
sity functions with (α = 9, β = 7), (α = 10, β = 7), and (α = 12, β = 7).

a Are these densities symmetric? Skewed left? Skewed right?

b What do you observe as the value of α gets closer to 12?

c Graph some more beta densities with α > 1, β > 1, and α > β. What do you conjecture
about the shape of beta densities with α > β and both α > 1 and β > 1?

4.118 Applet Exercise Use the applet Comparison of Beta Density Functions to compare beta den-
sity functions with (α = .3, β = 4), (α = .3, β = 7), and (α = .3, β = 12).

a Are these densities symmetric? Skewed left? Skewed right?

b What do you observe as the value of β gets closer to 12?
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198 Chapter 4 Continuous Variables and Their Probability Distributions

c Which of these beta distributions gives the highest probability of observing a value larger
than 0.2?

d Graph some more beta densities with α < 1 and β > 1. What do you conjecture about the
shape of beta densities with α < 1 and β > 1?

4.119 Applet Exercise Use the applet Comparison of Beta Density Functions to compare beta den-
sity functions with (α = 4, β = 0.3), (α = 7, β = 0.3), and (α = 12, β = 0.3).

a Are these densities symmetric? Skewed left? Skewed right?

b What do you observe as the value of α gets closer to 12?

c Which of these beta distributions gives the highest probability of observing a value less
than 0.8?

d Graph some more beta densities with α > 1 and β < 1. What do you conjecture about the
shape of beta densities with α > 1 and β < 1?

*4.120 In Chapter 6 we will see that if Y is beta distributed with parameters α and β, then Y ∗ = 1 − Y
has a beta distribution with parameters α∗ = β and β∗ = α. Does this explain the differences
and similarities in the graphs of the beta densities in Exercises 4.118 and 4.119?

4.121 Applet Exercise Use the applet Comparison of Beta Density Functions to compare beta density
functions with (α = 0.5, β = 0.7), (α = 0.7, β = 0.7), and (α = 0.9, β = 0.7).

a What is the general shape of these densities?

b What do you observe as the value of α gets larger?

4.122 Applet Exercise Beta densities with α < 1 and β < 1 are difficult to display because of
scaling/resolution problems.

a Use the applet Beta Probabilities and Quantiles to compute P(Y > 0.1) if Y has a beta
distribution with (α = 0.1, β = 2).

b Use the applet Beta Probabilities and Quantiles to compute P(Y < 0.1) if Y has a beta
distribution with (α = 0.1, β = 2).

c Based on your answer to part (b), which values of Y are assigned high probabilities if Y
has a beta distribution with (α = 0.1, β = 2)?

d Use the applet Beta Probabilities and Quantiles to compute P(Y < 0.1) if Y has a beta
distribution with (α = 0.1, β = 0.2).

e Use the applet Beta Probabilities and Quantiles to compute P(Y > 0.9) if Y has a beta
distribution with (α = 0.1, β = 0.2).

f Use the applet Beta Probabilities and Quantiles to compute P(0.1 < Y < 0.9) if Y has a
beta distribution with (α = .1, β = 0.2).

g Based on your answers to parts (d), (e), and (f ), which values of Y are assigned high
probabilities if Y has a beta distribution with (α = 0.1, β = 0.2)?

4.123 The relative humidity Y , when measured at a location, has a probability density function
given by

f (y) =
{

ky3(1 − y)2, 0 ≤ y ≤ 1,

0, elsewhere.

a Find the value of k that makes f (y) a density function.

b Applet Exercise Use the applet Beta Probabilities and Quantiles to find a humidity value
that is exceeded only 5% of the time.
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4.124 The percentage of impurities per batch in a chemical product is a random variable Y with
density function

f (y) =
{

12y2(1 − y), 0 ≤ y ≤ 1,

0, elsewhere.

A batch with more than 40% impurities cannot be sold.

a Integrate the density directly to determine the probability that a randomly selected batch
cannot be sold because of excessive impurities.

b Applet Exercise Use the applet Beta Probabilities and Quantiles to find the answer to
part (a).

4.125 Refer to Exercise 4.124. Find the mean and variance of the percentage of impurities in a
randomly selected batch of the chemical.

4.126 Suppose that a random variable Y has a probability density function given by

f (y) =
{

6y(1 − y), 0 ≤ y ≤ 1,

0, elsewhere.

a Find F(y).

b Graph F(y) and f (y).

c Find P(.5 ≤ Y ≤ .8).

4.127 Verify that if Y has a beta distribution with α = β = 1, then Y has a uniform distribution
over (0, 1). That is, the uniform distribution over the interval (0, 1) is a special case of a beta
distribution.

4.128 The weekly repair cost Y for a machine has a probability density function given by

f (y) =
{

3(1 − y)2, 0 < y < 1,

0, elsewhere,

with measurements in hundreds of dollars. How much money should be budgeted each week
for repair costs so that the actual cost will exceed the budgeted amount only 10% of the time?

4.129 During an eight-hour shift, the proportion of time Y that a sheet-metal stamping machine is
down for maintenance or repairs has a beta distribution with α = 1 and β = 2. That is,

f (y) =
{

2(1 − y), 0 ≤ y ≤ 1,

0, elsewhere.

The cost (in hundreds of dollars) of this downtime, due to lost production and cost of mainte-
nance and repair, is given by C = 10 + 20Y + 4Y 2. Find the mean and variance of C .

4.130 Prove that the variance of a beta-distributed random variable with parameters α and β is

σ 2 = αβ

(α + β)2(α + β + 1)
.

4.131 Errors in measuring the time of arrival of a wave front from an acoustic source sometimes have
an approximate beta distribution. Suppose that these errors, measured in microseconds, have
approximately a beta distribution with α = 1 and β = 2.

a What is the probability that the measurement error in a randomly selected instance is less
than .5 μs?

b Give the mean and standard deviation of the measurement errors.
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4.132 Proper blending of fine and coarse powders prior to copper sintering is essential for uniformity
in the finished product. One way to check the homogeneity of the blend is to select many small
samples of the blended powders and measure the proportion of the total weight contributed by
the fine powders in each. These measurements should be relatively stable if a homogeneous
blend has been obtained.

a Suppose that the proportion of total weight contributed by the fine powders has a beta
distribution with α = β = 3. Find the mean and variance of the proportion of weight
contributed by the fine powders.

b Repeat part (a) if α = β = 2.

c Repeat part (a) if α = β = 1.

d Which of the cases—parts (a), (b), or (c)—yields the most homogeneous blending?

4.133 The proportion of time per day that all checkout counters in a supermarket are busy is a random
variable Y with a density function given by

f (y) =
{

cy2(1 − y)4, 0 ≤ y ≤ 1,

0, elsewhere.

a Find the value of c that makes f (y) a probability density function.

b Find E(Y ). (Use what you have learned about the beta-type distribution. Compare your
answers to those obtained in Exercise 4.28.)

c Calculate the standard deviation of Y .

d Applet Exercise Use the applet Beta Probabilities and Quantiles to find P(Y > μ+2σ).

4.134 In the text of this section, we noted the relationship between the distribution function of a
beta-distributed random variable and sums of binomial probabilities. Specifically, if Y has a
beta distribution with positive integer values for α and β and 0 < y < 1,

F(y) =
∫ y

0

tα−1(1 − t)β−1

B(α, β)
dt =

n∑
i=α

(
n

i

)
yi (1 − y)n−i ,

where n = α + β − 1.

a If Y has a beta distribution with α = 4 and β = 7, use the appropriate binomial tables to
find P(Y ≤ .7) = F(.7).

b If Y has a beta distribution with α = 12 and β = 14, use the appropriate binomial tables
to find P(Y ≤ .6) = F(.6).

c Applet Exercise Use the applet Beta Probabilities and Quantiles to find the probabilities
in parts (a) and (b).

*4.135 Suppose that Y1 and Y2 are binomial random variables with parameters (n, p1) and (n, p2),
respectively, where p1 < p2. (Note that the parameter n is the same for the two variables.)

a Use the binomial formula to deduce that P(Y1 = 0) > P(Y2 = 0).

b Use the relationship between the beta distribution function and sums of binomial proba-
bilities given in Exercise 4.134 to deduce that, if k is an integer between 1 and n − 1,

P(Y1 ≤ k) =
k∑

i=0

(
n

i

)
(p1)

i (1 − p1)
n−i =

∫ 1

p1

t k(1 − t)n−k−1

B(k + 1, n − k)
dt.
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c If k is an integer between 1 and n − 1, the same argument used in part (b) yields that

P(Y2 ≤ k) =
k∑

i=0

(
n

i

)
(p2)

i (1 − p2)
n−i =

∫ 1

p2

t k(1 − t)n−k−1

B(k + 1, n − k)
dt.

Show that, if k is any integer between 1 and n − 1, P(Y1 ≤ k) > P(Y2 ≤ k). Interpret this
result.

4.8 Some General Comments
Keep in mind that density functions are theoretical models for populations of real
data that occur in random phenomena. How do we know which model to use? How
much does it matter if we use the wrong density as our model for reality?

To answer the latter question first, we are unlikely ever to select a density function
that provides a perfect representation of nature; but goodness of fit is not the criterion
for assessing the adequacy of our model. The purpose of a probabilistic model is to
provide the mechanism for making inferences about a population based on informa-
tion contained in a sample. The probability of the observed sample (or a quantity
proportional to it) is instrumental in making an inference about the population. It
follows that a density function that provides a poor fit to the population frequency
distribution could (but does not necessarily) yield incorrect probability statements and
lead to erroneous inferences about the population. A good model is one that yields
good inferences about the population of interest.

Selecting a reasonable model is sometimes a matter of acting on theoretical consid-
erations. Often, for example, a situation in which the discrete Poisson random variable
is appropriate is indicated by the random behavior of events in time. Knowing this,
we can show that the length of time between any adjacent pair of events follows an
exponential distribution. Similarly, if a and b are integers, a < b, then the length of
time between the occurrences of the ath and bth events possesses a gamma distri-
bution with α = b − a. We will later encounter a theorem (called the central limit
theorem) that outlines some conditions that imply that a normal distribution would
be a suitable approximation for the distribution of data.

A second way to select a model is to form a frequency histogram (Chapter 1)
for data drawn from the population and to choose a density function that would vi-
sually appear to give a similar frequency curve. For example, if a set of n = 100
sample measurements yielded a bell-shaped frequency distribution, we might con-
clude that the normal density function would adequately model the population fre-
quency distribution.

Not all model selection is completely subjective. Statistical procedures are avail-
able to test a hypothesis that a population frequency distribution is of a particular
type. We can also calculate a measure of goodness of fit for several distributions
and select the best. Studies of many common inferential methods have been made
to determine the magnitude of the errors of inference introduced by incorrect pop-
ulation models. It is comforting to know that many statistical methods of inference
are insensitive to assumptions about the form of the underlying population frequency
distribution.
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The uniform, normal, gamma, and beta distributions offer an assortment of den-
sity functions that fit many population frequency distributions. Another, the Weibull
distribution, appears in the exercises at the end of the chapter.

4.9 Other Expected Values
Moments for continuous random variables have definitions analogous to those given
for the discrete case.

DEFINITION 4.13 If Y is a continuous random variable, then the kth moment about the origin is
given by

μ′
k = E(Y k), k = 1, 2, . . . .

The kth moment about the mean, or the kth central moment, is given by

μk = E[(Y − μ)k], k = 1, 2, . . . .

Notice that for k = 1, μ′
1 = μ, and for k = 2, μ2 = V (Y ) = σ 2.

EXAMPLE 4.12 Find μ′
k for the uniform random variable with θ1 = 0 and θ2 = θ .

Solution By definition,

μ′
k = E(Y k) =

∫ ∞

−∞
yk f (y) dy =

∫ θ

0
yk

(
1

θ

)
dy = yk+1

θ(k + 1)

]θ

0

= θ k

k + 1
.

Thus,

μ′
1 = μ = θ

2
, μ′

2 = θ2

3
, μ′

3 = θ3

4
,

and so on.

DEFINITION 4.14 If Y is a continuous random variable, then the moment-generating function of
Y is given by

m(t) = E(etY ).

The moment-generating function is said to exist if there exists a constant b > 0
such that m(t) is finite for |t | ≤ b.

This is simply the continuous analogue of Definition 3.14. That m(t) generates
moments is established in exactly the same manner as in Section 3.9. If m(t) exists,
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then

E
(
etY

) =
∫ ∞

−∞
et y f (y) dy =

∫ ∞

−∞

(
1 + t y + t2 y2

2!
+ t3 y3

3!
+ · · ·

)
f (y) dy

=
∫ ∞

−∞
f (y) dy + t

∫ ∞

−∞
y f (y) dy + t2

2!

∫ ∞

−∞
y2 f (y) dy + · · ·

= 1 + tμ′
1 + t2

2!
μ′

2 + t3

3!
μ′

3 + · · · .

Notice that the moment-generating function,

m(t) = 1 + tμ′
1 + t2

2!
μ′

2 + · · · ,
takes the same form for both discrete and continuous random variables. Hence,
Theorem 3.12 holds for continuous random variables, and

dkm(t)

dtk

]
t=0

= μ′
k .

EXAMPLE 4.13 Find the moment-generating function for a gamma-distributed random variable.

Solution m(t) = E
(
etY

) =
∫ ∞

0
et y

[
yα−1e−y/β

βα"(α)

]
dy

= 1

βα"(α)

∫ ∞

0
yα−1 exp

[
−y

(
1

β
− t

)]
dy

= 1

βα"(α)

∫ ∞

0
yα−1 exp

[ −y

β/(1 − βt)

]
dy.

[The term exp(·) is simply a more convenient way to write e(·) when the term in the
exponent is long or complex.]

To complete the integration, notice that the integral of the variable factor of any
density function must equal the reciprocal of the constant factor. That is, if f (y) =
cg(y), where c is a constant, then∫ ∞

−∞
f (y) dy =

∫ ∞

−∞
cg(y) dy = 1 and so

∫ ∞

−∞
g(y) dy = 1

c
.

Applying this result to the integral in m(t) and noting that if [β/(1 − βt)] > 0 (or,
equivalently, if t < 1/β),

g(y) = yα−1 × exp{−y/[β/(1 − βt)]}
is the variable factor of a gamma density function with parameters α > 0 and [β/

(1 − βt)] > 0 , we obtain

m(t) = 1

βα"(α)

[(
β

1 − βt

)α

"(α)

]
= 1

(1 − βt)α
for t <

1

β
.
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The moments μ′
k can be extracted from the moment-generating function by dif-

ferentiating with respect to t (in accordance with Theorem 3.12) or by expanding the
function into a power series in t . We will demonstrate the latter approach.

EXAMPLE 4.14 Expand the moment-generating function of Example 4.13 into a power series in t and
thereby obtain μ′

k .

Solution From Example 4.13, m(t) = 1/(1 − βt)α = (1 − βt)−α . Using the expansion for a
binomial term of the form (x + y)−c, we have

m(t) = (1 − βt)−α = 1 + (−α)(1)−α−1(−βt)

+ (−α)(−α − 1)(1)−α−2(−βt)2

2!
+ · · ·

= 1 + t (αβ) + t2[α(α + 1)β2]

2!
+ t3[α(α + 1)(α + 2)β3]

3!
+ · · · .

Because μ′
k is the coefficient of tk/k!, we find, by inspection,

μ′
1 = μ = αβ,

μ′
2 = α(α + 1)β2,

μ′
3 = α(α + 1)(α + 2)β3,

and, in general, μ′
k = α(α + 1)(α + 2) · · · (α + k − 1)βk . Notice that μ′

1 and μ′
2

agree with the results of Theorem 4.8. Moreover, these results agree with the result
of Exercise 4.111(a).

We have already explained the importance of the expected values of Y k ,
(Y − μ)k , and etY, all of which provide important information about the distribu-
tion of Y . Sometimes, however, we are interested in the expected value of a function
of a random variable as an end in itself. (We also may be interested in the probability
distribution of functions of random variables, but we defer discussion of this topic
until Chapter 6.)

EXAMPLE 4.15 The kinetic energy k associated with a mass m moving at velocity ν is given by the
expression

k = mν2

2
.

Consider a device that fires a serrated nail into concrete at a mean velocity of 2000
feet per second, where the random velocity V possesses a density function given by

f (ν) = ν3e−ν/500

(500)4"(4)
, ν ≥ 0.

Find the expected kinetic energy associated with a nail of mass m.
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Solution Let K denote the random kinetic energy associated with the nail. Then

E(K ) = E

(
mV 2

2

)
= m

2
E(V 2),

by Theorem 4.5, part 2. The random variable V has a gamma distribution with
α = 4 and β = 500. Therefore, E(V 2) = μ′

2 for the random variable V . Referring
to Example 4.14, we have μ′

2 = α(α + 1)β2 = 4(5)(500)2 = 5,000,000. Therefore,

E(K ) = m

2
E(V 2) = m

2
(5,000,000) = 2,500,000 m.

Finding the moments of a function of a random variable is frequently facilitated
by using its moment-generating function.

THEOREM 4.12 Let Y be a random variable with density function f (y) and g(Y ) be a function
of Y . Then the moment-generating function for g(Y ) is

E[etg(Y )] =
∫ ∞

−∞
etg(y) f (y) dy.

This theorem follows directly from Definition 4.14 and Theorem 4.4.

EXAMPLE 4.16 Let g(Y ) = Y − μ, where Y is a normally distributed random variable with mean μ

and variance σ 2. Find the moment-generating function for g(Y ).

Solution The moment-generating function of g(Y ) is given by

m(t) = E[etg(Y )] = E[et (Y−μ)] =
∫ ∞

−∞
et (y−μ)

[
exp[−(y − μ)2/2σ 2]

σ
√

2π

]
dy.

To integrate, let u = y − μ. Then du = dy and

m(t) = 1

σ
√

2π

∫ ∞

−∞
etue−u2/(2σ 2) du

= 1

σ
√

2π

∫ ∞

−∞
exp

[
−

(
1

2σ 2

)
(u2 − 2σ 2tu)

]
du.

Complete the square in the exponent of e by multiplying and dividing by et2σ 2/2. Then

m(t) = et2σ 2/2
∫ ∞

−∞

exp[−(1/2σ 2)(u2 − 2σ 2tu + σ 4t2)]

σ
√

2π
du

= et2σ 2/2
∫ ∞

−∞

exp[−(u − σ 2t)2/2σ 2]

σ
√

2π
du.

The function inside the integral is a normal density function with mean σ 2t and
variance σ 2. (See the equation for the normal density function in Section 4.5.) Hence,
the integral is equal to 1, and

m(t) = e(t2/2)σ 2
.
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The moments of U = Y − μ can be obtained from m(t) by differentiating m(t) in
accordance with Theorem 3.12 or by expanding m(t) into a series.

The purpose of the preceding discussion of moments is twofold. First, moments
can be used as numerical descriptive measures to describe the data that we obtain in
an experiment. Second, they can be used in a theoretical sense to prove that a random
variable possesses a particular probability distribution. It can be shown that if two
random variables Y and Z possess identical moment-generating functions, then Y
and Z possess identical probability distributions. This latter application of moments
was mentioned in the discussion of moment-generating functions for discrete random
variables in Section 3.9; it applies to continuous random variables as well.

For your convenience, the probability and density functions, means, variances,
and moment-generating functions for some common random variables are given in
Appendix 2 and inside the back cover of this text.

Exercises
4.136 Suppose that the waiting time for the first customer to enter a retail shop after 9:00 A.M. is a

random variable Y with an exponential density function given by

f (y) =

⎧⎪⎨⎪⎩
(

1

θ

)
e−y/θ , y > 0,

0, elsewhere.

a Find the moment-generating function for Y .

b Use the answer from part (a) to find E(Y ) and V (Y ).

4.137 Show that the result given in Exercise 3.158 also holds for continuous random variables. That
is, show that, if Y is a random variable with moment-generating function m(t) and U is given
by U = aY + b, the moment-generating function of U is etbm(at). If Y has mean μ and
variance σ 2, use the moment-generating function of U to derive the mean and variance of U .

4.138 Example 4.16 derives the moment-generating function for Y − μ, where Y is normally dis-
tributed with mean μ and variance σ 2.

a Use the results in Example 4.16 and Exercise 4.137 to find the moment-generating function
for Y .

b Differentiate the moment-generating function found in part (a) to show that E(Y ) = μ and
V (Y ) = σ 2.

4.139 The moment-generating function of a normally distributed random variable, Y , with mean
μ and variance σ 2 was shown in Exercise 4.138 to be m(t) = eμt+(1/2)t2σ 2

. Use the result
in Exercise 4.137 to derive the moment-generating function of X = −3Y + 4. What is the
distribution of X? Why?

4.140 Identify the distributions of the random variables with the following moment-generating
functions:

a m(t) = (1 − 4t)−2.

b m(t) = 1/(1 − 3.2t).

c m(t) = e−5t+6t2
.
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4.141 If θ1 < θ2, derive the moment-generating function of a random variable that has a uniform
distribution on the interval (θ1, θ2).

4.142 Refer to Exercises 4.141 and 4.137. Suppose that Y is uniformly distributed on the interval
(0, 1) and that a > 0 is a constant.

a Give the moment-generating function for Y .

b Derive the moment-generating function of W = aY . What is the distribution of W ? Why?

c Derive the moment-generating function of X = −aY . What is the distribution of X? Why?

d If b is a fixed constant, derive the moment-generating function of V = aY + b. What is
the distribution of V ? Why?

4.143 The moment-generating function for the gamma random variable is derived in Example 4.13.
Differentiate this moment-generating function to find the mean and variance of the gamma
distribution.

4.144 Consider a random variable Y with density function given by

f (y) = ke−y2/2, −∞ < y < ∞.

a Find k.

b Find the moment-generating function of Y .

c Find E(Y ) and V (Y ).

4.145 A random variable Y has the density function

f (y) =
{

ey, y < 0,

0, elsewhere.

a Find E(e3Y/2).

b Find the moment-generating function for Y .

c Find V (Y ).

4.10 Tchebysheff’s Theorem
As was the case for discrete random variables, an interpretation of μ and σ for
continuous random variables is provided by the empirical rule and Tchebysheff’s
theorem. Even if the exact distributions are unknown for random variables of interest,
knowledge of the associated means and standard deviations permits us to deduce
meaningful bounds for the probabilities of events that are often of interest.

We stated and utilized Tchebysheff’s theorem in Section 3.11. We now restate this
theorem and give a proof applicable to a continuous random variable.

THEOREM 4.13 Tchebysheff’s Theorem Let Y be a random variable with finite mean μ and
variance σ 2. Then, for any k > 0,

P(|Y − μ| < kσ) ≥ 1 − 1

k2
or P(|Y − μ| ≥ kσ) ≤ 1

k2
.
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Proof We will give the proof for a continuous random variable. The proof for the
discrete case proceeds similarly. Let f (y) denote the density function of Y .
Then

V (Y ) = σ 2 =
∫ ∞

−∞
(y − μ)2 f (y) dy

=
∫ μ−kσ

−∞
(y − μ)2 f (y) dy +

∫ μ+kσ

μ−kσ

(y − μ)2 f (y) dy

+
∫ ∞

μ+kσ

(y − μ)2 f (y) dy.

The second integral is always greater than or equal to zero, and (y−μ)2 ≥ k2σ 2

for all values of y between the limits of integration for the first and third integrals;
that is, the regions of integration are in the tails of the density function and cover
only values of y for which (y − μ)2 ≥ k2σ 2. Replace the second integral by
zero and substitute k2σ 2 for (y − μ)2 in the first and third integrals to obtain
the inequality

V (Y ) = σ 2 ≥
∫ μ−kσ

−∞
k2σ 2 f (y) dy +

∫ ∞

μ+kσ

k2σ 2 f (y) dy.

Then

σ 2 ≥ k2σ 2

[∫ μ−kσ

−∞
f (y) dy +

∫ +∞

μ+kσ

f (y) dy

]
,

or

σ 2 ≥ k2σ 2[P(Y ≤ μ − kσ) + P(Y ≥ μ + kσ)] = k2σ 2 P(|Y − μ| ≥ kσ).

Dividing by k2σ 2, we obtain

P(|Y − μ| ≥ kσ) ≤ 1

k2
,

or, equivalently,

P(|Y − μ| < kσ) ≥ 1 − 1

k2
.

One real value of Tchebysheff’s theorem is that it enables us to find bounds for
probabilities that ordinarily would have to be obtained by tedious mathematical ma-
nipulations (integration or summation). Further, we often can obtain means and vari-
ances of random variables (see Example 4.15) without specifying the distribution of
the variable. In situations like these, Tchebysheff’s theorem still provides meaningful
bounds for probabilities of interest.

EXAMPLE 4.17 Suppose that experience has shown that the length of time Y (in minutes) required
to conduct a periodic maintenance check on a dictating machine follows a gamma
distribution with α = 3.1 and β = 2. A new maintenance worker takes 22.5 minutes to
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check the machine. Does this length of time to perform a maintenance check disagree
with prior experience?

Solution The mean and variance for the length of maintenance check times (based on prior
experience) are (from Theorem 4.8)

μ = αβ = (3.1)(2) = 6.2 and σ 2 = αβ2 = (3.1)(22) = 12.4.

It follows that σ = √
12.4 = 3.52. Notice that y = 22.5 minutes exceeds the mean

μ = 6.2 minutes by 16.3 minutes, or k = 16.3/3.52 = 4.63 standard deviations.
Then from Tchebysheff’s theorem,

P(|Y − 6.2| ≥ 16.3) = P(|Y − μ| ≥ 4.63σ) ≤ 1

(4.63)2
= .0466.

This probability is based on the assumption that the distribution of maintenance
times has not changed from prior experience. Then, observing that P(Y ≥ 22.5) is
small, we must conclude either that our new maintenance worker has generated by
chance a lengthy maintenance time that occurs with low probability or that the new
worker is somewhat slower than preceding ones. Considering the low probability for
P(Y ≥ 22.5), we favor the latter view.

The exact probability, P(Y ≥ 22.5), for Example 4.17 would require evaluation
of the integral

P(Y ≥ 22.5) =
∫ ∞

22.5

y2.1e−y/2

23.1"(3.1)
dy.

Although we could utilize tables given by Pearson (1965) to evaluate this integral, we
cannot evaluate it directly. We could, of course use R or S-Plus or one of the provided
applets to numerically evaluate this probability. Unless we use statistical software,
similar integrals are difficult to evaluate for the beta density and for many other den-
sity functions. Tchebysheff’s theorem often provides quick bounds for probabilities
while circumventing laborious integration, utilization of software, or searches for
appropriate tables.

Exercises
4.146 A manufacturer of tires wants to advertise a mileage interval that excludes no more than 10%

of the mileage on tires he sells. All he knows is that, for a large number of tires tested, the mean
mileage was 25,000 miles, and the standard deviation was 4000 miles. What interval would
you suggest?

4.147 A machine used to fill cereal boxes dispenses, on the average, μ ounces per box. The man-
ufacturer wants the actual ounces dispensed Y to be within 1 ounce of μ at least 75% of the
time. What is the largest value of σ , the standard deviation of Y , that can be tolerated if the
manufacturer’s objectives are to be met?

4.148 Find P(|Y − μ| ≤ 2σ) for Exercise 4.16. Compare with the corresponding probabilistic
statements given by Tchebysheff’s theorem and the empirical rule.
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4.149 Find P(|Y − μ| ≤ 2σ) for the uniform random variable. Compare with the corresponding
probabilistic statements given by Tchebysheff’s theorem and the empirical rule.

4.150 Find P(|Y − μ| ≤ 2σ) for the exponential random variable. Compare with the corresponding
probabilistic statements given by Tchebysheff’s theorem and the empirical rule.

4.151 Refer to Exercise 4.92. Would you expect C to exceed 2000 very often?

4.152 Refer to Exercise 4.109. Find an interval that will contain L for at least 89% of the weeks that
the machine is in use.

4.153 Refer to Exercise 4.129. Find an interval for which the probability that C will lie within it is at
least .75.

4.154 Suppose that Y is a χ 2 distributed random variable with ν = 7 degrees of freedom.

a What are the mean and variance of Y ?

b Is it likely that Y will take on a value of 23 or more?

c Applet Exercise Use the applet Gamma Probabilities and Quantiles to find P(Y > 23).

4.11 Expectations of Discontinuous
Functions and Mixed Probability
Distributions (Optional)
Problems in probability and statistics sometimes involve functions that are partly
continuous and partly discrete, in one of two ways. First, we may be interested in the
properties, perhaps the expectation, of a random variable g(Y ) that is a discontinuous
function of a discrete or continuous random variable Y . Second, the random variable
of interest itself may have a distribution function that is continuous over some intervals
and such that some isolated points have positive probabilities.

We illustrate these ideas with the following examples.

EXAMPLE 4.18 A retailer for a petroleum product sells a random amount Y each day. Suppose that
Y , measured in thousands of gallons, has the probability density function

f (y) =
{

(3/8)y2, 0 ≤ y ≤ 2,

0, elsewhere.

The retailer’s profit turns out to be $100 for each 1000 gallons sold (10 |c per gallon)
if Y ≤ 1 and $40 extra per 1000 gallons (an extra 4 |c per gallon) if Y > 1. Find the
retailer’s expected profit for any given day.

Solution Let g(Y ) denote the retailer’s daily profit. Then

g(Y ) =
{

100Y, 0 ≤ Y ≤ 1,

140Y, 1 < Y ≤ 2.
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We want to find expected profit; by Theorem 4.4, the expectation is

E[g(Y )] =
∫ ∞

−∞
g(y) f (y) dy

=
∫ 1

0
100y

[(
3

8

)
y2

]
dy +

∫ 2

1
140y

[(
3

8

)
y2

]
dy

= 300

(8)(4)
y4

]1

0

+ 420

(8)(4)
y4

]2

1

= 300

32
(1) + 420

32
(15) = 206.25.

Thus, the retailer can expect a profit of $206.25 on the daily sale of this particular
product.

Suppose that Y denotes the amount paid out per policy in one year by an insurance
company that provides automobile insurance. For many policies, Y = 0 because the
insured individuals are not involved in accidents. For insured individuals who do have
accidents, the amount paid by the company might be modeled with one of the density
functions that we have previously studied. A random variable Y that has some of
its probability at discrete points (0 in this example) and the remainder spread over
intervals is said to have a mixed distribution. Let F(y) denote a distribution function
of a random variable Y that has a mixed distribution. For all practical purposes, any
mixed distribution function F(y) can be written uniquely as

F(y) = c1 F1(y) + c2 F2(y),

where F1(y) is a step distribution function, F2(y) is a continuous distribution function,
c1 is the accumulated probability of all discrete points, and c2 = 1 − c1 is the accu-
mulated probability of all continuous portions.

The following example gives an illustration of a mixed distribution.

EXAMPLE 4.19 Let Y denote the length of life (in hundreds of hours) of electronic components.
These components frequently fail immediately upon insertion into a system. It has
been observed that the probability of immediate failure is 1/4. If a component does
not fail immediately, the distribution for its length of life has the exponential density
function

f (y) =
{

e−y, y > 0,

0, elsewhere.

Find the distribution function for Y and evaluate P(Y > 10).

Solution There is only one discrete point, y = 0, and this point has probability 1/4. Hence,
c1 = 1/4 and c2 = 3/4. It follows that Y is a mixture of the distributions of two
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y0

1/4

F(y)

1

F I G U R E 4.18
Distribution function

F (y) for
Example 4.19

random variables, X1 and X2, where X1 has probability 1 at point 0 and X2 has the
given exponential density. That is,

F1(y) =
{

0, y < 0,

1, y ≥ 0,

and

F2(y) =
{ 0, y < 0,∫ y

0 e−x dx = 1 − e−y, y ≥ 0.

Now

F(y) = (1/4)F1(y) + (3/4)F2(y),

and, hence,

P(Y > 10) = 1 − P(Y ≤ 10) = 1 − F(10)

= 1 − [(1/4) + (3/4)(1 − e−10)]

= (3/4)[1 − (1 − e−10)] = (3/4)e−10.

A graph of F(y) is given in Figure 4.18.

An easy method for finding expectations of random variables with mixed distri-
butions is given in Definition 4.15.

DEFINITION 4.15 Let Y have the mixed distribution function

F(y) = c1 F1(y) + c2 F2(y)

and suppose that X1 is a discrete random variable with distribution function
F1(y) and that X2 is a continuous random variable with distribution function
F2(y). Let g(Y ) denote a function of Y . Then

E[g(Y )] = c1 E[g(X1)] + c2 E[g(X2)].
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EXAMPLE 4.20 Find the mean and variance of the random variable defined in Example 4.19.

Solution With all definitions as in Example 4.19, it follows that

E(X1) = 0 and E(X2) =
∫ ∞

0
ye−y dy = 1.

Therefore,

μ = E(Y ) = (1/4)E(X1) + (3/4)E(X2) = 3/4.

Also,

E(X2
1) = 0 and E(X2

2) =
∫ ∞

0
y2e−y dy = 2.

Therefore,

E(Y 2) = (1/4)E(X2
1) + (3/4)E(X2

2) = (1/4)(0) + (3/4)(2) = 3/2.

Then

V (Y ) = E(Y 2) − μ2 = (3/2) − (3/4)2 = 15/16.

Exercises
*4.155 A builder of houses needs to order some supplies that have a waiting time Y for delivery,

with a continuous uniform distribution over the interval from 1 to 4 days. Because she can get
by without them for 2 days, the cost of the delay is fixed at $100 for any waiting time up to
2 days. After 2 days, however, the cost of the delay is $100 plus $20 per day (prorated) for
each additional day. That is, if the waiting time is 3.5 days, the cost of the delay is $100 +
$20(1.5) = $130. Find the expected value of the builder’s cost due to waiting for supplies.

*4.156 The duration Y of long-distance telephone calls (in minutes) monitored by a station is a random
variable with the properties that

P(Y = 3) = .2 and P(Y = 6) = .1.

Otherwise, Y has a continuous density function given by

f (y) =
{

(1/4)ye−y/2, y > 0,

0, elsewhere.

The discrete points at 3 and 6 are due to the fact that the length of the call is announced to the
caller in three-minute intervals and the caller must pay for three minutes even if he talks less
than three minutes. Find the expected duration of a randomly selected long-distance call.

*4.157 The life length Y of a component used in a complex electronic system is known to have an
exponential density with a mean of 100 hours. The component is replaced at failure or at age
200 hours, whichever comes first.

a Find the distribution function for X , the length of time the component is in use.

b Find E(X).
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*4.158 Consider the nail-firing device of Example 4.15. When the device works, the nail is fired with
velocity, V , with density

f (v) = v3e−v/500

(500)4"(4)
.

The device misfires 2% of the time it is used, resulting in a velocity of 0. Find the expected
kinetic energy associated with a nail of mass m. Recall that the kinetic energy, k, of a mass m
moving at velocity v is k = (mv2)/2.

*4.159 A random variable Y has distribution function

F(y) =

⎧⎪⎪⎨⎪⎪⎩
0, if y < 0,

y2 + 0.1, if 0 ≤ y < 0.5,

y, if 0.5 ≤ y < 1,

1, if y ≥ 1.

a Give F1(y) and F2(y), the discrete and continuous components of F(y).

b Write F(y) as c1 F1(y) + c2 F2(y).

c Find the expected value and variance of Y .

4.12 Summary
This chapter presented probabilistic models for continuous random variables. The
density function, which provides a model for a population frequency distribution as-
sociated with a continuous random variable, subsequently will yield a mechanism
for inferring characteristics of the population based on measurements contained in a
sample taken from that population. As a consequence, the density function provides
a model for a real distribution of data that exist or could be generated by repeated ex-
perimentation. Similar distributions for small sets of data (samples from populations)
were discussed in Chapter 1.

Four specific types of density functions—uniform, normal, gamma (with theχ2 and
exponential as special cases), and beta—were presented, providing a wide assortment
of models for population frequency distributions. For your convenience, Table 4.1
contains a summary of the R (or S-Plus) commands that provide probabilities and
quantiles associated with these distributions. Many other density functions could be
employed to fit real situations, but the four described suit many situations adequately.
A few other density functions are presented in the exercises at the end of the chapter.

The adequacy of a density function in modeling the frequency distribution for a ran-
dom variable depends upon the inference-making technique to be employed. If modest

Table 4.1 R (and S-Plus) procedures giving probabilities and percentiles for some common con-
tinuous distributions

pth Quantile:
Distribution P(Y ≤ y0) φp Such That P(Y ≤ φp) = p

Normal pnorm(y0,μ,σ) qnorm(p,μ,σ)
Exponential pexp(y0,1/β) qexp(p,1/β)
Gamma pgamma(y0,α,1/β) qgamma(p,α,1/β)
Beta pbeta(y0,α,β) qbeta(p,α,β)
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disagreement between the model and the real population frequency distribution does
not affect the goodness of the inferential procedure, the model is adequate.

The latter part of the chapter concerned expectations, particularly moments and
moment-generating functions. It is important to focus attention on the reason for
presenting these quantities and to avoid excessive concentration on the mathematical
aspects of the material. Moments, particularly the mean and variance, are numerical
descriptive measures for random variables. Particularly, we will subsequently see that
it is sometimes difficult to find the probability distribution for a random variable Y or a
function g(Y ), and we already have observed that integration over intervals for many
density functions (the normal and gamma, for example) is very difficult. When this
occurs, we can approximately describe the behavior of the random variable by using
its moments along with Tchebysheff’s theorem and the empirical rule (Chapter 1).
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Supplementary Exercises
4.160 Let the density function of a random variable Y be given by

f (y) =
⎧⎨⎩

2

π(1 + y2)
, −1 ≤ y ≤ 1,

0, elsewhere.

a Find the distribution function.

b Find E(Y ).
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4.161 The length of time required to complete a college achievement test is found to be normally
distributed with mean 70 minutes and standard deviation 12 minutes. When should the test be
terminated if we wish to allow sufficient time for 90% of the students to complete the test?

4.162 A manufacturing plant utilizes 3000 electric light bulbs whose length of life is normally dis-
tributed with mean 500 hours and standard deviation 50 hours. To minimize the number of
bulbs that burn out during operating hours, all the bulbs are replaced after a given period of
operation. How often should the bulbs be replaced if we want not more than 1% of the bulbs
to burn out between replacement periods?

4.163 Refer to Exercise 4.66. Suppose that five bearings are randomly drawn from production. What
is the probability that at least one is defective?

4.164 The length of life of oil-drilling bits depends upon the types of rock and soil that the drill
encounters, but it is estimated that the mean length of life is 75 hours. An oil exploration
company purchases drill bits whose length of life is approximately normally distributed with
mean 75 hours and standard deviation 12 hours. What proportion of the company’s drill bits

a will fail before 60 hours of use?

b will last at least 60 hours?

c will have to be replaced after more than 90 hours of use?

4.165 Let Y have density function

f (y) =
{

cye−2y, 0 ≤ y ≤ ∞,

0, elsewhere.

a Find the value of c that makes f (y) a density function.

b Give the mean and variance for Y .

c Give the moment-generating function for Y .

4.166 Use the fact that

ez = 1 + z + z2

2!
+ z3

3!
+ z4

4!
+ · · ·

to expand the moment-generating function of Example 4.16 into a series to find μ1, μ2, μ3,
and μ4 for the normal random variable.

4.167 Find an expression for μ′
k = E(Y k), where the random variable Y has a beta distribution.

4.168 The number of arrivals N at a supermarket checkout counter in the time interval from 0 to t
follows a Poisson distribution with mean λt . Let T denote the length of time until the first
arrival. Find the density function for T . [Note: P(T > t0) = P(N = 0 at t = t0).]

4.169 An argument similar to that of Exercise 4.168 can be used to show that if events are occurring
in time according to a Poisson distribution with mean λt , then the interarrival times between
events have an exponential distribution with mean 1/λ. If calls come into a police emergency
center at the rate of ten per hour, what is the probability that more than 15 minutes will elapse
between the next two calls?

*4.170 Refer to Exercise 4.168.

a If U is the time until the second arrival, show that U has a gamma density function with
α = 2 and β = 1/λ.

b Show that the time until the kth arrival has a gamma density with α = k and β = 1/λ.
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4.171 Suppose that customers arrive at a checkout counter at a rate of two per minute.

a What are the mean and variance of the waiting times between successive customer arrivals?

b If a clerk takes three minutes to serve the first customer arriving at the counter, what is the
probability that at least one more customer will be waiting when the service to the first
customer is completed?

4.172 Calls for dial-in connections to a computer center arrive at an average rate of four per minute.
The calls follow a Poisson distribution. If a call arrives at the beginning of a one-minute interval,
what is the probability that a second call will not arrive in the next 20 seconds?

4.173 Suppose that plants of a particular species are randomly dispersed over an area so that the
number of plants in a given area follows a Poisson distribution with a mean density of λ plants
per unit area. If a plant is randomly selected in this area, find the probability density function
of the distance to the nearest neighboring plant. [Hint: If R denotes the distance to the nearest
neighbor, then P(R > r) is the same as the probability of seeing no plants in a circle of
radius r .]

4.174 The time (in hours) a manager takes to interview a job applicant has an exponential distribution
with β = 1/2. The applicants are scheduled at quarter-hour intervals, beginning at 8:00 A.M.,
and the applicants arrive exactly on time. When the applicant with an 8:15 A.M. appointment
arrives at the manager’s office, what is the probability that he will have to wait before seeing
the manager?

4.175 The median value y of a continuous random variable is that value such that F(y) = .5. Find
the median value of the random variable in Exercise 4.11.

4.176 If Y has an exponential distribution with mean β, find (as a function of β) the median of Y .

4.177 Applet Exercise Use the applet Gamma Probabilities and Quantiles to find the medians of
gamma distributed random variables with parameters

a α = 1, β = 3. Compare your answer with that in Exercise 4.176.

b α = 2, β = 2. Is the median larger or smaller than E(Y )?

c α = 5, β = 10. Is the median larger or smaller than E(Y )?

d In all of these cases, the median exceeds the mean. How is that reflected in the shapes of
the corresponding densities?

4.178 Graph the beta probability density function for α = 3 and β = 2.

a If Y has this beta density function, find P(.1 ≤ Y ≤ .2) by using binomial probabilities to
evaluate F(y). (See Section 4.7.)

b Applet Exercise If Y has this beta density function, find P(.1 ≤ Y ≤ .2), using the applet
Beta Probabilities and Quantiles.

c Applet Exercise If Y has this beta density function, use the applet Beta Probabilities and
Quantiles to find the .05 and .95-quantiles for Y .

d What is the probability that Y falls between the two quantiles you found in part (c)?

*4.179 A retail grocer has a daily demand Y for a certain food sold by the pound, where Y (measured
in hundreds of pounds) has a probability density function given by

f (y) =
{

3y2, 0 ≤ y ≤ 1,

0, elsewhere.
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(She cannot stock over 100 pounds.) The grocer wants to order 100k pounds of food. She buys
the food at 6¢ per pound and sells it at 10¢ per pound. What value of k will maximize her
expected daily profit?

4.180 Suppose that Y has a gamma distribution with α = 3 and β = 1.

a Use Poisson probabilities to evaluate P(Y ≤ 4). (See Exercise 4.99.)

b Applet Exercise Use the applet Gamma Probabilities and Quantiles to find P(Y ≤ 4).

4.181 Suppose that Y is a normally distributed random variable with mean μ and variance σ 2. Use
the results of Example 4.16 to find the moment-generating function, mean, and variance of

Z = Y − μ

σ
.

What is the distribution of Z? Why?

*4.182 A random variable Y is said to have a log-normal distribution if X = ln(Y ) has a normal
distribution. (The symbol ln denotes natural logarithm.) In this case Y must be nonnegative.
The shape of the log-normal probability density function is similar to that of the gamma
distribution, with a long tail to the right. The equation of the log-normal density function is
given by

f (y) =

⎧⎪⎨⎪⎩
1

σ y
√

2π
e−(ln(y)−μ)2/(2σ 2), y > 0,

0, elsewhere.

Because ln(y) is a monotonic function of y,

P(Y ≤ y) = P[ln(Y ) ≤ ln(y)] = P[X ≤ ln(y)],

where X has a normal distribution with mean μ and variance σ 2. Thus, probabilities for random
variables with a log-normal distribution can be found by transforming them into probabilities
that can be computed using the ordinary normal distribution. If Y has a log-normal distribution
with μ = 4 and σ 2 = 1, find

a P(Y ≤ 4).

b P(Y > 8).

4.183 If Y has a log-normal distribution with parameters μ and σ 2, it can be shown that

E(Y ) = e(μ+σ 2)/2 and V (Y ) = e2μ+σ 2
(eσ 2 − 1).

The grains composing polycrystalline metals tend to have weights that follow a log-normal
distribution. For a type of aluminum, gram weights have a log-normal distribution with μ = 3
and σ = 4 (in units of 10−2 g).

a Find the mean and variance of the grain weights.

b Find an interval in which at least 75% of the grain weights should lie. [Hint: Use
Tchebysheff’s theorem.]

c Find the probability that a randomly chosen grain weighs less than the mean grain weight.

4.184 Let Y denote a random variable with probability density function given by

f (y) = (1/2)e−|y|, −∞ < y < ∞.

Find the moment-generating function of Y and use it to find E(Y ).

*4.185 Let f1(y) and f2(y) be density functions and let a be a constant such that 0 ≤ a ≤ 1. Consider
the function f (y) = a f1(y) + (1 − a) f2(y).

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Supplementary Exercises 219

a Show that f (y) is a density function. Such a density function is often referred to as a
mixture of two density functions.

b Suppose that Y1 is a random variable with density function f1(y) and that E(Y1) = μ1 and
Var(Y1) = σ 2

1 ; and similarly suppose that Y2 is a random variable with density function
f2(y) and that E(Y2) = μ2 and Var(Y2) = σ 2

2 . Assume that Y is a random variable whose
density is a mixture of the densities corresponding to Y1 and Y2. Show that

i E(Y ) = aμ1 + (1 − a)μ2.
ii Var(Y ) = aσ 2

1 + (1 − a)σ 2
2 + a(1 − a)[μ1 − μ2]2.

[Hint: E(Y 2
i ) = μ2

i + σ 2
i , i = 1, 2.]

*4.186 The random variable Y , with a density function given by

f (y) = mym−1

α
e−ym/α, 0 ≤ y < ∞, α, m > 0

is said to have a Weibull distribution. The Weibull density function provides a good model
for the distribution of length of life for many mechanical devices and biological plants and
animals. Find the mean and variance for a Weibull distributed random variable with m = 2.

*4.187 Refer to Exercise 4.186. Resistors used in the construction of an aircraft guidance system have
life lengths that follow a Weibull distribution with m = 2 and α = 10 (with measurements in
thousands of hours).

a Find the probability that the life length of a randomly selected resistor of this type exceeds
5000 hours.

b If three resistors of this type are operating independently, find the probability that exactly
one of the three will burn out prior to 5000 hours of use.

*4.188 Refer to Exercise 4.186.

a What is the usual name of the distribution of a random variable that has a Weibull distri-
bution with m = 1?

b Derive, in terms of the parameters α and m, the mean and variance of a Weibull distributed
random variable.

*4.189 If n > 2 is an integer, the distribution with density given by

f (y) =

⎧⎪⎨⎪⎩
1

B(1/2, [n − 2]/2)
(1 − y2)(n−4)/2, −1 ≤ y ≤ 1,

0, elsewhere.

is called the r distribution. Derive the mean and variance of a random variable with the r
distribution.

*4.190 A function sometimes associated with continuous nonnegative random variables is the failure
rate (or hazard rate) function, which is defined by

r(t) = f (t)

1 − F(t)

for a density function f (t) with corresponding distribution function F(t). If we think of the
random variable in question as being the length of life of a component, r(t) is proportional to
the probability of failure in a small interval after t , given that the component has survived up
to time t . Show that,

a for an exponential density function, r(t) is constant.

b for a Weibull density function with m > 1, r(t) is an increasing function of t . (See Exercise
4.186.)
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220 Chapter 4 Continuous Variables and Their Probability Distributions

*4.191 Suppose that Y is a continuous random variable with distribution function given by F(y) and
probability density function f (y). We often are interested in conditional probabilities of the
form P(Y ≤ y|Y ≥ c) for a constant c.

a Show that, for y ≥ c,

P(Y ≤ y|Y ≥ c) = F(y) − F(c)

1 − F(c)
.

b Show that the function in part (a) has all the properties of a distribution function.

c If the length of life Y for a battery has a Weibull distribution with m = 2 and α = 3 (with
measurements in years), find the probability that the battery will last less than four years,
given that it is now two years old.

*4.192 The velocities of gas particles can be modeled by the Maxwell distribution, whose probability
density function is given by

f (v) = 4π
( m

2π K T

)3/2
v2e−v2(m/[2K T ]), v > 0,

where m is the mass of the particle, K is Boltzmann’s constant, and T is the absolute temper-
ature.

a Find the mean velocity of these particles.

b The kinetic energy of a particle is given by (1/2)mV 2. Find the mean kinetic energy for a
particle.

*4.193 Because

P(Y ≤ y|Y ≥ c) = F(y) − F(c)

1 − F(c)

has the properties of a distribution function, its derivative will have the properties of a probability
density function. This derivative is given by

f (y)

1 − F(c)
, y ≥ c.

We can thus find the expected value of Y , given that Y is greater than c, by using

E(Y |Y ≥ c) = 1

1 − F(c)

∫ ∞

c
y f (y) dy.

If Y , the length of life of an electronic component, has an exponential distribution with mean
100 hours, find the expected value of Y , given that this component already has been in use for
50 hours.

*4.194 We can show that the normal density function integrates to unity by showing that, if u > 0,

1√
2π

∫ ∞

−∞
e−(1/2)uy2

dy = 1√
u

.

This, in turn, can be shown by considering the product of two such integrals:

1

2π

(∫ ∞

−∞
e−(1/2)uy2

dy

) (∫ ∞

−∞
e−(1/2)ux2

dx

)
= 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−(1/2)u(x2+y2) dx dy.

By transforming to polar coordinates, show that the preceding double integral is equal to 1/u.

*4.195 Let Z be a standard normal random variable and W = (Z 2 + 3Z)2.

a Use the moments of Z (see Exercise 4.199) to derive the mean of W .

b Use the result given in Exercise 4.198 to find a value of w such that P(W ≤ w) ≥ .90.
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*4.196 Show that "(1/2) = √
π by writing

"(1/2) =
∫ ∞

0
y−1/2e−y dy

by making the transformation y = (1/2)x2 and by employing the result of Exercise 4.194.

*4.197 The function B(α, β) is defined by

B(α, β) =
∫ 1

0
yα−1(1 − y)β−1 dy.

a Letting y = sin2 θ , show that

B(α, β) = 2
∫ π/2

0
sin2α−1 θ cos2β−1 θ dθ.

b Write "(α)"(β) as a double integral, transform to polar coordinates, and conclude that

B(α, β) = "(α)"(β)

"(α + β)
.

*4.198 The Markov Inequality Let g(Y ) be a function of the continuous random variable Y , with
E(|g(Y )|) < ∞. Show that, for every positive constant k,

P(|g(Y )| ≤ k) ≥ 1 − E(|g(Y )|)
k

.

[Note: This inequality also holds for discrete random variables, with an obvious adaptation in
the proof.]

*4.199 Let Z be a standard normal random variable.

a Show that the expected values of all odd integer powers of Z are 0. That is, if i = 1, 2, . . . ,
show that E(Z 2i−1) = 0. [Hint: A function g(·) is an odd function if, for all y, g(−y) =
−g(y). For any odd function g(y),

∫ ∞
−∞ g(y) dy = 0, if the integral exists.]

b If i = 1, 2, . . . , show that

E(Z 2i ) = 2i"
(
i + 1

2

)
√

π
.

[Hint: A function h(·) is an even function if, for all y, h(−y) = h(y). For any even function
h(y),

∫ ∞
−∞ h(y) dy = 2

∫ ∞
0 h(y) dy, if the integrals exist. Use this fact, make the change

of variable w = z2/2, and use what you know about the gamma function.]

c Use the results in part (b) and in Exercises 4.81(b) and 4.194 to derive E(Z 2), E(Z 4),
E(Z 6), and E(Z 8).

d If i = 1, 2, . . . , show that

E(Z 2i ) =
i∏

j=1

(2 j − 1).

This implies that the ith even moment is the product of the first i odd integers.

4.200 Suppose that Y has a beta distribution with parameters α and β.

a If a is any positive or negative value such that α + a > 0, show that

E(Y a) = "(α + a)"(α + β)

"(α)"(α + β + a)
.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



222 Chapter 4 Continuous Variables and Their Probability Distributions

b Why did your answer in part (a) require that α + a > 0?

c Show that, with a = 1, the result in part (a) gives E(Y ) = α/(α + β).

d Use the result in part (a) to give an expression for E(
√

Y ). What do you need to assume
about α?

e Use the result in part (a) to give an expression for E(1/Y ), E(1/
√

Y ), and E(1/Y 2). What
do you need to assume about α in each case?
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Distributions
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5.11 Conditional Expectations

5.12 Summary

References and Further Readings

5.1 Introduction
The intersection of two or more events is frequently of interest to an experimenter.
For example, a gambler playing blackjack is interested in the event of drawing both
an ace and a face card from a 52-card deck. A biologist, observing the number of
animals surviving in a litter, is concerned about the intersection of these events:

A: The litter contains n animals.
B: y animals survive.

Similarly, observing both the height and the weight of an individual represents the
intersection of a specific pair of events associated with height–weight measurements.
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224 Chapter 5 Multivariate Probability Distributions

Most important to statisticians are intersections that occur in the course of sam-
pling. Suppose that Y1, Y2, . . . , Yn denote the outcomes of n successive trials of
an experiment. For example, this sequence could represent the weights of n people
or the measurements of n physical characteristics for a single person. A specific set
of outcomes, or sample measurements, may be expressed in terms of the intersection of
the n events (Y1 = y1), (Y2 = y2), . . . , (Yn = yn), which we will denote as (Y1 = y1,

Y2 = y2, . . . , Yn = yn), or, more compactly, as (y1, y2, . . . , yn). Calculation of the
probability of this intersection is essential in making inferences about the population
from which the sample was drawn and is a major reason for studying multivariate
probability distributions.

5.2 Bivariate and Multivariate
Probability Distributions
Many random variables can be defined over the same sample space. For example,
consider the experiment of tossing a pair of dice. The sample space contains 36
sample points, corresponding to the mn = (6)(6) = 36 ways in which numbers may
appear on the faces of the dice. Any one of the following random variables could be
defined over the sample space and might be of interest to the experimenter:

Y1: The number of dots appearing on die 1.
Y2: The number of dots appearing on die 2.
Y3: The sum of the number of dots on the dice.
Y4: The product of the number of dots appearing on the dice.

The 36 sample points associated with the experiment are equiprobable and corre-
spond to the 36 numerical events (y1, y2). Thus, throwing a pair of 1s is the simple
event (1, 1). Throwing a 2 on die 1 and a 3 on die 2 is the simple event (2, 3). Because
all pairs (y1, y2) occur with the same relative frequency, we assign probability 1/36
to each sample point. For this simple example, the intersection (y1, y2) contains at
most one sample point. Hence, the bivariate probability function is

p(y1, y2) = P(Y1 = y1, Y2 = y2) = 1/36, y1 = 1, 2, . . . , 6, y2 = 1, 2, . . . , 6.

A graph of the bivariate probability function for the die-tossing experiment is
shown in Figure 5.1. Notice that a nonzero probability is assigned to a point (y1, y2)

in the plane if and only if y1 = 1, 2, . . . , 6 and y2 = 1, 2, . . . , 6. Thus, exactly
36 points in the plane are assigned nonzero probabilities. Further, the probabilities
are assigned in such a way that the sum of the nonzero probabilities is equal to 1. In
Figure 5.1 the points assigned nonzero probabilities are represented in the (y1, y2)

plane, whereas the probabilities associated with these points are given by the lengths
of the lines above them. Figure 5.1 may be viewed as a theoretical, three-dimensional
relative frequency histogram for the pairs of observations (y1, y2). As in the single-
variable discrete case, the theoretical histogram provides a model for the sample
histogram that would be obtained if the die-tossing experiment were repeated a large
number of times.
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p ( y1, y2 )

y2

y1
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1"36

F I G U R E 5.1
Bivariate probability

function; y1 =
number of dots on

die 1, y2 = number
of dots on die 2

DEFINITION 5.1 Let Y1 and Y2 be discrete random variables. The joint (or bivariate) probability
function for Y1 and Y2 is given by

p(y1, y2) = P(Y1 = y1, Y2 = y2), −∞ < y1 < ∞, −∞ < y2 < ∞.

In the single-variable case discussed in Chapter 3, we saw that the probability
function for a discrete random variable Y assigns nonzero probabilities to a finite or
countable number of distinct values of Y in such a way that the sum of the probabilities
is equal to 1. Similarly, in the bivariate case the joint probability function p(y1, y2)

assigns nonzero probabilities to only a finite or countable number of pairs of values
(y1, y2). Further, the nonzero probabilities must sum to 1.

THEOREM 5.1 If Y1 and Y2 are discrete random variables with joint probability function
p(y1, y2), then

1. p(y1, y2) ≥ 0 for all y1, y2.
2.

∑
y1,y2

p(y1, y2) = 1, where the sum is over all values (y1, y2) that are
assigned nonzero probabilities.

As in the univariate discrete case, the joint probability function for discrete random
variables is sometimes called the joint probability mass function because it specifies
the probability (mass) associated with each of the possible pairs of values for the
random variables. Once the joint probability function has been determined for discrete
random variables Y1 and Y2, calculating joint probabilities involving Y1 and Y2 is
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226 Chapter 5 Multivariate Probability Distributions

straightforward. For the die-tossing experiment, P(2 ≤ Y1 ≤ 3, 1 ≤ Y2 ≤ 2) is

P(2 ≤ Y1 ≤ 3, 1 ≤ Y2 ≤ 2) = p(2, 1) + p(2, 2) + p(3, 1) + p(3, 2)

= 4/36 = 1/9.

EXAMPLE 5.1 A local supermarket has three checkout counters. Two customers arrive at the counters
at different times when the counters are serving no other customers. Each customer
chooses a counter at random, independently of the other. Let Y1 denote the number
of customers who choose counter 1 and Y2, the number who select counter 2. Find
the joint probability function of Y1 and Y2.

Solution We might proceed with the derivation in many ways. The most direct is to consider
the sample space associated with the experiment. Let the pair {i, j} denote the simple
event that the first customer chose counter i and the second customer chose counter
j , where i, j = 1, 2, and 3. Using the mn rule, the sample space consists of 3×3 = 9
sample points. Under the assumptions given earlier, each sample point is equally
likely and has probability 1/9. The sample space associated with the experiment is

S = [{1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}].

Notice that sample point {1, 1} is the only sample point corresponding to (Y1 = 2,

Y2 = 0) and hence P(Y1 = 2, Y2 = 0) = 1/9. Similarly, P(Y1 = 1, Y2 = 1) =
P({1, 2} or {2, 1}) = 2/9. Table 5.1 contains the probabilities associated with each
possible pair of values for Y1 and Y2—that is, the joint probability function for Y1 and
Y2. As always, the results of Theorem 5.1 hold for this example.

Table 5.1 Probability function for Y1 and Y2, Example 5.1

y1

y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

As in the case of univariate random variables, the distinction between jointly
discrete and jointly continuous random variables may be characterized in terms of
their ( joint) distribution functions.

DEFINITION 5.2 For any random variables Y1 and Y2, the joint (bivariate) distribution function
F(y1, y2) is

F(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2), −∞ < y1 < ∞, −∞ < y2 < ∞.
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For two discrete variables Y1 and Y2, F(y1, y2) is given by

F(y1, y2) =
∑
t1≤y1

∑
t2≤y2

p(t1, t2).

For the die-tossing experiment,

F(2, 3) = P(Y1 ≤ 2, Y2 ≤ 3)

= p(1, 1) + p(1, 2) + p(1, 3) + p(2, 1) + p(2, 2) + p(2, 3).

Because p(y1, y2) = 1/36 for all pairs of values of y1 and y2 under consideration,
F(2, 3) = 6/36 = 1/6.

EXAMPLE 5.2 Consider the random variables Y1 and Y2 of Example 5.1. Find F(−1, 2), F(1.5, 2),
and F(5, 7).

Solution Using the results in Table 5.1, we see that

F(−1, 2) = P(Y1 ≤ −1, Y2 ≤ 2) = P(∅) = 0.

Further,

F(1.5, 2) = P(Y1 ≤ 1.5, Y2 ≤ 2)

= p(0, 0) + p(0, 1) + p(0, 2) + p(1, 0) + p(1, 1) + p(1, 2) = 8/9.

Similarly,

F(5, 7) = P(Y1 ≤ 5, Y2 ≤ 7) = 1.

Notice that F(y1, y2) = 1 for all y1, y2 such that min{y1, y2} ≥ 2. Also, F(y1, y2) = 0
if min{y1, y2) < 0.

Two random variables are said to be jointly continuous if their joint distribution
function F(y1, y2) is continuous in both arguments.

DEFINITION 5.3 Let Y1 and Y2 be continuous random variables with joint distribution function
F(y1, y2). If there exists a nonnegative function f (y1, y2), such that

F(y1, y2) =
∫ y1

−∞

∫ y2

−∞
f (t1, t2) dt2 dt1,

for all −∞ < y1 < ∞, −∞ < y2 < ∞, then Y1 and Y2 are said to be jointly
continuous random variables. The function f (y1, y2) is called the joint prob-
ability density function.

Bivariate cumulative distribution functions satisfy a set of properties similar to
those specified for univariate cumulative distribution functions.
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228 Chapter 5 Multivariate Probability Distributions

THEOREM 5.2 If Y1 and Y2 are random variables with joint distribution function F(y1, y2), then

1. F(−∞, −∞) = F(−∞, y2) = F(y1, −∞) = 0.
2. F(∞, ∞) = 1.
3. If y∗

1 ≥ y1 and y∗
2 ≥ y2, then

F(y∗
1 , y∗

2 ) − F(y∗
1 , y2) − F(y1, y∗

2 ) + F(y1, y2) ≥ 0.

Part 3 follows because

F(y∗
1 , y∗

2 ) − F(y∗
1 , y2) − F(y1, y∗

2 ) + F(y1, y2)

= P(y1 < Y1 ≤ y∗
1 , y2 < Y2 ≤ y∗

2 ) ≥ 0.

Notice that F(∞, ∞) ≡ limy1→∞limy2→∞F(y1, y2) = 1 implies that the joint den-
sity function f (y1, y2) must be such that the integral of f (y1, y2) over all values of
(y1, y2) is 1.

THEOREM 5.2 If Y1 and Y2 are jointly continuous random variables with a joint density function
given by f (y1, y2), then

1. f (y1, y2) ≥ 0 for all y1, y2.
2.

∫ ∞
−∞

∫ ∞
−∞ f (y1, y2) dy1 dy2 = 1.

As in the univariate continuous case discussed in Chapter 4, the joint density
function may be intuitively interpreted as a model for the joint relative frequency
histogram for Y1 and Y2.

For the univariate continuous case, areas under the probability density over an in-
terval correspond to probabilities. Similarly, the bivariate probability density function
f (y1, y2) traces a probability density surface over the (y1, y2) plane (Figure 5.2).

f ( y1, y2 )

y1

y2

0

b2

b1

a1 a2

F I G U R E 5.2
A bivariate density
function f (y1, y2)
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5.2 Bivariate and Multivariate Probability Distributions 229

Volumes under this surface correspond to probabilities. Thus, P(a1 ≤ Y1 ≤ a2, b1 ≤
Y2 ≤ b2) is the shaded volume shown in Figure 5.2 and is equal to∫ b2

b1

∫ a2

a1

f (y1, y2) dy1 dy2.

EXAMPLE 5.3 Suppose that a radioactive particle is randomly located in a square with sides of unit
length. That is, if two regions within the unit square and of equal area are considered,
the particle is equally likely to be in either region. Let Y1 and Y2 denote the coordinates
of the particle’s location. A reasonable model for the relative frequency histogram for
Y1 and Y2 is the bivariate analogue of the univariate uniform density function:

f (y1, y2) =
{ 1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Sketch the probability density surface.
b Find F(.2, .4).
c Find P(.1 ≤ Y1 ≤ .3, 0 ≤ Y2 ≤ .5).

Solution a The sketch is shown in Figure 5.3.

b F(.2, .4) =
∫ .4

−∞

∫ .2

−∞
f (y1, y2) dy1 dy2

=
∫ .4

0

∫ .2

0
(1) dy1 dy2

=
∫ .4

0

(
y1

].2

0

)
dy2 =

∫ .4

0
.2 dy2 = .08.

The probability F(.2, .4) corresponds to the volume under f (y1, y2) = 1, which is
shaded in Figure 5.3. As geometric considerations indicate, the desired probability
(volume) is equal to .08, which we obtained through integration at the beginning
of this part.

f ( y1, y2 )

y1

y2

1

1

1

0

.4

.2

F(.2, .4)

F I G U R E 5.3
Geometric

representation
of f (y1, y2),
Example 5.3
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230 Chapter 5 Multivariate Probability Distributions

c P(.1 ≤ Y1 ≤ .3, 0 ≤ Y2 ≤ .5) =
∫ .5

0

∫ .3

.1
f (y1, y2) dy1 dy2

=
∫ .5

0

∫ .3

.1
1 dy1 dy2 = .10.

This probability corresponds to the volume under the density function
f (y1, y2) = 1 that is above the region .1 ≤ y1 ≤ .3, 0 ≤ y2 ≤ .5. Like the
solution in part (b), the current solution can be obtained by using elementary ge-
ometric concepts. The density or height of the surface is equal to 1, and hence the
desired probability (volume) is

P(.1 ≤ Y1 ≤ .3, 0 ≤ Y2 ≤ .5) = (.2)(.5)(1) = .10.

A slightly more complicated bivariate model is illustrated in the following example.

EXAMPLE 5.4 Gasoline is to be stocked in a bulk tank once at the beginning of each week and then
sold to individual customers. Let Y1 denote the proportion of the capacity of the bulk
tank that is available after the tank is stocked at the beginning of the week. Because
of the limited supplies, Y1 varies from week to week. Let Y2 denote the proportion of
the capacity of the bulk tank that is sold during the week. Because Y1 and Y2 are both
proportions, both variables take on values between 0 and 1. Further, the amount sold,
y2, cannot exceed the amount available, y1. Suppose that the joint density function
for Y1 and Y2 is given by

f (y1, y2) =
{ 3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

A sketch of this function is given in Figure 5.4.
Find the probability that less than one-half of the tank will be stocked and more

than one-quarter of the tank will be sold.

Solution We want to find P(0 ≤ Y1 ≤ .5, Y2 > .25). For any continuous random variable, the
probability of observing a value in a region is the volume under the density function
above the region of interest. The density function f (y1, y2) is positive only in the

f ( y1, y2 )

y1

y2

0

3

1

1

F I G U R E 5.4
The joint density

function for
Example 5.4
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y2

y1

1/2

1/4

1"2

1

10

F I G U R E 5.5
Region of integration

for Example 5.4

large triangular portion of the (y1, y2) plane shown in Figure 5.5. We are interested
only in values of y1 and y2 such that 0 ≤ y1 ≤ .5 and y2 > .25. The intersection of
this region and the region where the density function is positive is given by the small
(shaded) triangle in Figure 5.5. Consequently, the probability we desire is the volume
under the density function of Figure 5.4 above the shaded region in the (y1, y2) plane
shown in Figure 5.5.

Thus, we have

P(0 ≤ Y1 ≤ .5, .25 ≤ Y2) =
∫ 1/2

1/4

∫ y1

1/4
3y1 dy2 dy1

=
∫ 1/2

1/4
3y1

(
y2

]y1

1/4

)
dy1

=
∫ 1/2

1/4
3y1(y1 − 1/4) dy1

= [
y3

1 − (3/8)y2
1

]]1/2

1/4

= [(1/8) − (3/8)(1/4)] − [(1/64) − (3/8)(1/16)]

= 5/128.

Calculating the probability specified in Example 5.4 involved integrating the joint
density function for Y1 and Y2 over the appropriate region. The specification of the lim-
its of integration was made easier by sketching the region of integration in Figure 5.5.
This approach, sketching the appropriate region of integration, often facilitates setting
up the appropriate integral.

The methods discussed in this section can be used to calculate the probability of
the intersection of two events (Y1 = y1, Y2 = y2). In a like manner, we can define a
probability function (or probability density function) for the intersection of n events
(Y1 = y1, Y2 = y2, . . . , Yn = yn). The joint probability function corresponding to
the discrete case is given by

p(y1, y2, . . . , yn) = P(Y1 = y1, Y2 = y2, . . . , Yn = yn).

The joint density function of Y1, Y2, . . . , Yn is given by f (y1, y2, . . . , yn). As in
the bivariate case, these functions provide models for the joint relative frequency
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232 Chapter 5 Multivariate Probability Distributions

distributions of the populations of joint observations (y1, y2, . . . , yn) for the discrete
case and the continuous case, respectively. In the continuous case,

P(Y1 ≤ y1, Y2 ≤ y2, . . . , Yn ≤ yn) = F(y1, . . . , yn)

=
∫ y1

−∞

∫ y2

−∞
· · ·

∫ yn

−∞
f (t1, t2, . . . , tn)dtn . . . dt1

for every set of real numbers (y1, y2, . . . , yn). Multivariate distribution functions de-
fined by this equality satisfy properties similar to those specified for the bivariate case.

Exercises
5.1 Contracts for two construction jobs are randomly assigned to one or more of three firms, A, B,

and C. Let Y1 denote the number of contracts assigned to firm A and Y2 the number of contracts
assigned to firm B. Recall that each firm can receive 0, 1, or 2 contracts.

a Find the joint probability function for Y1 and Y2.

b Find F(1, 0).

5.2 Three balanced coins are tossed independently. One of the variables of interest is Y1, the number
of heads. Let Y2 denote the amount of money won on a side bet in the following manner. If the
first head occurs on the first toss, you win $1. If the first head occurs on toss 2 or on toss 3 you
win $2 or $3, respectively. If no heads appear, you lose $1 (that is, win −$1).

a Find the joint probability function for Y1 and Y2.

b What is the probability that fewer than three heads will occur and you will win $1 or less?
[That is, find F(2, 1).]

5.3 Of nine executives in a business firm, four are married, three have never married, and two are
divorced. Three of the executives are to be selected for promotion. Let Y1 denote the number
of married executives and Y2 denote the number of never-married executives among the three
selected for promotion. Assuming that the three are randomly selected from the nine available,
find the joint probability function of Y1 and Y2.

5.4 Given here is the joint probability function associated with data obtained in a study of auto-
mobile accidents in which a child (under age 5 years) was in the car and at least one fatality
occurred. Specifically, the study focused on whether or not the child survived and what type of
seatbelt (if any) he or she used. Define

Y1 =
{

0, if the child survived,

1, if not,
and Y2 =

⎧⎪⎨⎪⎩
0, if no belt used,

1, if adult belt used,

2, if car-seat belt used.

Notice that Y1 is the number of fatalities per child and, since children’s car seats usually utilize
two belts, Y2 is the number of seatbelts in use at the time of the accident.

y1

y2 0 1 Total

0 .38 .17 .55
1 .14 .02 .16
2 .24 .05 .29

Total .76 .24 1.00
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a Verify that the preceding probability function satisfies Theorem 5.1.

b Find F(1, 2). What is the interpretation of this value?

5.5 Refer to Example 5.4. The joint density of Y1, the proportion of the capacity of the tank that
is stocked at the beginning of the week, and Y2, the proportion of the capacity sold during the
week, is given by

f (y1, y2) =
{

3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

a Find F(1/2, 1/3) = P(Y1 ≤ 1/2, Y2 ≤ 1/3).

b Find P(Y2 ≤ Y1/2), the probability that the amount sold is less than half the amount
purchased.

5.6 Refer to Example 5.3. If a radioactive particle is randomly located in a square of unit length, a
reasonable model for the joint density function for Y1 and Y2 is

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a What is P(Y1 − Y2 > .5)?

b What is P(Y1Y2 < .5)?

5.7 Let Y1 and Y2 have joint density function

f (y1, y2) =
{

e−(y1+y2), y1 > 0, y2 > 0,

0, elsewhere.

a What is P(Y1 < 1, Y2 > 5)?

b What is P(Y1 + Y2 < 3)?

5.8 Let Y1 and Y2 have the joint probability density function given by

f (y1, y2) =
{

ky1 y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Find the value of k that makes this a probability density function.

b Find the joint distribution function for Y1 and Y2.

c Find P(Y1 ≤ 1/2, Y2 ≤ 3/4).

5.9 Let Y1 and Y2 have the joint probability density function given by

f (y1, y2) =
{

k(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere.

a Find the value of k that makes this a probability density function.

b Find P(Y1 ≤ 3/4, Y2 ≥ 1/2).

5.10 An environmental engineer measures the amount (by weight) of particulate pollution in air
samples of a certain volume collected over two smokestacks at a coal-operated power plant.
One of the stacks is equipped with a cleaning device. Let Y1 denote the amount of pollutant
per sample collected above the stack that has no cleaning device and let Y2 denote the amount
of pollutant per sample collected above the stack that is equipped with the cleaning device.
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234 Chapter 5 Multivariate Probability Distributions

Suppose that the relative frequency behavior of Y1 and Y2 can be modeled by

f (y1, y2) =
{

k, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, 2y2 ≤ y1

0, elsewhere.

That is, Y1 and Y2 are uniformly distributed over the region inside the triangle bounded by
y1 = 2, y2 = 0, and 2y2 = y1.

a Find the value of k that makes this function a probability density function.

b Find P(Y1 ≥ 3Y2). That is, find the probability that the cleaning device reduces the amount
of pollutant by one-third or more.

5.11 Suppose that Y1 and Y2 are uniformly distributed over the triangle shaded in the accompanying
diagram.

(–1, 0) (1, 0)

(0, 1)

y1

y2

a Find P(Y1 ≤ 3/4, Y2 ≤ 3/4).

b Find P(Y1 − Y2 ≥ 0).

5.12 Let Y1 and Y2 denote the proportions of two different types of components in a sample from
a mixture of chemicals used as an insecticide. Suppose that Y1 and Y2 have the joint density
function given by

f (y1, y2) =
{

2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0 ≤ y1 + y2 ≤ 1,

0, elsewhere.

(Notice that Y1 + Y2 ≤ 1 because the random variables denote proportions within the same
sample.) Find

a P(Y1 ≤ 3/4, Y2 ≤ 3/4).

b P(Y1 ≤ 1/2, Y2 ≤ 1/2).

5.13 The joint density function of Y1 and Y2 is given by

f (y1, y2) =
{

30y1 y2
2 , y1 − 1 ≤ y2 ≤ 1 − y1, 0 ≤ y1 ≤ 1,

0, elsewhere.

a Find F(1/2, 1/2).

b Find F(1/2, 2).

c Find P(Y1 > Y2).

5.14 Suppose that the random variables Y1 and Y2 have joint probability density function f (y1, y2)

given by

f (y1, y2) =
{

6y2
1 y2, 0 ≤ y1 ≤ y2, y1 + y2 ≤ 2,

0, elsewhere.

a Verify that this is a valid joint density function.

b What is the probability that Y1 + Y2 is less than 1?
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5.3 Marginal and Conditional Probability Distributions 235

5.15 The management at a fast-food outlet is interested in the joint behavior of the random variables
Y1, defined as the total time between a customer’s arrival at the store and departure from the
service window, and Y2, the time a customer waits in line before reaching the service window.
Because Y1 includes the time a customer waits in line, we must have Y1 ≥ Y2. The relative
frequency distribution of observed values of Y1 and Y2 can be modeled by the probability
density function

f (y1, y2) =
{

e−y1 , 0 ≤ y2 ≤ y1 < ∞,

0, elsewhere

with time measured in minutes. Find

a P(Y1 < 2, Y2 > 1).

b P(Y1 ≥ 2Y2).

c P(Y1 − Y2 ≥ 1). (Notice that Y1 − Y2 denotes the time spent at the service window.)

5.16 Let Y1 and Y2 denote the proportions of time (out of one workday) during which employees I
and II, respectively, perform their assigned tasks. The joint relative frequency behavior of Y1

and Y2 is modeled by the density function

f (y1, y2) =
{

y1 + y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Find P(Y1 < 1/2, Y2 > 1/4).

b Find P(Y1 + Y2 ≤ 1).

5.17 Let (Y1, Y2) denote the coordinates of a point chosen at random inside a unit circle whose
center is at the origin. That is, Y1 and Y2 have a joint density function given by

f (y1, y2) =
⎧⎨⎩

1

π
, y2

1 + y2
2 ≤ 1,

0, elsewhere.

Find P(Y1 ≤ Y2).

5.18 An electronic system has one each of two different types of components in joint operation. Let
Y1 and Y2 denote the random lengths of life of the components of type I and type II, respectively.
The joint density function is given by

f (y1, y2) =
{

(1/8)y1e−(y1+y2)/2, y1 > 0, y2 > 0,

0, elsewhere.

(Measurements are in hundreds of hours.) Find P(Y1 > 1, Y2 > 1).

5.3 Marginal and Conditional
Probability Distributions
Recall that the distinct values assumed by a discrete random variable represent mu-
tually exclusive events. Similarly, for all distinct pairs of values y1, y2, the bivariate
events (Y1 = y1, Y2 = y2), represented by (y1, y2), are mutually exclusive events. It
follows that the univariate event (Y1 = y1) is the union of bivariate events of the type
(Y1 = y1, Y2 = y2), with the union being taken over all possible values for y2.
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236 Chapter 5 Multivariate Probability Distributions

For example, reconsider the die-tossing experiment of Section 5.2, where

Y1 = number of dots on the upper face of die 1,

Y2 = number of dots on the upper face of die 2.

Then

P(Y1 = 1) = p(1, 1) + p(1, 2) + p(1, 3) + · · · + p(1, 6)

= 1/36 + 1/36 + 1/36 + · · · + 1/36 = 6/36 = 1/6

P(Y1 = 2) = p(2, 1) + p(2, 2) + p(2, 3) + · · · + p(2, 6) = 1/6

.

.

.

P(Y1 = 6) = p(6, 1) + p(6, 2) + p(6, 3) + · · · + p(6, 6) = 1/6.

Expressed in summation notation, probabilities about the variable Y1 alone are

P(Y1 = y1) = p1(y1) =
6∑

y2=1

p(y1, y2).

Similarly, probabilities corresponding to values of the variable Y2 alone are given by

p2(y2) = P(Y2 = y2) =
6∑

y1=1

p(y1, y2).

Summation in the discrete case corresponds to integration in the continuous case,
which leads us to the following definition.

DEFINITION 5.4 a Let Y1 and Y2 be jointly discrete random variables with probability function
p(y1, y2). Then the marginal probability functions of Y1 and Y2, respectively,
are given by

p1(y1) =
∑
all y2

p(y1, y2) and p2(y2) =
∑
all y1

p(y1, y2).

b Let Y1 and Y2 be jointly continuous random variables with joint density function
f (y1, y2). Then the marginal density functions of Y1 and Y2, respectively, are
given by

f1(y1) =
∫ ∞

−∞
f (y1, y2) dy2 and f2(y2) =

∫ ∞

−∞
f (y1, y2) dy1.

The term marginal, as applied to the univariate probability functions of Y1 and
Y2, has intuitive meaning. To find p1(y1), we sum p(y1, y2) over all values of y2

and hence accumulate the probabilities on the y1 axis (or margin). The discrete and
continuous cases are illustrated in the following two examples.
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5.3 Marginal and Conditional Probability Distributions 237

EXAMPLE 5.5 From a group of three Republicans, two Democrats, and one independent, a committee
of two people is to be randomly selected. Let Y1 denote the number of Republicans
and Y2 denote the number of Democrats on the committee. Find the joint probability
function of Y1 and Y2 and then find the marginal probability function of Y1.

Solution The probabilities sought here are similar to the hypergeometric probabilities of
Chapter 3. For example,

P(Y1 = 1, Y2 = 1) = p(1, 1) =

(
3
1

)(
2
1

)(
1
0

)
(

6
2

) = 3(2)

15
= 6

15

because there are 15 equally likely sample points; for the event in question we must
select one Republican from the three, one Democrat from the two, and zero indepen-
dents. Similar calculations lead to the other probabilities shown in Table 5.2.

To find p1(y1), we must sum over the values of Y2, as Definition 5.4 indicates.
Hence, these probabilities are given by the column totals in Table 5.2. That is,

p1(0) = p(0, 0) + p(0, 1) + p(0, 2) = 0 + 2/15 + 1/15 = 3/15.

Similarly,

p1(1) = 9/15 and p1(2) = 3/15.

Analogously, the marginal probability function of Y2 is given by the row totals.

Table 5.2 Joint probability function for Y1 and Y2, Example 5.5

y1

y2 0 1 2 Total

0 0 3/15 3/15 6/15
1 2/15 6/15 0 8/15
2 1/15 0 0 1/15

Total 3/15 9/15 3/15 1

EXAMPLE 5.6 Let

f (y1, y2) =
{

2y1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Sketch f (y1, y2) and find the marginal density functions for Y1 and Y2.

Solution Viewed geometrically, f (y1, y2) traces a wedge-shaped surface, as sketched in
Figure 5.6.

Before applying Definition 5.4 to find f1(y1) and f2(y2), we will use Figure 5.6
to visualize the result. If the probability represented by the wedge were accumulated
on the y1 axis (accumulating probability along lines parallel to the y2 axis), the result
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f ( y1, y2 )

y1

y2

1

1

1

2

0

F I G U R E 5.6
Geometric

representation
of f (y1, y2),
Example 5.6

would be a triangular probability density that would look like the side of the wedge
in Figure 5.6. If the probability were accumulated along the y2 axis (accumulating
along lines parallel to the y1 axis), the resulting density would be uniform. We will
confirm these visual solutions by applying Definition 5.4. Then, if 0 ≤ y1 ≤ 1,

f1(y1) =
∫ ∞

−∞
f (y1, y2) dy2 =

∫ 1

0
2y1 dy2 = 2y1

(
y2

]1

0

)
and if y1 < 0 or y1 > 1,

f1(y1) =
∫ ∞

−∞
f (y1, y2) dy2 =

∫ 1

0
0 dy2 = 0.

Thus,

f1(y1) =
{

2y1, 0 ≤ y1 ≤ 1,

0, elsewhere.
Similarly, if 0 ≤ y2 ≤ 1,

f2(y2) =
∫ ∞

−∞
f (y1, y2) dy1 =

∫ 1

0
2y1 dy1 = y2

1

]1

0

= 1

and if y2 < 0 or y2 > 1,

f2(y2) =
∫ ∞

−∞
f (y1, y2) dy1 =

∫ 1

0
0 dy1 = 0.

Summarizing,

f2(y2) =
{

1, 0 ≤ y2 ≤ 1,

0, elsewhere.
Graphs of f1(y1) and f2(y2) trace triangular and uniform probability densities,
respectively, as expected.

We now turn our attention to conditional distributions, looking first at the discrete
case.

The multiplicative law (Section 2.8) gives the probability of the intersection
A ∩ B as

P(A ∩ B) = P(A)P(B|A),
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5.3 Marginal and Conditional Probability Distributions 239

where P(A) is the unconditional probability of A and P(B|A) is the probability of B
given that A has occurred. Now consider the intersection of the two numerical events,
(Y1 = y1) and (Y2 = y2), represented by the bivariate event (y1, y2). It follows
directly from the multiplicative law of probability that the bivariate probability for
the intersection (y1, y2) is

p(y1, y2) = p1(y1)p(y2|y1)

= p2(y2)p(y1|y2).

The probabilities p1(y1) and p2(y2) are associated with the univariate probability
distributions for Y1 and Y2 individually (recall Chapter 3). Using the interpretation
of conditional probability discussed in Chapter 2, p(y1|y2) is the probability that the
random variable Y1 equals y1, given that Y2 takes on the value y2.

DEFINITION 5.5 If Y1 and Y2 are jointly discrete random variables with joint probability function
p(y1, y2) and marginal probability functions p1(y1) and p2(y2), respectively,
then the conditional discrete probability function of Y1 given Y2 is

p(y1|y2) = P(Y1 = y1|Y2 = y2) = P(Y1 = y1, Y2 = y2)

P(Y2 = y2)
= p(y1, y2)

p2(y2)
,

provided that p2(y2) > 0.

Thus, P(Y1 = 2|Y2 = 3) is the conditional probability that Y1 = 2 given that Y2 = 3.
A similar interpretation can be attached to the conditional probability p(y2|y1). Note
that p(y1|y2) is undefined if p2(y2) = 0.

EXAMPLE 5.7 Refer to Example 5.5 and find the conditional distribution of Y1 given that Y2 = 1.
That is, given that one of the two people on the committee is a Democrat, find the
conditional distribution for the number of Republicans selected for the committee.

Solution The joint probabilities are given in Table 5.2. To find p(y1|Y2 = 1), we concentrate
on the row corresponding to Y2 = 1. Then

P(Y1 = 0|Y2 = 1) = p(0, 1)

p2(1)
= 2/15

8/15
= 1

4
,

P(Y1 = 1|Y2 = 1) = p(1, 1)

p2(1)
= 6/15

8/15
= 3

4
,

and

P(Y1 ≥ 2|Y2 = 1) = p(2, 1)

p2(1)
= 0

8/15
= 0.

In the randomly selected committee, if one person is a Democrat (equivalently, if
Y2 = 1), there is a high probability that the other will be a Republican (equivalently,
Y1 = 1).
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240 Chapter 5 Multivariate Probability Distributions

In the continuous case, we can obtain an appropriate analogue of the conditional
probability function p(y1|y2), but it is not obtained in such a straightforward manner.
If Y1 and Y2 are continuous, P(Y1 = y1|Y2 = y2) cannot be defined as in the discrete
case because both (Y1 = y1) and (Y2 = y2) are events with zero probability. The
following considerations, however, do lead to a useful and consistent definition for a
conditional density function.

Assuming that Y1 and Y2 are jointly continuous with density function f (y1, y2),
we might be interested in a probability of the form

P(Y1 ≤ y1|Y2 = y2) = F(y1|y2),

which, as a function of y1 for a fixed y2, is called the conditional distribution function
of Y1, given Y2 = y2.

DEFINITION 5.6 If Y1 and Y2 are jointly continuous random variables with joint density function
f (y1, y2), then the conditional distribution function of Y1 given Y2 = y2 is

F(y1|y2) = P(Y1 ≤ y1|Y2 = y2).

Notice that F(y1|y2) is a function of y1 for a fixed value of y2.
If we could take F(y1|y2), multiply by P(Y2 = y2) for each possible value of Y2,

and sum all the resulting probabilities, we would obtain F(y1). This is not possible
because the number of values for y2 is uncountable and all probabilities P(Y2 = y2)

are zero. But we can do something analogous by multiplying by f2(y2) and then
integrating to obtain

F(y1) =
∫ ∞

−∞
F(y1|y2) f2(y2) dy2.

The quantity f2(y2) dy2 can be thought of as the approximate probability that Y2 takes
on a value in a small interval about y2, and the integral is a generalized sum.

Now from previous considerations, we know that

F(y1) =
∫ y1

−∞
f1(t1) dt1 =

∫ y1

−∞

[∫ ∞

−∞
f (t1, y2) dy2

]
dt1

=
∫ ∞

−∞

∫ y1

−∞
f (t1, y2) dt1 dy2.

From these two expressions for F(y1), we must have

F(y1|y2) f2(y2) =
∫ y1

−∞
f (t1, y2) dt1

or

F(y1|y2) =
∫ y1

−∞

f (t1, y2)

f2(y2)
dt1.

We will call the integrand of this expression the conditional density function of Y1

given Y2 = y2, and we will denote it by f (y1|y2).
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5.3 Marginal and Conditional Probability Distributions 241

DEFINITION 5.7 Let Y1 and Y2 be jointly continuous random variables with joint density f (y1, y2)

and marginal densities f1(y1) and f2(y2), respectively. For any y2 such that
f2(y2) > 0, the conditional density of Y1 given Y2 = y2 is given by

f (y1|y2) = f (y1, y2)

f2(y2)

and, for any y1 such that f1(y1) > 0, the conditional density of Y2 given Y1 = y1

is given by

f (y2|y1) = f (y1, y2)

f1(y1)
.

Note that the conditional density f (y1|y2) is undefined for all y2 such that
f2(y2) = 0. Similarly, f (y2|y1) is undefined if y1 is such that f1(y1) = 0.

EXAMPLE 5.8 A soft-drink machine has a random amount Y2 in supply at the beginning of a given
day and dispenses a random amount Y1 during the day (with measurements in gallons).
It is not resupplied during the day, and hence Y1 ≤ Y2. It has been observed that Y1

and Y2 have a joint density given by

f (y1, y2) =
{

1/2, 0 ≤ y1 ≤ y2 ≤ 2,

0 elsewhere.

That is, the points (y1, y2) are uniformly distributed over the triangle with the given
boundaries. Find the conditional density of Y1 given Y2 = y2. Evaluate the probability
that less than 1/2 gallon will be sold, given that the machine contains 1.5 gallons at
the start of the day.

Solution The marginal density of Y2 is given by

f2(y2) =
∫ ∞

−∞
f (y1, y2) dy1.

Thus,

f2(y2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ y2

0
(1/2) dy1 = (1/2)y2, 0 ≤ y2 ≤ 2,∫ ∞

−∞
0 dy1 = 0, elsewhere.

Note that f2(y2) > 0 if and only if 0 < y2 ≤ 2. Thus, for any 0 < y2 ≤ 2, using
Definition 5.7,

f (y1|y2) = f (y1, y2)

f2(y2)
= 1/2

(1/2)(y2)
= 1

y2
, 0 ≤ y1 ≤ y2.

Also, f (y1|y2) is undefined if y2 ≤ 0 or y2 > 2. The probability of interest is

P(Y1 ≤ 1/2|Y2 = 1.5) =
∫ 1/2

−∞
f (y1|y2 = 1.5) dy1 =

∫ 1/2

0

1

1.5
dy1 = 1/2

1.5
= 1

3
.
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242 Chapter 5 Multivariate Probability Distributions

If the machine contains 2 gallons at the start of the day, then

P(Y1 ≤ 1/2|Y2 = 2) =
∫ 1/2

0

1

2
dy1 = 1

4
.

Thus, the conditional probability that Y1 ≤ 1/2 given Y2 = y2 changes appreciably
depending on the particular choice of y2.

Exercises
5.19 In Exercise 5.1, we determined that the joint distribution of Y1, the number of contracts awarded

to firm A, and Y2, the number of contracts awarded to firm B, is given by the entries in the
following table.

y1

y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

a Find the marginal probability distribution of Y1.

b According to results in Chapter 4, Y1 has a binomial distribution with n = 2 and p = 1/3.
Is there any conflict between this result and the answer you provided in part (a)?

5.20 Refer to Exercise 5.2.

a Derive the marginal probability distribution for your winnings on the side bet.

b What is the probability that you obtained three heads, given that you won $1 on the side bet?

5.21 In Exercise 5.3, we determined that the joint probability distribution of Y1, the number of
married executives, and Y2, the number of never-married executives, is given by

p(y1, y2) =

(
4
y1

) (
3
y2

) (
2

3 − y1 − y2

)
(

9
3

)
where y1 and y2 are integers, 0 ≤ y1 ≤ 3, 0 ≤ y2 ≤ 3, and 1 ≤ y1 + y2 ≤ 3.

a Find the marginal probability distribution of Y1, the number of married executives among
the three selected for promotion.

b Find P(Y1 = 1|Y2 = 2).

c If we let Y3 denote the number of divorced executives among the three selected for promo-
tion, then Y3 = 3 − Y1 − Y2. Find P(Y3 = 1|Y2 = 1).

d Compare the marginal distribution derived in (a) with the hypergeometric distributions with
N = 9, n = 3, and r = 4 encountered in Section 3.7.

5.22 In Exercise 5.4, you were given the following joint probability function for

Y1 =
{

0, if child survived,

1, if not,
and Y2 =

⎧⎪⎪⎨⎪⎪⎩
0, if no belt used,

1, if adult belt used,

2, if car-seat belt used.
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y1

y2 0 1 Total

0 .38 .17 .55
1 .14 .02 .16
2 .24 .05 .29

Total .76 .24 1.00

a Give the marginal probability functions for Y1 and Y2.

b Give the conditional probability function for Y2 given Y1 = 0.

c What is the probability that a child survived given that he or she was in a car-seat belt?

5.23 In Example 5.4 and Exercise 5.5, we considered the joint density of Y1, the proportion of the
capacity of the tank that is stocked at the beginning of the week, and Y2, the proportion of the
capacity sold during the week, given by

f (y1, y2) =
{

3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

a Find the marginal density function for Y2.

b For what values of y2 is the conditional density f (y1|y2) defined?

c What is the probability that more than half a tank is sold given that three-fourths of a tank
is stocked?

5.24 In Exercise 5.6, we assumed that if a radioactive particle is randomly located in a square with
sides of unit length, a reasonable model for the joint density function for Y1 and Y2 is

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Find the marginal density functions for Y1 and Y2.

b What is P(.3 < Y1 < .5)? P(.3 < Y2 < .5)?

c For what values of y2 is the conditional density f (y1|y2) defined?

d For any y2, 0 ≤ y2 ≤ 1 what is the conditional density function of Y1 given that Y2 = y2?

e Find P(.3 < Y1 < .5|Y2 = .3).

f Find P(.3 < Y1 < .5|Y2 = .5).

g Compare the answers that you obtained in parts (a), (d), and (e). For any y2, 0 ≤ y2 ≤ 1
how does P(.3 < Y1 < .5) compare to P(.3 < Y1 < .5|Y2 = y2)?

5.25 Let Y1 and Y2 have joint density function first encountered in Exercise 5.7:

f (y1, y2) =
{

e−(y1+y2), y1 > 0, y2 > 0,

0, elsewhere.

a Find the marginal density functions for Y1 and Y2. Identify these densities as one of those
studied in Chapter 4.

b What is P(1 < Y1 < 2.5)? P(1 < Y2 < 2.5)?

c For what values of y2 is the conditional density f (y1|y2) defined?

d For any y2 > 0, what is the conditional density function of Y1 given that Y2 = y2?

e For any y1 > 0, what is the conditional density function of Y2 given that Y1 = y1?
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244 Chapter 5 Multivariate Probability Distributions

f For any y2 > 0, how does the conditional density function f (y1|y2) that you obtained in
part (d) compare to the marginal density function f1(y1) found in part (a)?

g What does your answer to part (f ) imply about marginal and conditional probabilities that
Y1 falls in any interval?

5.26 In Exercise 5.8, we derived the fact that

f (y1, y2) =
{

4y1 y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. Find

a the marginal density functions for Y1 and Y2.

b P(Y1 ≤ 1/2|Y2 ≥ 3/4).

c the conditional density function of Y1 given Y2 = y2.

d the conditional density function of Y2 given Y1 = y1.

e P(Y1 ≤ 3/4|Y2 = 1/2).

5.27 In Exercise 5.9, we determined that

f (y1, y2) =
{

6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. Find

a the marginal density functions for Y1 and Y2.

b P(Y2 ≤ 1/2|Y1 ≤ 3/4).

c the conditional density function of Y1 given Y2 = y2.

d the conditional density function of Y2 given Y1 = y1.

e P(Y2 ≥ 3/4|Y1 = 1/2).

5.28 In Exercise 5.10, we proved that

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, 2y2 ≤ y1,

0, elsewhere

is a valid joint probability density function for Y1, the amount of pollutant per sample collected
above the stack without the cleaning device, and for Y2, the amount collected above the stack
with the cleaner.

a If we consider the stack with the cleaner installed, find the probability that the amount of
pollutant in a given sample will exceed .5.

b Given that the amount of pollutant in a sample taken above the stack with the cleaner is
observed to be 0.5, find the probability that the amount of pollutant exceeds 1.5 above the
other stack (without the cleaner).

5.29 Refer to Exercise 5.11. Find

a the marginal density functions for Y1 and Y2.

b P(Y2 > 1/2|Y1 = 1/4).

5.30 In Exercise 5.12, we were given the following joint probability density function for the random
variables Y1 and Y2, which were the proportions of two components in a sample from a mixture
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of insecticide:

f (y1, y2) =
{

2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0 ≤ y1 + y2 ≤ 1,

0, elsewhere.

a Find P(Y1 ≥ 1/2|Y2 ≤ 1/4).

b Find P(Y1 ≥ 1/2|Y2 = 1/4).

5.31 In Exercise 5.13, the joint density function of Y1 and Y2 is given by

f (y1, y2) =
{

30y1 y2
2 , y1 − 1 ≤ y2 ≤ 1 − y1, 0 ≤ y1 ≤ 1,

0, elsewhere.

a Show that the marginal density of Y1 is a beta density with α = 2 and β = 4.

b Derive the marginal density of Y2.

c Derive the conditional density of Y2 given Y1 = y1.

d Find P(Y2 > 0|Y1 = .75).

5.32 Suppose that the random variables Y1 and Y2 have joint probability density function, f (y1, y2),
given by (see Exercise 5.14)

f (y1, y2) =
{

6y2
1 y2, 0 ≤ y1 ≤ y2, y1 + y2 ≤ 2,

0, elsewhere.

a Show that the marginal density of Y1 is a beta density with α = 3 and β = 2.

b Derive the marginal density of Y2.

c Derive the conditional density of Y2 given Y1 = y1.

d Find P(Y2 < 1.1|Y1 = .60).

5.33 Suppose that Y1 is the total time between a customer’s arrival in the store and departure from the
service window, Y2 is the time spent in line before reaching the window, and the joint density
of these variables (as was given in Exercise 5.15) is

f (y1, y2) =
{

e−y1 , 0 ≤ y2 ≤ y1 ≤ ∞,

0, elsewhere.

a Find the marginal density functions for Y1 and Y2.

b What is the conditional density function of Y1 given that Y2 = y2? Be sure to specify the
values of y2 for which this conditional density is defined.

c What is the conditional density function of Y2 given that Y1 = y1? Be sure to specify the
values of y1 for which this conditional density is defined.

d Is the conditional density function f (y1|y2) that you obtained in part (b) the same as the
marginal density function f1(y1) found in part (a)?

e What does your answer to part (d) imply about marginal and conditional probabilities that
Y1 falls in any interval?

5.34 If Y1 is uniformly distributed on the interval (0, 1) and, for 0 < y1 < 1,

f (y2|y1) =
{

1/y1, 0 ≤ y2 ≤ y1,

0, elsewhere,

a what is the “name” of the conditional distribution of Y2 given Y1 = y1?

b find the joint density function of Y1 and Y2.

c find the marginal density function for Y2.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



246 Chapter 5 Multivariate Probability Distributions

5.35 Refer to Exercise 5.33. If two minutes elapse between a customer’s arrival at the store and his
departure from the service window, find the probability that he waited in line less than one
minute to reach the window.

5.36 In Exercise 5.16, Y1 and Y2 denoted the proportions of time during which employees I and II
actually performed their assigned tasks during a workday. The joint density of Y1 and Y2 is
given by

f (y1, y2) =
{

y1 + y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Find the marginal density functions for Y1 and Y2.

b Find P(Y1 ≥ 1/2|Y2 ≥ 1/2).

c If employee II spends exactly 50% of the day working on assigned duties, find the probability
that employee I spends more than 75% of the day working on similar duties.

5.37 In Exercise 5.18, Y1 and Y2 denoted the lengths of life, in hundreds of hours, for components of
types I and II, respectively, in an electronic system. The joint density of Y1 and Y2 is given by

f (y1, y2) =
{

(1/8)y1e−(y1+y2)/2, y1 > 0, y2 > 0

0, elsewhere.

Find the probability that a component of type II will have a life length in excess of 200 hours.

5.38 Let Y1 denote the weight (in tons) of a bulk item stocked by a supplier at the beginning of a
week and suppose that Y1 has a uniform distribution over the interval 0 ≤ y1 ≤ 1. Let Y2 denote
the amount (by weight) of this item sold by the supplier during the week and suppose that Y2

has a uniform distribution over the interval 0 ≤ y2 ≤ y1, where y1 is a specific value of Y1.

a Find the joint density function for Y1 and Y2.

b If the supplier stocks a half-ton of the item, what is the probability that she sells more than
a quarter-ton?

c If it is known that the supplier sold a quarter-ton of the item, what is the probability that
she had stocked more than a half-ton?

*5.39 Suppose that Y1 and Y2 are independent Poisson distributed random variables with means λ1

and λ2, respectively. Let W = Y1 + Y2. In Chapter 6 you will show that W has a Poisson
distribution with mean λ1 + λ2. Use this result to show that the conditional distribution of Y1,
given that W = w , is a binomial distribution with n = w and p = λ1/(λ1 + λ2).1

*5.40 Suppose that Y1 and Y2 are independent binomial distributed random variables based on samples
of sizes n1 and n2, respectively. Suppose that p1 = p2 = p. That is, the probability of “success”
is the same for the two random variables. Let W = Y1 + Y2. In Chapter 6 you will prove that
W has a binomial distribution with success probability p and sample size n1 + n2. Use this
result to show that the conditional distribution of Y1, given that W = w , is a hypergeometric
distribution with N = n1 + n2, n = w , and r = n1.

*5.41 A quality control plan calls for randomly selecting three items from the daily production
(assumed large) of a certain machine and observing the number of defectives. However, the
proportion p of defectives produced by the machine varies from day to day and is assumed
to have a uniform distribution on the interval (0, 1). For a randomly chosen day, find the
unconditional probability that exactly two defectives are observed in the sample.

1. Exercises preceded by an asterisk are optional.
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*5.42 The number of defects per yard Y for a certain fabric is known to have a Poisson distribution
with parameter λ. However, λ itself is a random variable with probability density function
given by

f (λ) =
{

e−λ, λ ≥ 0,

0, elsewhere.
Find the unconditional probability function for Y .

5.4 Independent Random Variables
In Example 5.8 we saw two dependent random variables, for which probabilities as-
sociated with Y1 depended on the observed value of Y2. In Exercise 5.24 (and some
others), this was not the case: Probabilities associated with Y1 were the same, regard-
less of the observed value of Y2. We now present a formal definition of independence
of random variables.

Two events A and B are independent if P(A ∩ B) = P(A) × P(B). When
discussing random variables, if a < b and c < d we are often concerned with events
of the type (a < Y1 ≤ b) ∩ (c < Y2 ≤ d). For consistency with the earlier definition
of independent events, if Y1 and Y2 are independent, we would like to have

P(a < Y1 ≤ b, c < Y2 ≤ d) = P(a < Y1 ≤ b) × P(c < Y2 ≤ d)

for any choice of real numbers a < b and c < d. That is, if Y1 and Y2 are independent,
the joint probability can be written as the product of the marginal probabilities. This
property will be satisfied if Y1 and Y2 are independent in the sense detailed in the
following definition.

DEFINITION 5.8 Let Y1 have distribution function F1(y1), Y2 have distribution function F2(y2),
and Y1 and Y2 have joint distribution function F(y1, y2). Then Y1 and Y2 are
said to be independent if and only if

F(y1, y2) = F1(y1)F2(y2)

for every pair of real numbers (y1, y2).
If Y1 and Y2 are not independent, they are said to be dependent.

It usually is convenient to establish independence, or the lack of it, by using the
result contained in the following theorem. The proof is omitted; see “References and
Further Readings” at the end of the chapter.

THEOREM 5.4 If Y1 and Y2 are discrete random variables with joint probability function
p(y1, y2) and marginal probability functions p1(y1) and p2(y2), respectively,
then Y1 and Y2 are independent if and only if

p(y1, y2) = p1(y1)p2(y2)

for all pairs of real numbers (y1, y2).
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If Y1 and Y2 are continuous random variables with joint density function f (y1, y2)

and marginal density functions f1(y1) and f2(y2), respectively, then Y1 and Y2

are independent if and only if

f (y1, y2) = f1(y1) f2(y2)

for all pairs of real numbers (y1, y2).

We now illustrate the concept of independence with some examples.

EXAMPLE 5.9 For the die-tossing problem of Section 5.2, show that Y1 and Y2 are independent.

Solution In this problem each of the 36 sample points was given probability 1/36. Consider, for
example, the point (1, 2). We know that p(1, 2) = 1/36. Also, p1(1) = P(Y1 = 1) =
1/6 and p2(2) = P(Y2 = 2) = 1/6. Hence,

p(1, 2) = p1(1)p2(2).

The same is true for all other values for y1 and y2, and it follows that Y1 and Y2 are
independent.

EXAMPLE 5.10 Refer to Example 5.5. Is the number of Republicans in the sample independent of the
number of Democrats? (Is Y1 independent of Y2?)

Solution Independence of discrete random variables requires that p(y1, y2) = p1(y1)p2(y2)

for every choice (y1, y2). Thus, if this equality is violated for any pair of values,
(y1, y2), the random variables are dependent. Looking in the upper left-hand corner
of Table 5.2, we see

p(0, 0) = 0.

But p1(0) = 3/15 and p2(0) = 6/15. Hence,

p(0, 0) 7= p1(0)p2(0),

so Y1 and Y2 are dependent.

EXAMPLE 5.11 Let

f (y1, y2) =
{

6y1 y2
2 , 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Show that Y1 and Y2 are independent.
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Solution We have

f1(y1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
f (y1, y2) dy2 =

∫ 1

0
6y1 y2

2 dy2 = 6y1

(
y3

2

3

]1

0

)
= 2y1, 0 ≤ y1 ≤ 1,∫ ∞

−∞
f (y1, y2) dy2 =

∫ ∞

−∞
0 dy1 = 0, elsewhere.

Similarly,

f2(y2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ ∞

−∞
f (y1, y2) dy1 =

∫ 1

0
6y1 y2

2 dy1 = 3y2
2 , 0 ≤ y2 ≤ 1,

∫ ∞

−∞
f (y1, y2) dy1 =

∫ ∞

−∞
0 dy1 = 0, elsewhere.

Hence,

f (y1, y2) = f1(y1) f2(y2)

for all real numbers (y1, y2), and, therefore, Y1 and Y2 are independent.

EXAMPLE 5.12 Let

f (y1, y2) =
{

2, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

Show that Y1 and Y2 are dependent.

Solution We see that f (y1, y2) = 2 over the shaded region shown in Figure 5.7. Therefore,

f1(y1) =
⎧⎨⎩

∫ y1

0
2 dy2 = 2y2

]y1

0

= 2y1, 0 ≤ y1 ≤ 1,

0, elsewhere.

y 1
=

y 2

y1

y2

0
1

1

F I G U R E 5.7
Region over which
f (y1, y2) is positive,

Example 5.12
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Similarly,

f2(y2) =

⎧⎪⎨⎪⎩
∫ 1

y2

2 dy1 = 2y1

]1

y2

= 2(1 − y2), 0 ≤ y2 ≤ 1,

0, elsewhere.

Hence,

f (y1, y2) 7= f1(y1) f2(y2)

for some pair of real numbers (y1, y2), and, therefore, Y1 and Y2 are dependent.

You will observe a distinct difference in the limits of integration employed in
finding the marginal density functions obtained in Examples 5.11 and 5.12. The limits
of integration for y2 involved in finding the marginal density of Y1 in Example 5.12
depended on y1. In contrast, the limits of integration were constants when we found the
marginal density functions in Example 5.11. If the limits of integration are constants,
the following theorem provides an easy way to show independence of two random
variables.

THEOREM 5.5 Let Y1 and Y2 have a joint density f (y1, y2) that is positive if and only if
a ≤ y1 ≤ b and c ≤ y2 ≤ d, for constants a, b, c, and d; and f (y1, y2) = 0
otherwise. Then Y1 and Y2 are independent random variables if and only if

f (y1, y2) = g(y1)h(y2)

where g(y1) is a nonnegative function of y1 alone and h(y2) is a nonnegative
function of y2 alone.

The proof of this theorem is omitted. (See “References and Further Readings” at
the end of the chapter.) The key benefit of the result given in Theorem 5.5 is that
we do not actually need to derive the marginal densities. Indeed, the functions g(y1)

and h(y2) need not, themselves, be density functions (although they will be constant
multiples of the marginal densities, should we go to the bother of determining the
marginal densities).

EXAMPLE 5.13 Let Y1 and Y2 have a joint density given by

f (y1, y2) =
{

2y1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Are Y1 and Y2 independent variables?

Solution Notice that f (y1, y2) is positive if and only if 0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1. Further,
f (y1, y2) = g(y1)h(y2), where

g(y1) =
{

y1, 0 ≤ y1 ≤ 1,

0, elsewhere,
and h(y2) =

{
2, 0 ≤ y2 ≤ 1,

0, elsewhere.
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Therefore, Y1 and Y2 are independent random variables. Notice that g(y1) and
h(y2), as defined here, are not density functions, although 2g(y1) and h(y2)/2 are
densities.

EXAMPLE 5.14 Refer to Example 5.4. Is Y1, the amount in stock, independent of Y2, the amount sold?

Solution Because the density function is positive if and only if 0 ≤ y2 ≤ y1 ≤ 1, there do
not exist constants a, b, c, and d such that the density is positive over the region
a ≤ y1 ≤ b, c ≤ y2 ≤ d. Thus, Theorem 5.5 cannot be applied. However, Y1 and Y2

can be shown to be dependent random variables because the joint density is not the
product of the marginal densities.

Definition 5.8 easily can be generalized to n dimensions. Suppose that we have n
random variables, Y1, . . . , Yn , where Yi has distribution function Fi (yi ), for
i = 1, 2, . . . , n; and where Y1, Y2, . . . , Yn have joint distribution function F(y1,

y2, . . . , yn). Then Y1, Y2, . . . , Yn are independent if and only if

F(y1, y2, . . . , yn) = F1(y1) · · · Fn(yn)

for all real numbers y1, y2, . . . , yn , with the obvious equivalent forms for the discrete
and continuous cases.

Exercises
5.43 Let Y1 and Y2 have joint density function f (y1, y2) and marginal densities f1(y1) and f2(y2),

respectively. Show that Y1 and Y2 are independent if and only if f (y1|y2) = f1(y1) for all
values of y1 and for all y2 such that f2(y2) > 0. A completely analogous argument establishes
that Y1 and Y2 are independent if and only if f (y2|y1) = f2(y2) for all values of y2 and for all
y1 such that f1(y1) > 0.

5.44 Prove that the results in Exercise 5.43 also hold for discrete random variables.

5.45 In Exercise 5.1, we determined that the joint distribution of Y1, the number of contracts awarded
to firm A, and Y2, the number of contracts awarded to firm B, is given by the entries in the
following table.

y1

y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

The marginal probability function of Y1 was derived in Exercise 5.19 to be binomial with n = 2
and p = 1/3. Are Y1 and Y2 independent? Why?
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5.46 Refer to Exercise 5.2. The number of heads in three coin tosses is binomially distributed with
n = 3, p = 1/2. Are the total number of heads and your winnings on the side bet independent?
[Examine your answer to Exercise 5.20(b).]

5.47 In Exercise 5.3, we determined that the joint probability distribution of Y1, the number of
married executives, and Y2, the number of never-married executives, is given by

p(y1, y2) =

(
4
y1

) (
3
y2

) (
2

3 − y1 − y2

)
(

9
3

) ,

where y1 and y2 are integers, 0 ≤ y1 ≤ 3, 0 ≤ y2 ≤ 3, and 1 ≤ y1 + y2 ≤ 3. Are Y1 and Y2

independent? (Recall your answer to Exercise 5.21.)

5.48 In Exercise 5.4, you were given the following joint probability function for

Y1 =
{

0, if child survived,

1, if not,
and Y2 =

⎧⎪⎨⎪⎩
0, if no belt used,

1, if adult belt used,

2, if car-seat belt used.

y1

y2 0 1 Total

0 .38 .17 .55
1 .14 .02 .16
2 .24 .05 .29

Total .76 .24 1.00

Are Y1 and Y2 independent? Why or why not?

5.49 In Example 5.4 and Exercise 5.5, we considered the joint density of Y1, the proportion of the
capacity of the tank that is stocked at the beginning of the week and Y2, the proportion of the
capacity sold during the week, given by

f (y1, y2) =
{

3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

Show that Y1 and Y2 are dependent.

5.50 In Exercise 5.6, we assumed that if a radioactive particle is randomly located in a square with
sides of unit length, a reasonable model for the joint density function for Y1 and Y2 is

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Are Y1 and Y2 independent?

b Does the result from part (a) explain the results you obtained in Exercise 5.24 (d)–(f )?
Why?

5.51 In Exercise 5.7, we considered Y1 and Y2 with joint density function

f (y1, y2) =
{

e−(y1+y2), y1 > 0, y2 > 0,

0, elsewhere.

a Are Y1 and Y2 independent?

b Does the result from part (a) explain the results you obtained in Exercise 5.25 (d)–(f )? Why?
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5.52 In Exercise 5.8, we derived the fact that

f (y1, y2) =
{

4y1 y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. Are Y1 and Y2 independent?

5.53 In Exercise 5.9, we determined that

f (y1, y2) =
{

6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. Are Y1 and Y2 independent?

5.54 In Exercise 5.10, we proved that

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, 2y2 ≤ y1,

0, elsewhere

is a valid joint probability density function for Y1, the amount of pollutant per sample collected
above the stack without the cleaning device, and Y2, the amount collected above the stack with
the cleaner. Are the amounts of pollutants per sample collected with and without the cleaning
device independent?

5.55 Suppose that, as in Exercise 5.11, Y1 and Y2 are uniformly distributed over the triangle shaded
in the accompanying diagram. Are Y1 and Y2 independent?

5.56 In Exercise 5.12, we were given the following joint probability density function for the random
variables Y1 and Y2, which were the proportions of two components in a sample from a mixture
of insecticide:

f (y1, y2) =
{

2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0 ≤ y1 + y2 ≤ 1,

0, elsewhere.

Are Y1 and Y2 independent?

5.57 In Exercises 5.13 and 5.31, the joint density function of Y1 and Y2 was given by

f (y1, y2) =
{

30y1 y2
2 , y1 − 1 ≤ y2 ≤ 1 − y1, 0 ≤ y1 ≤ 1,

0, elsewhere.

Are the random variables Y1 and Y2 independent?

5.58 Suppose that the random variables Y1 and Y2 have joint probability density function, f (y1, y2),
given by (see Exercises 5.14 and 5.32)

f (y1, y2) =
{

6y2
1 y2, 0 ≤ y1 ≤ y2, y1 + y2 ≤ 2,

0, elsewhere.

Show that Y1 and Y2 are dependent random variables.

5.59 If Y1 is the total time between a customer’s arrival in the store and leaving the service window
and if Y2 is the time spent in line before reaching the window, the joint density of these variables,
according to Exercise 5.15, is

f (y1, y2) =
{

e−y1 , 0 ≤ y2 ≤ y1 ≤ ∞
0, elsewhere.

Are Y1 and Y2 independent?
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5.60 In Exercise 5.16, Y1 and Y2 denoted the proportions of time that employees I and II actually
spent working on their assigned tasks during a workday. The joint density of Y1 and Y2 is given
by

f (y1, y2) =
{

y1 + y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Are Y1 and Y2 independent?

5.61 In Exercise 5.18, Y1 and Y2 denoted the lengths of life, in hundreds of hours, for components
of types I and II, respectively, in an electronic system. The joint density of Y1 and Y2 is

f (y1, y2) =
{

(1/8)y1e−(y1+y2)/2, y1 > 0, y2 > 0,

0, elsewhere.

Are Y1 and Y2 independent?

5.62 Suppose that the probability that a head appears when a coin is tossed is p and the probability
that a tail occurs is q = 1 − p. Person A tosses the coin until the first head appears and
stops. Person B does likewise. The results obtained by persons A and B are assumed to be
independent. What is the probability that A and B stop on exactly the same number toss?

5.63 Let Y1 and Y2 be independent exponentially distributed random variables, each with mean 1.
Find P( Y1 > Y2 | Y1 < 2Y2).

5.64 Let Y1 and Y2 be independent random variables that are both uniformly distributed on the
interval (0, 1). Find P( Y1 < 2Y2 | Y1 < 3Y2).

*5.65 Suppose that, for −1 ≤ α ≤ 1, the probability density function of (Y1, Y2) is given by

f (y1, y2) =
{

[1 − α{(1 − 2e−y1)(1 − 2e−y2)}]e−y1−y2 , 0 ≤ y1, 0 ≤ y2,

0, elsewhere.

a Show that the marginal distribution of Y1 is exponential with mean 1.

b What is the marginal distribution of Y2?

c Show that Y1 and Y2 are independent if and only if α = 0.

Notice that these results imply that there are infinitely many joint densities such that both
marginals are exponential with mean 1.

*5.66 Let F1(y1) and F2(y2) be two distribution functions. For any α, −1 ≤ α ≤ 1, consider Y1 and
Y2 with joint distribution function

F(y1, y2) = F1(y1)F2(y2)[1 − α{1 − F1(y1)}{1 − F2(y2)}].
a What is F(y1, ∞), the marginal distribution function of Y1? [Hint: What is F2(∞)?]

b What is the marginal distribution function of Y2?

c If α = 0 why are Y1 and Y2 independent?

d Are Y1 and Y2 independent if α 7= 0? Why?

Notice that this construction can be used to produce an infinite number of joint distribution
functions that have the same marginal distribution functions.

5.67 In Section 5.2, we argued that if Y1 and Y2 have joint cumulative distribution function F(y1, y2)

then for any a < b and c < d

P(a < Y1 ≤ b, c < Y2 ≤ d) = F(b, d) − F(b, c) − F(a, d) + F(a, c).
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If Y1 and Y2 are independent, show that

P(a < Y1 ≤ b, c < Y2 ≤ d) = P(a < Y1 ≤ b) × P(c < Y2 ≤ d).

[Hint: Express P(a < Y1 ≤ b) in terms of F1(·).]
5.68 A supermarket has two customers waiting to pay for their purchases at counter I and one

customer waiting to pay at counter II. Let Y1 and Y2 denote the numbers of customers who
spend more than $50 on groceries at the respective counters. Suppose that Y1 and Y2 are
independent binomial random variables, with the probability that a customer at counter I will
spend more than $50 equal to .2 and the probability that a customer at counter II will spend
more than $50 equal to .3. Find the

a joint probability distribution for Y1 and Y2.

b probability that not more than one of the three customers will spend more than $50.

5.69 The length of life Y for fuses of a certain type is modeled by the exponential distribution, with

f (y) =
{

(1/3)e−y/3, y > 0,

0, elsewhere.

(The measurements are in hundreds of hours.)

a If two such fuses have independent lengths of life Y1 and Y2, find the joint probability
density function for Y1 and Y2.

b One fuse in part (a) is in a primary system, and the other is in a backup system that comes
into use only if the primary system fails. The total effective length of life of the two fuses
is then Y1 + Y2. Find P(Y1 + Y2 ≤ 1).

5.70 A bus arrives at a bus stop at a uniformly distributed time over the interval 0 to 1 hour. A
passenger also arrives at the bus stop at a uniformly distributed time over the interval 0 to 1
hour. Assume that the arrival times of the bus and passenger are independent of one another and
that the passenger will wait for up to 1/4 hour for the bus to arrive. What is the probability that
the passenger will catch the bus? [Hint: Let Y1 denote the bus arrival time and Y2 the passenger
arrival time; determine the joint density of Y1 and Y2 and find P(Y2 ≤ Y1 ≤ Y2 + 1/4).]

5.71 Two telephone calls come into a switchboard at random times in a fixed one-hour period.
Assume that the calls are made independently of one another. What is the probability that the
calls are made

a in the first half hour?

b within five minutes of each other?

5.5 The Expected Value of a Function
of Random Variables
You need only construct the multivariate analogue to the univariate situation to justify
the following definition.
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DEFINITION 5.9 Let g(Y1, Y2, . . . , Yk) be a function of the discrete random variables, Y1,

Y2, . . . , Yk , which have probability function p(y1, y2, . . . , yk). Then the ex-
pected value of g(Y1, Y2, . . . , Yk) is

E[g(Y1, Y2, . . . , Yk)] =
∑
all yk

· · ·
∑
all y2

∑
all y1

g(y1, y2, . . . , yk)p(y1, y2, . . . , yk).

If Y1, Y2, . . . , Yk are continuous random variables with joint density function
f (y1, y2, . . . , yk), then2

E[g(Y1, Y2, . . . , Yk)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
g(y1, y2, . . . , yk)

× f (y1, y2, . . . , yk) dy1 dy2 . . . dyk .

EXAMPLE 5.15 Let Y1 and Y2 have joint density given by

f (y1, y2) =
{ 2y1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Find E(Y1Y2).

Solution From Definition 5.9 we obtain

E(Y1Y2) =
∫ ∞

−∞

∫ ∞

−∞
y1 y2 f (y1, y2) dy1 dy2 =

∫ 1

0

∫ 1

0
y1 y2(2y1) dy1 dy2

=
∫ 1

0
y2

(
2y3

1

3

]1

0

)
dy2 =

∫ 1

0

(
2

3

)
y2 dy2 = 2

3

y2
2

2

]1

0

= 1

3
.

We will show that Definition 5.9 is consistent with Definition 4.5, in which we
defined the expected value of a univariate random variable. Consider two random
variables Y1 and Y2 with density function f (y1, y2). We wish to find the expected
value of g(Y1, Y2) = Y1.

Then from Definition 5.9 we have

E(Y1) =
∫ ∞

−∞

∫ ∞

−∞
y1 f (y1, y2) dy2 dy1

=
∫ ∞

−∞
y1

[∫ ∞

−∞
f (y1, y2) dy2

]
dy1.

The quantity within the brackets, by definition, is the marginal density function for
Y1. Therefore, we obtain

E(Y1) =
∫ ∞

−∞
y1 f1(y1) dy1,

which agrees with Definition 4.5.

2. Again, we say that the expectations exist if
∑ · · · ∑ |g(y1, y2, . . . , yn)|p(y1, y2, . . . , yk) or if∫ · · · ∫ |g(y1, y2, . . . , yn)| f (y1, y2, . . . , yk) dy1 . . . dyk is finite.
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EXAMPLE 5.16 Let Y1 and Y2 have a joint density given by

f (y1, y2) =
{

2y1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Find the expected value of Y1.

Solution
E(Y1) =

∫ 1

0

∫ 1

0
y1(2y1) dy1 dy2

=
∫ 1

0

(
2y3

1

3

]1

0

)
dy2 =

∫ 1

0

2

3
dy2 = 2

3
y2

]1

0

= 2

3
.

Refer to Figure 5.6 and estimate the expected value of Y1. The value E(Y1) = 2/3
appears to be quite reasonable.

EXAMPLE 5.17 In Figure 5.6 the mean value of Y2 appears to be equal to .5. Let us confirm this visual
estimate. Find E(Y2).

Solution
E(Y2) =

∫ 1

0

∫ 1

0
y2(2y1) dy1 dy2 =

∫ 1

0
y2

(
2y2

1

2

]1

0

)
dy2

=
∫ 1

0
y2 dy2 = y2

2

2

]1

0

= 1

2
.

EXAMPLE 5.18 Let Y1 and Y2 be random variables with density function

f (y1, y2) =
{

2y1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Find V (Y1).

Solution The marginal density for Y1 obtained in Example 5.6 is

f1(y1) =
{

2y1, 0 ≤ y1 ≤ 1,

0, elsewhere.

Then V (Y1) = E
(
Y 2

1

) − [E(Y1)]2, and

E
(
Y k

1

) =
∫ ∞

−∞
yk

1 f1(y1) dy1 =
∫ 1

0
yk

1 (2y1) dy1 = 2yk+2
1

k + 2

]1

0

= 2

k + 2
.
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258 Chapter 5 Multivariate Probability Distributions

If we let k = 1 and k = 2, it follows that E(Y1) and E
(
Y 2

1

)
are 2/3 and 1/2,

respectively. Then V (Y1) = E
(
Y 2

1

) − [E(Y1)]2 = 1/2 − (2/3)2 = 1/18.

EXAMPLE 5.19 A process for producing an industrial chemical yields a product containing two types
of impurities. For a specified sample from this process, let Y1 denote the proportion of
impurities in the sample and let Y2 denote the proportion of type I impurities among
all impurities found. Suppose that the joint distribution of Y1 and Y2 can be modeled
by the following probability density function:

f (y1, y2) =
{

2(1 − y1), 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Find the expected value of the proportion of type I impurities in the sample.

Solution Because Y1 is the proportion of impurities in the sample and Y2 is the proportion of
type I impurities among the sample impurities, it follows that Y1Y2 is the proportion
of type I impurities in the entire sample. Thus, we want to find E(Y1Y2):

E(Y1Y2) =
∫ 1

0

∫ 1

0
2y1 y2(1 − y1) dy2 dy1 = 2

∫ 1

0
y1(1 − y1)

(
1

2

)
dy1

=
∫ 1

0

(
y1 − y2

1

)
dy1 =

(
y2

1

2
− y3

1

3

) ]1

0

= 1

2
− 1

3
= 1

6
.

Therefore, we would expect 1/6 of the sample to be made up of type I impurities.

5.6 Special Theorems
Theorems that facilitate computation of the expected value of a constant, the expected
value of a constant times a function of random variables, and the expected value of
the sum of functions of random variables are similar to those for the univariate case.

THEOREM 5.6 Let c be a constant. Then

E(c) = c.

THEOREM 5.7 Let g(Y1, Y2) be a function of the random variables Y1 and Y2 and let c be a
constant. Then

E[cg(Y1, Y2)] = cE[g(Y1, Y2)].
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THEOREM 5.8 Let Y1 and Y2 be random variables and g1(Y1, Y2), g2(Y1, Y2), . . . , gk(Y1, Y2)

be functions of Y1 and Y2. Then

E[g1(Y1, Y2) + g2(Y1, Y2) + · · · + gk(Y1, Y2)]

= E[g1(Y1, Y2)] + E[g2(Y1, Y2)] + · · · + E[gk(Y1, Y2)].

The proofs of these three theorems are analogous to the univariate cases discussed
in Chapters 3 and 4.

EXAMPLE 5.20 Refer to Example 5.4. The random variable Y1 − Y2 denotes the proportional amount
of gasoline remaining at the end of the week. Find E(Y1 − Y2).

Solution Employing Theorem 5.8 with g1(Y1, Y2) = Y1 and g(Y1, Y2) = −Y2, we see that

E(Y1 − Y2) = E(Y1) + E(−Y2).

Theorem 5.7 applies, yielding E(−Y2) = −E(Y2); therefore,

E(Y1 − Y2) = E(Y1) − E(Y2).

Also,

E(Y1) =
∫ 1

0

∫ y1

0
y1(3y1) dy2 dy1 =

∫ 1

0
3y3

1 dy1 = 3

4
y4

1

]1

0

= 3

4
,

E(Y2) =
∫ 1

0

∫ y1

0
y2(3y1) dy2 dy1 =

∫ 1

0
3y1

(
y2

2

2

]y1

0

)
dy1 =

∫ 1

0

3

2
y3

1 dy1

= 3

8
y4

1

]1

0

= 3

8
.

Thus,

E(Y1 − Y2) = (3/4) − (3/8) = 3/8,

so we would expect 3/8 of the tank to be filled at the end of the week’s sales.

If the random variables under study are independent, we sometimes can simplify
the work involved in finding expectations. The following theorem is quite useful in
this regard.

THEOREM 5.9 Let Y1 and Y2 be independent random variables and g(Y1) and h(Y2) be functions
of only Y1 and Y2, respectively. Then

E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)],

provided that the expectations exist.
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Proof We will give the proof of the result for the continuous case. Let f (y1, y2) denote
the joint density of Y1 and Y2. The product g(Y1)h(Y2) is a function of Y1 and
Y2. Hence, by Definition 5.9 and the assumption that Y1 and Y2 are independent,

E [g(Y1)h(Y2)] =
∫ ∞

−∞

∫ ∞

−∞
g(y1)h(y2) f (y1, y2) dy2 dy1

=
∫ ∞

−∞

∫ ∞

−∞
g(y1)h(y2) f1(y1) f2(y2) dy2 dy1

=
∫ ∞

−∞
g(y1) f1(y1)

[∫ ∞

−∞
h(y2) f2(y2) dy2

]
dy1

=
∫ ∞

−∞
g(y1) f1(y1)E [h(Y2)] dy1

= E [h(Y2)]
∫ ∞

−∞
g(y1) f1(y1) dy1 = E [g(Y1)] E [h(Y2)] .

The proof for the discrete case follows in an analogous manner.

EXAMPLE 5.21 Refer to Example 5.19. In that example we found E(Y1Y2) directly. By investigating
the form of the joint density function given there, we can see that Y1 and Y2 are
independent. Find E(Y1Y2) by using the result that E(Y1Y2) = E(Y1)E(Y2) if Y1 and
Y2 are independent.

Solution The joint density function is given by

f (y1, y2) =
{ 2(1 − y1), 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Hence,

f1(y1) =
{ ∫ 1

0 2(1 − y1) dy2 = 2(1 − y1), 0 ≤ y1 ≤ 1,

0, elsewhere,

and

f2(y2) =
⎧⎨⎩

∫ 1
0 2(1 − y1) dy1 = −(1 − y1)

2
]1

0
= 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

We then have

E(Y1) =
∫ 1

0
y1 [2(1 − y1)] dy1 = 2

(
y2

1

2
− y3

1

3

) ]1

0

= 1

3
,

E(Y2) = 1/2

because Y2 is uniformly distributed over (0, 1).
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It follows that

E(Y1Y2) = E(Y1)E(Y2) = (1/3)(1/2) = 1/6,

which agrees with the answer in Example 5.19.

Exercises
5.72 In Exercise 5.1, we determined that the joint distribution of Y1, the number of contracts awarded

to firm A, and Y2, the number of contracts awarded to firm B, is given by the entries in the
following table.

y1

y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

The marginal probability function of Y1 was derived in Exercise 5.19 to be binomial with n = 2
and p = 1/3. Find

a E(Y1).

b V (Y1).

c E(Y1 − Y2).

5.73 In Exercise 5.3, we determined that the joint probability distribution of Y1, the number of
married executives, and Y2, the number of never-married executives, is given by

p(y1, y2) =

(
4
y1

) (
3
y2

) (
2

3 − y1 − y2

)
(

9
3

) ,

where y1 and y2 are integers, 0 ≤ y1 ≤ 3, 0 ≤ y2 ≤ 3, and 1 ≤ y1 + y2 ≤ 3. Find the expected
number of married executives among the three selected for promotion. (See Exercise 5.21.)

5.74 Refer to Exercises 5.6, 5.24, and 5.50. Suppose that a radioactive particle is randomly located
in a square with sides of unit length. A reasonable model for the joint density function for Y1

and Y2 is

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a What is E(Y1 − Y2)?

b What is E(Y1Y2)?

c What is E(Y 2
1 + Y 2

2 )?

d What is V (Y1Y2)?

5.75 Refer to Exercises 5.7, 5.25, and 5.51. Let Y1 and Y2 have joint density function

f (y1, y2) =
{

e−(y1+y2), y1 > 0, y2 > 0

0, elsewhere.
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262 Chapter 5 Multivariate Probability Distributions

a What are E(Y1 + Y2) and V (Y1 + Y2)?

b What is P(Y1 − Y2 > 3)?

c What is P(Y1 − Y2 < −3)?

d What are E(Y1 − Y2) and V (Y1 − Y2)?

e What do you notice about V (Y1 + Y2) and V (Y1 − Y2)?

5.76 In Exercise 5.8, we derived the fact that

f (y1, y2) =
{

4y1 y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

a Find E(Y1).

b Find V (Y1).

c Find E(Y1 − Y2).

5.77 In Exercise 5.9, we determined that

f (y1, y2) =
{

6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. Find

a E(Y1) and E(Y2).

b V (Y1) and V (Y2).

c E(Y1 − 3Y2).

5.78 In Exercise 5.10, we proved that

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, 2y2 ≤ y1,

0, elsewhere

is a valid joint probability density function for Y1, the amount of pollutant per sample collected
above the stack without the cleaning device, and Y2, the amount collected above the stack with
the cleaner.

a Find E(Y1) and E(Y2).

b Find V (Y1) and V (Y2).

c The random variable Y1 − Y2 represents the amount by which the weight of pollutant can
be reduced by using the cleaning device. Find E(Y1 − Y2).

d Find V (Y1 − Y2). Within what limits would you expect Y1 − Y2 to fall?

5.79 Suppose that, as in Exercise 5.11, Y1 and Y2 are uniformly distributed over the triangle shaded
in the accompanying diagram. Find E(Y1Y2).

(–1, 0) (1, 0)

(0, 1)

y1

y2

5.80 In Exercise 5.16, Y1 and Y2 denoted the proportions of time that employees I and II actually
spent working on their assigned tasks during a workday. The joint density of Y1 and Y2 is

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises 263

given by

f (y1, y2) =
{

y1 + y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Employee I has a higher productivity rating than employee II and a measure of the total
productivity of the pair of employees is 30Y1 + 25Y2. Find the expected value of this measure
of productivity.

5.81 In Exercise 5.18, Y1 and Y2 denoted the lengths of life, in hundreds of hours, for components
of types I and II, respectively, in an electronic system. The joint density of Y1 and Y2 is

f (y1, y2) =
{

(1/8)y1e−(y1+y2)/2, y1 > 0, y2 > 0,

0, elsewhere.

One way to measure the relative efficiency of the two components is to compute the ratio Y2/Y1.
Find E(Y2/Y1). [Hint: In Exercise 5.61, we proved that Y1 and Y2 are independent.]

5.82 In Exercise 5.38, we determined that the joint density function for Y1, the weight in tons of a
bulk item stocked by a supplier, and Y2, the weight of the item sold by the supplier, has joint
density

f (y1, y2) =
{

1/y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

In this case, the random variable Y1 − Y2 measures the amount of stock remaining at the end
of the week, a quantity of great importance to the supplier. Find E(Y1 − Y2).

5.83 In Exercise 5.42, we determined that the unconditional probability distribution for Y , the
number of defects per yard in a certain fabric, is

p(y) = (1/2)y+1, y = 0, 1, 2, . . . .

Find the expected number of defects per yard.

5.84 In Exercise 5.62, we considered two individuals who each tossed a coin until the first head
appears. Let Y1 and Y2 denote the number of times that persons A and B toss the coin, respec-
tively. If heads occurs with probability p and tails occurs with probability q = 1 − p, it is
reasonable to conclude that Y1 and Y2 are independent and that each has a geometric distribution
with parameter p. Consider Y1 − Y2, the difference in the number of tosses required by the two
individuals.

a Find E(Y1), E(Y2), and E(Y1 − Y2).

b Find E(Y 2
1 ), E(Y 2

2 ), and E(Y1Y2) (recall that Y1 and Y2 are independent).

c Find E(Y1 − Y2)
2 and V (Y1 − Y2).

d Give an interval that will contain Y1 − Y2 with probability at least 8/9.

5.85 In Exercise 5.65, we considered random variables Y1 and Y2 that, for −1 ≤ α ≤ 1, have joint
density function given by

f (y1, y2) =
{

[1 − α{(1 − 2e−y1)(1 − 2e−y2)}]e−y1−y2 , 0 ≤ y1, 0 ≤ y2,

0, elsewhere

and established that the marginal distributions of Y1 and Y2 are both exponential with mean 1.
Find

a E(Y1) and E(Y2).

b V (Y1) and V (Y2).
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264 Chapter 5 Multivariate Probability Distributions

c E(Y1 − Y2).

d E(Y1Y2).

e V (Y1 − Y2). Within what limits would you expect Y1 − Y2 to fall?

*5.86 Suppose that Z is a standard normal random variable and that Y1 and Y2 are χ2-distributed
random variables with ν1 and ν2 degrees of freedom, respectively. Further, assume that Z , Y1,
and Y2 are independent.

a Define W = Z/
√

Y1. Find E(W ) and V (W ). What assumptions do you need about the
value of ν1? [Hint: W = Z(1/

√
Y1) = g(Z)h(Y1). Use Theorem 5.9. The results of

Exercise 4.112(d) will also be useful.]

b Define U = Y1/Y2. Find E(U ) and V (U ). What assumptions about ν1 and ν2 do you need?
Use the hint from part (a).

5.87 Suppose that Y1 and Y2 are independent χ2 random variables with ν1 and ν2 degrees of freedom,
respectively. Find

a E(Y1 + Y2).

b V (Y1 + Y2). [Hint: Use Theorem 5.9 and the result of Exercise 4.112(a).]

5.88 Suppose that you are told to toss a die until you have observed each of the six faces. What is
the expected number of tosses required to complete your assignment? [Hint: If Y is the number
of trials to complete the assignment, Y = Y1 + Y2 + Y3 + Y4 + Y5 + Y6, where Y1 is the trial on
which the first face is tossed, Y1 = 1, Y2 is the number of additional tosses required to get a face
different than the first, Y3 is the number of additional tosses required to get a face different than
the first two distinct faces, . . . , Y6 is the number of additional tosses to get the last remaining
face after all other faces have been observed. Notice further that for i = 1, 2, . . . , 6, Yi has a
geometric distribution with success probability (7 − i)/6.]

5.7 The Covariance of Two Random Variables
Intuitively, we think of the dependence of two random variables Y1 and Y2 as implying
that one variable—say, Y1—either increases or decreases as Y2 changes. We will
confine our attention to two measures of dependence: the covariance between two
random variables and their correlation coefficient. In Figure 5.8(a) and (b), we give
plots of the observed values of two variables, Y1 and Y2, for samples of n = 10
experimental units drawn from each of two populations. If all the points fall along
a straight line, as indicated in Figure 5.8(a), Y1 and Y2 are obviously dependent. In
contrast, Figure 5.8(b) indicates little or no dependence between Y1 and Y2.

Suppose that we knew the values of E(Y1) = μ1 and E(Y2) = μ2 and located this
point on the graph in Figure 5.8. Now locate a plotted point, (y1, y2), on Figure 5.8(a)
and measure the deviations (y1 − μ1) and (y2 − μ2). Both deviations assume the
same algebraic sign for any point, (y1, y2), and their product (y1 − μ1)(y2 − μ2) is
positive. Points to the right of μ1 yield pairs of positive deviations; points to the left
produce pairs of negative deviations; and the average of the product of the deviations
(y1 −μ1)(y2 −μ2) is large and positive. If the linear relation indicated in Figure 5.8(a)
had sloped downward to the right, all corresponding pairs of deviations would have
been of the opposite sign, and the average value of (y1 − μ1)(y2 − μ2) would have
been a large negative number.
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y1 y1

y2 y2

2&

1&

2&

1&

(a) (b)

F I G U R E 5.8
Dependent and

independent
observations

for (y1, y2)

The situation just described does not occur for Figure 5.8(b), where little depen-
dence exists between Y1 and Y2. Their corresponding deviations (y1−μ1) and (y2−μ2)

will assume the same algebraic sign for some points and opposite signs for others.
Thus, the product (y1 − μ1)(y2 − μ2) will be positive for some points, negative for
others, and will average to some value near zero.

Clearly, the average value of (Y1 − μ1)(Y2 − μ2) provides a measure of the linear
dependence between Y1 and Y2. This quantity, E[(Y1 − μ1)(Y2 − μ2)], is called the
covariance of Y1 and Y2.

DEFINITION 5.10 If Y1 and Y2 are random variables with means μ1 and μ2, respectively, the
covariance of Y1 and Y2 is

Cov(Y1, Y2) = E [(Y1 − μ1)(Y2 − μ2)] .

The larger the absolute value of the covariance of Y1 and Y2, the greater the
linear dependence between Y1 and Y2. Positive values indicate that Y1 increases as Y2

increases; negative values indicate that Y1 decreases as Y2 increases. A zero value of
the covariance indicates that the variables are uncorrelated and that there is no linear
dependence between Y1 and Y2.

Unfortunately, it is difficult to employ the covariance as an absolute measure of
dependence because its value depends upon the scale of measurement. As a result, it is
difficult to determine at first glance whether a particular covariance is large or small.
This problem can be eliminated by standardizing its value and using the correlation
coefficient, ρ, a quantity related to the covariance and defined as

ρ = Cov(Y1, Y2)

σ1σ2

where σ1 and σ2 are the standard deviations of Y1 and Y2, respectively. Supplemental
discussions of the correlation coefficient may be found in Hogg, Craig, and McKean
(2005) and Myers (2000).

A proof that the correlation coefficient ρ satisfies the inequality −1 ≤ ρ ≤ 1 is
outlined in Exercise 5.167.
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266 Chapter 5 Multivariate Probability Distributions

The sign of the correlation coefficient is the same as the sign of the covariance.
Thus, ρ > 0 indicates that Y2 increases as Y1 increases, and ρ = +1 implies perfect
correlation, with all points falling on a straight line with positive slope. A value of
ρ = 0 implies zero covariance and no correlation. A negative coefficient of correlation
implies a decrease in Y2 as Y1 increases, and ρ = −1 implies perfect correlation, with
all points falling on a straight line with negative slope. A convenient computational
formula for the covariance is contained in the next theorem.

THEOREM 5.10 If Y1 and Y2 are random variables with means μ1 and μ2, respectively, then

Cov(Y1, Y2) = E [(Y1 − μ1)(Y2 − μ2)] = E(Y1Y2) − E(Y1)E(Y2).

Proof Cov(Y1, Y2) = E [(Y1 − μ1)(Y2 − μ2)]

= E(Y1Y2 − μ1Y2 − μ2Y1 + μ1μ2).

From Theorem 5.8, the expected value of a sum is equal to the sum of the
expected values; and from Theorem 5.7, the expected value of a constant times
a function of random variables is the constant times the expected value. Thus,

Cov(Y1, Y2) = E(Y1Y2) − μ1 E(Y2) − μ2 E(Y1) + μ1μ2.

Because E(Y1) = μ1 and E(Y2) = μ2, it follows that

Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2) = E(Y1Y2) − μ1μ2.

EXAMPLE 5.22 Refer to Example 5.4. Find the covariance between the amount in stock Y1 and amount
of sales Y2.

Solution Recall that Y1 and Y2 have joint density function given by

f (y1, y2) =
{

3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.
Thus,

E(Y1Y2) =
∫ 1

0

∫ y1

0
y1 y2(3y1) dy2 dy1 =

∫ 1

0
3y2

1

(
y2

2

2

]y1

0

)
dy1

=
∫ 1

0

3

2
y4

1 dy1 = 3

2

(
y5

1

5

]1

0

)
= 3

10
.

From Example 5.20, we know that E(Y1) = 3/4 and E(Y2) = 3/8. Thus, using
Theorem 5.10, we obtain

Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2) = (3/10) − (3/4)(3/8) = .30 − .28 = .02.

In this example, large values of Y2 can occur only with large values of Y1 and the
density, f (y1, y2), is larger for larger values of Y1 (see Figure 5.4). Thus, it is intuitive
that the covariance between Y1 and Y2 should be positive.
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EXAMPLE 5.23 Let Y1 and Y2 have joint density given by

f (y1, y2) =
{

2y1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Find the covariance of Y1 and Y2.

Solution From Example 5.15, E(Y1Y2) = 1/3. Also, from Examples 5.16 and 5.17, μ1 =
E(Y1) = 2/3 and μ2 = E(Y2) = 1/2, so

Cov(Y1, Y2) = E(Y1Y2) − μ1μ2 = (1/3) − (2/3)(1/2) = 0.

Example 5.23 furnishes a specific example of the general result given in
Theorem 5.11.

THEOREM 5.11 If Y1 and Y2 are independent random variables, then

Cov(Y1, Y2) = 0.

Thus, independent random variables must be uncorrelated.

Proof Theorem 5.10 establishes that

Cov(Y1, Y2) = E(Y1Y2) − μ1μ2.

Because Y1 and Y2 are independent, Theorem 5.9 implies that

E(Y1Y2) = E(Y1)E(Y2) = μ1μ2,

and the desired result follows immediately.

Notice that the random variables Y1 and Y2 of Example 5.23 are independent; hence,
by Theorem 5.11, their covariance must be zero. The converse of Theorem 5.11 is
not true, as will be illustrated in the following example.

EXAMPLE 5.24 Let Y1 and Y2 be discrete random variables with joint probability distribution as shown
in Table 5.3. Show that Y1 and Y2 are dependent but have zero covariance.

Solution Calculation of marginal probabilities yields p1(−1) = p1(1) = 5/16 = p2(−1) =
p2(1), and p1(0) = 6/16 = p2(0). The value p(0, 0) = 0 in the center cell stands

Table 5.3 Joint probability distribution, Example 5.24

y1

y2 −1 0 +1

−1 1/16 3/16 1/16
0 3/16 0 3/16

+1 1/16 3/16 1/16
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out. Obviously,

p(0, 0) 7= p1(0)p2(0),

and this is sufficient to show that Y1 and Y2 are dependent.
Again looking at the marginal probabilities, we see that E(Y1) = E(Y2) = 0.

Also,

E(Y1Y2) =
∑
all y1

∑
all y2

y1 y2 p(y1, y2)

= (−1)(−1)(1/16) + (−1)(0)(3/16) + (−1)(1)(1/16)

+ (0)(−1)(3/16) + (0)(0)(0) + (0)(1)(3/16)

+ (1)(−1)(1/16) + (1)(0)(3/16) + (1)(1)(1/16)

= (1/16) − (1/16) − (1/16) + (1/16) = 0.

Thus,

Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2) = 0 − 0(0) = 0.

This example shows that the converse of Theorem 5.11 is not true. If the covariance
of two random variables is zero, the variables need not be independent.

Exercises
5.89 In Exercise 5.1, we determined that the joint distribution of Y1, the number of contracts awarded

to firm A, and Y2, the number of contracts awarded to firm B, is given by the entries in the
following table.

y1

y2 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

Find Cov(Y1, Y2). Does it surprise you that Cov(Y1, Y2) is negative? Why?

5.90 In Exercise 5.3, we determined that the joint probability distribution of Y1, the number of
married executives, and Y2, the number of never-married executives, is given by

p(y1, y2) =

(
4
y1

) (
3
y2

) (
2

3 − y1 − y2

)
(

9
3

) ,

where y1 and y2 are integers, 0 ≤ y1 ≤ 3, 0 ≤ y2 ≤ 3, and 1 ≤ y1 + y2 ≤ 3. Find Cov(Y1, Y2).

5.91 In Exercise 5.8, we derived the fact that

f (y1, y2) =
{

4y1 y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

Show that Cov(Y1, Y2) = 0. Does it surprise you that Cov(Y1, Y2) is zero? Why?
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5.92 In Exercise 5.9, we determined that

f (y1, y2) =
{

6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. Find Cov(Y1, Y2). Are Y1 and Y2 independent?

5.93 Suppose that, as in Exercises 5.11 and 5.79, Y1 and Y2 are uniformly distributed over the triangle
shaded in the accompanying diagram.

(–1, 0) (1, 0)

(0, 1)

y1

y2

a Find Cov(Y1, Y2).

b Are Y1 and Y2 independent? (See Exercise 5.55.)

c Find the coefficient of correlation for Y1 and Y2.

d Does your answer to part (b) lead you to doubt your answer to part (a)? Why or why
not?

5.94 Let Y1 and Y2 be uncorrelated random variables and consider U1 = Y1 + Y2 and U2 = Y1 − Y2.

a Find the Cov(U1, U2) in terms of the variances of Y1 and Y2.

b Find an expression for the coefficient of correlation between U1 and U2.

c Is it possible that Cov(U1, U2) = 0? When does this occur?

5.95 Let the discrete random variables Y1 and Y2 have the joint probability function

p(y1, y2) = 1/3, for (y1, y2) = (−1, 0), (0, 1), (1, 0).

Find Cov(Y1, Y2). Notice that Y1 and Y2 are dependent. (Why?) This is another example of
uncorrelated random variables that are not independent.

5.96 Suppose that the random variables Y1 and Y2 have means μ1 and μ2 and variances σ 2
1 and

σ 2
2 , respectively. Use the basic definition of the covariance of two random variables to

establish that

a Cov(Y1, Y2) = Cov(Y2, Y1).

b Cov(Y1, Y1) = V (Y1) = σ 2
1 . That is, the covariance of a random variable and itself is just

the variance of the random variable.

5.97 The random variables Y1 and Y2 are such that E(Y1) = 4, E(Y2) = −1, V (Y1) = 2 and
V (Y2) = 8.

a What is Cov(Y1, Y1)?

b Assuming that the means and variances are correct, as given, is it possible that Cov(Y1,

Y2) = 7? [Hint: If Cov(Y1, Y2) = 7, what is the value of ρ, the coefficient of correlation?]

c Assuming that the means and variances are correct, what is the largest possible value for
Cov(Y1, Y2)? If Cov(Y1, Y2) achieves this largest value, what does that imply about the
relationship between Y1 and Y2?
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270 Chapter 5 Multivariate Probability Distributions

d Assuming that the means and variances are correct, what is the smallest possible value for
Cov(Y1, Y2)? If Cov(Y1, Y2) achieves this smallest value, what does that imply about the
relationship between Y1 and Y2?

5.98 How big or small can Cov(Y1, Y2) be? Use the fact that ρ2 ≤ 1 to show that

−
√

V (Y1) × V (Y2) ≤ Cov(Y1, Y2) ≤
√

V (Y1) × V (Y2).

5.99 If c is any constant and Y is a random variable such that E(Y ) exists, show that Cov(c, Y ) = 0.

5.100 Let Z be a standard normal random variable and let Y1 = Z and Y2 = Z 2.

a What are E(Y1) and E(Y2)?

b What is E(Y1Y2)? [Hint: E(Y1Y2) = E(Z 3), recall Exercise 4.199.]

c What is Cov(Y1, Y2)?

d Notice that P(Y2 > 1|Y1 > 1) = 1. Are Y1 and Y2 independent?

5.101 In Exercise 5.65, we considered random variables Y1 and Y2 that, for −1 ≤ α ≤ 1, have joint
density function given by

f (y1, y2) =
{

[1 − α{(1 − 2e−y1)(1 − 2e−y2)}]e−y1−y2 , 0 ≤ y1, 0 ≤ y2,

0 elsewhere.

We established that the marginal distributions of Y1 and Y2 are both exponential with mean 1
and showed that Y1 and Y2 are independent if and only if α = 0. In Exercise 5.85, we derived
E(Y1Y2).

a Derive Cov(Y1, Y2).

b Show that Cov(Y1, Y2) = 0 if and only if α = 0.

c Argue that Y1 and Y2 are independent if and only if ρ = 0.

5.8 The Expected Value and Variance of Linear
Functions of Random Variables
In later chapters in this text, especially Chapters 9 and 11, we will frequently
encounter parameter estimators that are linear functions of the measurements in
a sample, Y1, Y2, . . . , Yn . If a1, a2, . . . , an are constants, we will need to find the
expected value and variance of a linear function of the random variables Y1,

Y2, . . . , Yn ,

U1 = a1Y1 + a2Y2 + a3Y3 + · · · + anYn =
n∑

i=1

ai Yi .

We also may be interested in the covariance between two such linear combinations.
Results that simplify the calculation of these quantities are summarized in the fol-
lowing theorem.
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THEOREM 5.12 Let Y1, Y2, . . . , Yn and X1, X2, . . . , Xm be random variables with E(Yi ) = μi

and E(X j ) = ξ j . Define

U1 =
n∑

i=1

ai Yi and U2 =
m∑

j=1

b j X j

for constants a1, a2, . . . , an and b1, b2, . . . , bm . Then the following hold:

a E(U1) = ∑n
i=1 aiμi .

b V (U1) = ∑n
i=1 a2

i V (Yi ) + 2
∑ ∑

1≤i< j≤n ai a j Cov(Yi , Y j ), where the
double sum is over all pairs (i, j) with i < j .

c Cov(U1, U2) = ∑n
i=1

∑m
j=1 ai b j Cov(Yi , X j ).

Before proceeding with the proof of Theorem 5.12, we illustrate the use of the
theorem with an example.

EXAMPLE 5.25 Let Y1, Y2, and Y3 be random variables, where E(Y1) = 1, E(Y2) = 2, E(Y3) = −1,
V (Y1) = 1, V (Y2) = 3, V (Y3) = 5, Cov(Y1, Y2) = −0.4, Cov(Y1, Y3) = 1/2, and
Cov(Y2, Y3) = 2. Find the expected value and variance of U = Y1 − 2Y2 + Y3. If
W = 3Y1 + Y2, find Cov(U, W ).

Solution U = a1Y1+a2Y2+a3Y3, where a1 = 1, a2 = −2, and a3 = 1. Then by Theorem 5.12,

E(U ) = a1 E(Y1) + a2 E(Y2) + a3 E(Y3) = (1)(1) + (−2)(2) + (1)(−1) = −4.

Similarly,

V (U ) = a2
1 V (Y1) + a2

2 V (Y2) + a2
3 V (Y3) + 2a1a2Cov(Y1, Y2)

+ 2a1a3Cov(Y1, Y3) + 2a2a3Cov(Y2, Y3)

= (1)2(1) + (−2)2(3) + (1)2(5) + (2)(1)(−2)(−0.4)

+ (2)(1)(1)(1/2) + (2)(−2)(1)(2)

= 12.6.

Notice that W = b1Y1 + b2Y2, where b1 = 3 and b2 = 1. Thus,

Cov(U, W ) = a1b1Cov(Y1, Y1) + a1b2Cov(Y1, Y2) + a2b1Cov(Y2, Y1)

+ a2b2Cov(Y2, Y2) + a3b1Cov(Y3, Y1) + a3b2 Cov(Y3, Y2).
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272 Chapter 5 Multivariate Probability Distributions

Notice that, as established in Exercise 5.96, Cov(Yi , Y j ) = Cov(Y j , Yi ) and Cov(Yi ,

Yi ) = V (Yi ). Therefore,

Cov(U, W ) = (1)(3)(1) + (1)(1)(−0.4) + (−2)(3)(−0.4)

+ (−2)(1)(3) + (1)(3)(1/2) + (1)(1)(2)

= 2.5.

Because Cov(U, W ) 7= 0, it follows that U and W are dependent.

We now proceed with the proof of Theorem 5.12.

Proof The theorem consists of three parts, of which (a) follows directly from Theo-
rems 5.7 and 5.8. To prove (b), we appeal to the definition of variance and write

V (U1) = E [U1 − E(U1)]
2 = E

[
n∑

i=1

ai Yi −
n∑

i=1

aiμi

]2

= E

[
n∑

i=1

ai (Yi − μi )

]2

= E

⎡⎣ n∑
i=1

a2
i (Yi − μi )

2 +
n∑

i=1

n∑
i=1

i 7= j

ai a j (Yi − μi )(Y j − μ j )

⎤⎦
=

n∑
i=1

a2
i E(Yi − μi )

2 +
n∑

i=1

n∑
i=1

i 7= j

ai a j E
[
(Yi − μi )(Y j − μ j )

]
.

By the definitions of variance and covariance, we have

V (U1) =
n∑

i=1

a2
i V (Yi ) +

n∑
i=1

n∑
i=1

i 7= j

ai a j Cov(Yi , Y j ).

Because Cov(Yi , Y j ) = Cov(Y j , Yi ), we can write

V (U1) =
n∑

i=1

a2
i V (Yi ) + 2

∑ ∑
1≤i< j≤n

ai a j Cov(Yi , Y j ).

Similar steps can be used to obtain (c). We have

Cov(U1, U2) = E{[U1 − E(U1)] [U2 − E(U2)]}

= E

[(
n∑

i=1

ai Yi −
n∑

i=1

aiμi

)(
m∑

j=1

b j X j −
m∑

j=1

b jξ j

)]

= E

{[
n∑

i=1

ai (Yi − μi )

][
m∑

j=1

b j (X j − ξ j )

]}

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.8 The Expected Value and Variance of Linear Functions of Random Variables 273

= E

[
n∑

i=1

m∑
j=1

ai b j (Yi − μi )(X j − ξ j )

]

=
n∑

i=1

m∑
j=1

ai b j E[(Yi − μi )(X j − ξ j )]

=
n∑

i=1

m∑
j=1

ai b j Cov(Yi , X j ).

On observing that Cov(Yi , Yi ) = V (Yi ), we can see that (b) is a special case
of (c).

EXAMPLE 5.26 Refer to Examples 5.4 and 5.20. In Example 5.20, we were interested in Y1 − Y2, the
proportional amount of gasoline remaining at the end of a week. Find the variance of
Y1 − Y2.

Solution Using Theorem 5.12, we have

V (Y1 − Y2) = V (Y1) + V (Y2) − 2 Cov(Y1, Y2).

Because

f1(y1) =
{

3y2
1 , 0 ≤ y1 ≤ 1,

0, elsewhere,

and

f2(y2) =
{

(3/2)(1 − y2
2), 0 ≤ y2 ≤ 1,

0, elsewhere,

it follows that

E(Y 2
1) =

∫ 1

0
3y4

1 dy1 = 3

5
,

E(Y 2
2) =

∫ 1

0

3

2
y2

2(1 − y2
2) dy2 = 3

2

[
1

3
− 1

5

]
= 1

5
.

From Example 5.20, we have E(Y1) = 3/4 and E(Y2) = 3/8. Thus,

V (Y1) = (3/5) − (3/4)2 = .04 and V (Y2) = (1/5) − (3/8)2 = .06.

In Example 5.22, we determined that Cov(Y1, Y2) = .02. Therefore,

V (Y1 − Y2) = V (Y1) + V (Y2) − 2 Cov(Y1, Y2)

= .04 + .06 − 2(.02) = .06.

The standard deviation of Y1 − Y2 is then
√

.06 = .245.
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EXAMPLE 5.27 Let Y1, Y2, . . . , Yn be independent random variables with E(Yi ) = μ and V (Yi ) = σ 2.
(These variables may denote the outcomes of n independent trials of an experiment.)
Define

Y = 1

n

n∑
i=1

Yi

and show that E(Y ) = μ and V (Y ) = σ 2/n.

Solution Notice that Y is a linear function of Y1, Y2, . . . , Yn with all constants ai equal to 1/n.
That is,

Y =
(

1

n

)
Y1 + · · · +

(
1

n

)
Yn.

By Theorem 5.12(a),

E(Y ) =
n∑

i=1

aiμi =
n∑

i=1

aiμ = μ

n∑
i=1

ai = μ

n∑
i=1

1

n
= nμ

n
= μ.

By Theorem 5.12(b),

V (Y ) =
n∑

i=1

a2
i V (Yi ) + 2

n∑
i=1

n∑
i=1

i< j

ai a j Cov(Yi , Y j ).

The covariance terms all are zero because the random variables are independent. Thus,

V (Y ) =
n∑

i=1

(
1

n

)2

σ 2
i =

n∑
i=1

(
1

n

)2

σ 2 = 1

n2

n∑
i=1

σ 2 = nσ 2

n2
= σ 2

n
.

EXAMPLE 5.28 The number of defectives Y in a sample of n = 10 items selected from a manufactur-
ing process follows a binomial probability distribution. An estimator of the fraction
defective in the lot is the random variable p̂ = Y/n. Find the expected value and
variance of p̂.

Solution The term p̂ is a linear function of a single random variable Y , where p̂ = a1Y and
a1 = 1/n. Then by Theorem 5.12,

E( p̂) = a1 E(Y ) = 1

n
E(Y ).

The expected value and variance of a binomial random variable are np and npq,
respectively. Substituting for E(Y ), we obtain

E( p̂) = 1

n
(np) = p.
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Thus, the expected value of the number of defectives Y , divided by the sample size,
is p. Similarly

V ( p̂) = a2
1 V (Y ) =

(
1

n

)2

npq = pq

n
.

EXAMPLE 5.29 Suppose that an urn contains r red balls and (N − r) black balls. A random
sample of n balls is drawn without replacement and Y , the number of red balls
in the sample, is observed. From Chapter 3 we know that Y has a hypergeometric
probability distribution. Find the mean and variance of Y .

Solution We will first observe some characteristics of sampling without replacement. Suppose
that the sampling is done sequentially and we observe outcomes for X1, X2, . . . , Xn ,
where

X i =
{

1, if the i th draw results in a red ball,

0, otherwise.

Unquestionably, P(X1 = 1) = r/N . But it is also true that P(X2 = 1) = r/N
because

P(X2 = 1) = P(X1 = 1, X2 = 1) + P(X1 = 0, X2 = 1)

= P(X1 = 1)P(X2 = 1|X1 = 1) + P(X1 = 0)P(X2 = 1|X1 = 0)

=
( r

N

) (
r − 1

N − 1

)
+

(
N − r

N

) (
r

N − 1

)
= r(N − 1)

N (N − 1)
= r

N
.

The same is true for Xk ; that is,

P(Xk = 1) = r

N
, k = 1, 2, . . . , n.

Thus, the (unconditional) probability of drawing a red ball on any draw is r/N .
In a similar way it can be shown that

P(X j = 1, Xk = 1) = r(r − 1)

N (N − 1)
, j 7= k.

Now, observe that Y = ∑n
i=1 X i , and, hence,

E(Y ) =
n∑

i=1

E(X i ) =
n∑

i=1

( r

N

)
= n

( r

N

)
.

To find V (Y ) we need V (X i ) and Cov(X i , X j ). Because X i is 1 with probability
r/N and 0 with probability 1 − (r/N ), it follows that

V (X i ) = r

N

(
1 − r

N

)
.
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Also,

Cov(X i , X j ) = E(X i X j ) − E(X i )E(X j ) = r(r − 1)

N (N − 1)
−

( r

N

)2

= − r

N

(
1 − r

N

) (
1

N − 1

)
because X i X j = 1 if and only if X i = 1 and X j = 1 and X i X j = 0 otherwise. From
Theorem 5.12, we know that

V (Y ) =
n∑

i=1

V (X i ) + 2
∑ ∑

i< j

Cov(X i , X j )

=
n∑

i=1

( r

N

) (
1 − r

N

)
+ 2

∑ ∑
i< j

[
− r

N

(
1 − r

N

) (
1

N − 1

)]

= n
( r

N

) (
1 − r

N

)
− n(n − 1)

( r

N

) (
1 − r

N

) (
1

N − 1

)
because the double summation contains n(n−1)/2 equal terms. A little algebra yields

V (Y ) = n
( r

N

) (
1 − r

N

) (
N − n

N − 1

)
.

To appreciate the usefulness of Theorem 5.12, notice that the derivations contained
in Example 5.29 are much simpler than those outlined in Exercise 3.216, where
the mean and variance were derived by using the probabilities associated with the
hypergeometric distribution.

Exercises
5.102 A firm purchases two types of industrial chemicals. Type I chemical costs $3 per gallon, whereas

type II costs $5 per gallon. The mean and variance for the number of gallons of type I chemical
purchased, Y1, are 40 and 4, respectively. The amount of type II chemical purchased, Y2, has
E(Y2) = 65 gallons and V (Y2) = 8. Assume that Y1 and Y2 are independent and find the mean
and variance of the total amount of money spent per week on the two chemicals.

5.103 Assume that Y1, Y2, and Y3 are random variables, with

E(Y1) = 2, E(Y2) = −1, E(Y3) = 4,
V (Y1) = 4, V (Y2) = 6, V (Y3) = 8,

Cov(Y1, Y2) = 1, Cov(Y1, Y3) = −1, Cov(Y2, Y3) = 0.

Find E(3Y1 + 4Y2 − 6Y3) and V (3Y1 + 4Y2 − 6Y3).

5.104 In Exercise 5.3, we determined that the joint probability distribution of Y1, the number of
married executives, and Y2, the number of never-married executives, is given by

p(y1, y2) =

(
4
y1

) (
3
y2

) (
2

3 − y1 − y2

)
(

9
3

)
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where y1 and y2 are integers, 0 ≤ y1 ≤ 3, 0 ≤ y2 ≤ 3, and 1 ≤ y1 + y2 ≤ 3.

a Find E(Y1 + Y2) and V (Y1 + Y2) by first finding the probability distribution of Y1 + Y2.

b In Exercise 5.90, we determined that Cov(Y1, Y2) = −1/3. Find E(Y1 + Y2) and
V (Y1 + Y2) by using Theorem 5.12.

5.105 In Exercise 5.8, we established that

f (y1, y2) =
{

4y1 y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. In Exercise 5.52, we established that Y1 and Y2 are
independent; in Exercise 5.76, we determined that E(Y1 − Y2) = 0 and found the value for
V (Y1). Find V (Y1 − Y2).

5.106 In Exercise 5.9, we determined that

f (y1, y2) =
{

6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function. In Exercise 5.76, we derived the fact that
E(Y1 −3Y2) = −5/4; in Exercise 5.92, we proved that Cov(Y1, Y2) = 1/40. Find V (Y1 −3Y2).

5.107 In Exercise 5.12, we were given the following joint probability density function for the random
variables Y1 and Y2, which were the proportions of two components in a sample from a mixture
of insecticide:

f (y1, y2) =
{

2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0 ≤ y1 + y2 ≤ 1,

0, elsewhere.

For the two chemicals under consideration, an important quantity is the total proportion Y1 +Y2

found in any sample. Find E(Y1 + Y2) and V (Y1 + Y2).

5.108 If Y1 is the total time between a customer’s arrival in the store and departure from the service
window and if Y2 is the time spent in line before reaching the window, the joint density of these
variables was given in Exercise 5.15 to be

f (y1, y2) =
{

e−y1 , 0 ≤ y2 ≤ y1 ≤ ∞,

0, elsewhere.

The random variable Y1 − Y2 represents the time spent at the service window. Find E(Y1 − Y2)

and V (Y1 − Y2). Is it highly likely that a randomly selected customer would spend more than
4 minutes at the service window?

5.109 In Exercise 5.16, Y1 and Y2 denoted the proportions of time that employees I and II actually
spent working on their assigned tasks during a workday. The joint density of Y1 and Y2 is
given by

f (y1, y2) =
{

y1 + y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

In Exercise 5.80, we derived the mean of the productivity measure 30Y1 + 25Y2. Find the vari-
ance of this measure of productivity. Give an interval in which you think the total produc-
tivity measures of the two employees should lie for at least 75% of the days in question.

5.110 Suppose that Y1 and Y2 have correlation coefficient ρ = .2. What is is the value of the correlation
coefficient between
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a 1 + 2Y1 and 3 + 4Y2?

b 1 + 2Y1 and 3 − 4Y2?

c 1 − 2Y1 and 3 − 4Y2?

5.111 Suppose that Y1 and Y2 have correlation coefficient ρY1,Y2 and for constants a, b, c and d let
W1 = a + bY1 and W2 = c + dY2.

a Show that the correlation coefficient between W1 and W2, ρW1,W2 , is such that |ρY1,Y2 | =
|ρW1,W2 |.

b Does this result explain the results that you obtained in Exercise 5.110?

5.112 In Exercise 5.18, Y1 and Y2 denoted the lengths of life, in hundreds of hours, for components
of types I and II, respectively, in an electronic system. The joint density of Y1 and Y2 is

f (y1, y2) =
{

(1/8)y1e−(y1+y2)/2, y1 > 0, y2 > 0,

0, elsewhere.

The cost C of replacing the two components depends upon their length of life at failure and is
given by C = 50 + 2Y1 + 4Y2. Find E(C) and V (C).

5.113 A retail grocery merchant figures that her daily gain X from sales is a normally distributed
random variable with μ = 50 and σ = 3 (measurements in dollars). X can be negative if she is
forced to dispose of enough perishable goods. Also, she figures daily overhead costs Y to have
a gamma distribution with α = 4 and β = 2. If X and Y are independent, find the expected
value and variance of her net daily gain. Would you expect her net gain for tomorrow to rise
above $70?

5.114 For the daily output of an industrial operation, let Y1 denote the amount of sales and Y2, the
costs, in thousands of dollars. Assume that the density functions for Y1 and Y2 are given by

f1(y1) =
{

(1/6)y3
1 e−y1 , y1 > 0,

0, y1 ≤ 0,
and f2(y2) =

{
(1/2)e−y2/2, y2 > 0,

0, y2 ≤ 0.

The daily profit is given by U = Y1 − Y2.

a Find E(U ).

b Assuming that Y1 and Y2 are independent, find V (U ).

c Would you expect the daily profit to drop below zero very often? Why?

5.115 Refer to Exercise 5.88. If Y denotes the number of tosses of the die until you observe each of
the six faces, Y = Y1 + Y2 + Y3 + Y4 + Y5 + Y6 where Y1 is the trial on which the first face
is tossed, Y1 = 1, Y2 is the number of additional tosses required to get a face different than
the first, Y3 is the number of additional tosses required to get a face different than the first two
distinct faces, . . . , Y6 is the number of additional tosses to get the last remaining face after all
other faces have been observed.

a Show that Cov(Yi , Y j ) = 0, i, j = 1, 2, . . . , 6, i 7= j .

b Use Theorem 5.12 to find V (Y ).

c Give an interval that will contain Y with probability at least 3/4.

5.116 Refer to Exercise 5.75. Use Theorem 5.12 to explain why V (Y1 + Y2) = V (Y1 − Y2).

*5.117 A population of N alligators is to be sampled in order to obtain an approximate measure of
the difference between the proportions of sexually mature males and sexually mature females.
Obviously, this parameter has important implications for the future of the population. Assume
that n animals are to be sampled without replacement. Let Y1 denote the number of mature
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females and Y2 the number of mature males in the sample. If the population contains proportions
p1 and p2 of mature females and males, respectively (with p1 + p2 < 1), find expressions for

E

(
Y1

n
− Y2

n

)
and V

(
Y1

n
− Y2

n

)
.

5.118 The total sustained load on the concrete footing of a planned building is the sum of the dead
load plus the occupancy load. Suppose that the dead load X1 has a gamma distribution with
α1 = 50 and β1 = 2, whereas the occupancy load X2 has a gamma distribution with α2 = 20
and β2 = 2. (Units are in kips.) Assume that X1 and X2 are independent.

a Find the mean and variance of the total sustained load on the footing.

b Find a value for the sustained load that will be exceeded with probability less than 1/16.

5.9 The Multinomial Probability Distribution
Recall from Chapter 3 that a binomial random variable results from an experiment
consisting of n trials with two possible outcomes per trial. Frequently we encounter
similar situations in which the number of possible outcomes per trial is more than
two. For example, experiments that involve blood typing typically have at least four
possible outcomes per trial. Experiments that involve sampling for defectives may
categorize the type of defects observed into more than two classes.

A multinomial experiment is a generalization of the binomial experiment.

DEFINITION 5.11 A multinomial experiment possesses the following properties:

1. The experiment consists of n identical trials.
2. The outcome of each trial falls into one of k classes or cells.
3. The probability that the outcome of a single trial falls into cell i , is pi ,

i = 1, 2, . . . , k and remains the same from trial to trial. Notice that
p1 + p2 + p3 + · · · + pk = 1.

4. The trials are independent.
5. The random variables of interest are Y1, Y2, . . . , Yk , where Yi equals

the number of trials for which the outcome falls into cell i . Notice that
Y1 + Y2 + Y3 + · · · + Yk = n.

The joint probability function for Y1, Y2, . . . , Yk is given by

p(y1, y2, . . . , yk) = n!

y1!y2! · · · yk!
py1

1 py2
2 · · · pyk

k ,

where
k∑

i=1

pi = 1 and
k∑

i=1

yi = n.

Finding the probability that the n trials in a multinomial experiment result in
(Y1 = y1, Y2 = y2, . . . , Yk = yk) is an excellent application of the probabilistic
methods of Chapter 2. We leave this problem as an exercise.
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DEFINITION 5.12 Assume that p1, p2, . . . , pk are such that
∑k

i=1 pi = 1, and pi > 0 for
i = 1, 2, . . . , k. The random variables Y1, Y2, . . . , Yk , are said to have a multi-
nomial distribution with parameters n and p1, p2, . . . , pk if the joint probability
function of Y1, Y2, . . . , Yk is given by

p(y1, y2, . . . , yk) = n!

y1!y2! · · · yk!
py1

1 py2
2 · · · pyk

k ,

where, for each i , yi = 0, 1, 2, . . . , n and
∑k

i=1 yi = n.

Many experiments involving classification are multinomial experiments. For ex-
ample, classifying people into five income brackets results in an enumeration or count
corresponding to each of five income classes. Or we might be interested in studying
the reaction of mice to a particular stimulus in a psychological experiment. If the mice
can react in one of three ways when the stimulus is applied, the experiment yields
the number of mice falling into each reaction class. Similarly, a traffic study might
require a count and classification of the types of motor vehicles using a section of
highway. An industrial process might manufacture items that fall into one of three
quality classes: acceptable, seconds, and rejects. A student of the arts might classify
paintings into one of k categories according to style and period, or we might wish
to classify philosophical ideas of authors in a study of literature. The result of an
advertising campaign might yield count data indicating a classification of consumer
reactions. Many observations in the physical sciences are not amenable to measure-
ment on a continuous scale and hence result in enumerative data that correspond to
the numbers of observations falling into various classes.

Notice that the binomial experiment is a special case of the multinomial experiment
(when there are k = 2 classes).

EXAMPLE 5.30 According to recent census figures, the proportions of adults (persons over 18 years
of age) in the United States associated with five age categories are as given in the
following table.

Age Proportion

18–24 .18
25–34 .23
35–44 .16
45–64 .27
65↑ .16

If these figures are accurate and five adults are randomly sampled, find the probability
that the sample contains one person between the ages of 18 and 24, two between the
ages of 25 and 34, and two between the ages of 45 and 64.

Solution We will number the five age classes 1, 2, 3, 4, and 5 from top to bottom and will
assume that the proportions given are the probabilities associated with each of the
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classes. Then we wish to find

p(y1, y2, y3, y4, y5) = n!

y1! y2! y3! y4! y5!
py1

1 py2
2 py3

3 py4
4 py5

5 ,

for n = 5 and y1 = 1, y2 = 2, y3 = 0, y4 = 2, and y5 = 0. Substituting these values
into the formula for the joint probability function, we obtain

p(1, 2, 0, 2, 0) = 5!

1! 2! 0! 2! 0!
(.18)1(.23)2(.16)0(.27)2(.16)0

= 30(.18)(.23)2(.27)2 = .0208.

THEOREM 5.13 If Y1, Y2, . . . , Yk have a multinomial distribution with parameters n and p1,

p2, . . . , pk , then

1. E(Yi ) = npi , V (Yi ) = npi qi .
2. Cov(Ys, Yt ) = −nps pt , if s 7= t .

Proof The marginal distribution of Yi can be used to derive the mean and variance.
Recall that Yi may be interpreted as the number of trials falling into cell i .
Imagine all of the cells, excluding cell i , combined into a single large cell. Then
every trial will result in cell i or in a cell other than cell i , with probabilities
pi and 1 − pi , respectively. Thus, Yi possesses a binomial marginal probability
distribution. Consequently,

E(Yi ) = npi and V (Yi ) = npi qi , where qi = 1 − pi .

The same results can be obtained by setting up the expectations and evaluating.
For example,

E(Y1) =
∑

y1

∑
y2

· · ·
∑

yk

y1
n!

y1!y2! · · · yk!
py1

1 py2
2 · · · pyk

k .

Because we have already derived the expected value and variance of Yi , we
leave the summation of this expectation to the interested reader.

The proof of part 2 uses Theorem 5.12. Think of the multinomial experiment
as a sequence of n independent trials and define, for s 7= t ,

Ui =
{

1, if trial i results in class s,

0, otherwise,

and

Wi =
{

1, if trial i results in class t,

0, otherwise.

Then

Ys =
n∑

i=1

Ui and Yt =
n∑

j=1

W j .
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(Because Ui = 1 or 0 depending upon whether the i th trial resulted in class s,
Ys is simply the sum of a series of 0s and 1s. A 1 occurs in the sum everytime
we observe an item from class s, and a 0 occurs everytime we observe any other
class. Thus, Ys is simply the number of times class s is observed. A similar
interpretation applies to Yt .)

Notice that Ui and Wi cannot both equal 1 (the i th item cannot simultane-
ously be in classes s and t). Thus, the product Ui Wi always equals zero, and
E(Ui Wi ) = 0. The following results allow us to evaluate Cov(Ys, Yt ):

E(Ui ) = ps

E(W j ) = pt

Cov(Ui , W j ) = 0, if i 7= j because the trials are independent

Cov(Ui , Wi ) = E(Ui Wi ) − E(Ui )E(Wi ) = 0 − ps pt

From Theorem 5.12, we then have

Cov(Ys, Yt ) =
n∑

i=1

n∑
j=1

Cov(Ui , W j )

=
n∑

i=1

Cov(Ui , Wi ) +
∑ ∑

i 7= j

Cov(Ui , W j )

=
n∑

i=1

(−ps pt ) +
∑ ∑

i 7= j

0 = −nps pt .

The covariance here is negative, which is to be expected because a large number
of outcomes in cell s would force the number in cell t to be small.

Inferential problems associated with the multinomial experiment will be dis-
cussed later.

Exercises
5.119 A learning experiment requires a rat to run a maze (a network of pathways) until it locates one

of three possible exits. Exit 1 presents a reward of food, but exits 2 and 3 do not. (If the rat
eventually selects exit 1 almost every time, learning may have taken place.) Let Yi denote the
number of times exit i is chosen in successive runnings. For the following, assume that the rat
chooses an exit at random on each run.

a Find the probability that n = 6 runs result in Y1 = 3, Y2 = 1, and Y3 = 2.

b For general n, find E(Y1) and V (Y1).

c Find Cov(Y2, Y3) for general n.

d To check for the rat’s preference between exits 2 and 3, we may look at Y2 − Y3. Find
E(Y2 − Y3) and V (Y2 − Y3) for general n.

5.120 A sample of size n is selected from a large lot of items in which a proportion p1 contains exactly
one defect and a proportion p2 contains more than one defect (with p1 + p2 < 1). The cost of
repairing the defective items in the sample is C = Y1 + 3Y2, where Y1 denotes the number of
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items with one defect and Y2 denotes the number with two or more defects. Find the expected
value and variance of C .

5.121 Refer to Exercise 5.117. Suppose that the number N of alligators in the population is very
large, with p1 = .3 and p2 = .1.

a Find the probability that, in a sample of five alligators, Y1 = 2 and Y2 = 1.

b If n = 5, find E

(
Y1

n
− Y2

n

)
and V

(
Y1

n
− Y2

n

)
.

5.122 The weights of a population of mice fed on a certain diet since birth are assumed to be normally
distributed with μ = 100 and σ = 20 (measurement in grams). Suppose that a random sample
of n = 4 mice is taken from this population. Find the probability that

a exactly two weigh between 80 and 100 grams and exactly one weighs more than 100 grams.

b all four mice weigh more than 100 grams.

5.123 The National Fire Incident Reporting Service stated that, among residential fires, 73% are in
family homes, 20% are in apartments, and 7% are in other types of dwellings. If four residential
fires are independently reported on a single day, what is the probability that two are in family
homes, one is in an apartment, and one is in another type of dwelling?

5.124 The typical cost of damages caused by a fire in a family home is $20,000. Comparable costs
for an apartment fire and for fire in other dwelling types are $10,000 and $2000, respectively.
If four fires are independently reported, use the information in Exercise 5.123 to find the

a expected total damage cost.

b variance of the total damage cost.

5.125 When commercial aircraft are inspected, wing cracks are reported as nonexistent, detectable,
or critical. The history of a particular fleet indicates that 70% of the planes inspected have no
wing cracks, 25% have detectable wing cracks, and 5% have critical wing cracks. Five planes
are randomly selected. Find the probability that

a one has a critical crack, two have detectable cracks, and two have no cracks.

b at least one plane has critical cracks.

5.126 A large lot of manufactured items contains 10% with exactly one defect, 5% with more than
one defect, and the remainder with no defects. Ten items are randomly selected from this lot
for sale. If Y1 denotes the number of items with one defect and Y2, the number with more than
one defect, the repair costs are Y1 + 3Y2. Find the mean and variance of the repair costs.

5.127 Refer to Exercise 5.126. Let Y denote the number of items among the ten that contain at least
one defect. Find the probability that Y

a equals 2.

b is at least 1.

5.10 The Bivariate Normal
Distribution (Optional)
No discussion of multivariate probability distributions would be complete without
reference to the multivariate normal distribution, which is a keystone of much modern
statistical theory. In general, the multivariate normal density function is defined for
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k continuous random variables, Y1, Y2, . . . , Yk . Because of its complexity, we will
present only the bivariate density function (k = 2):

f (y1, y2) = e−Q/2

2πσ1σ2

√
1 − ρ2

, −∞ < y1 < ∞, −∞ < y2 < ∞,

where

Q = 1

1 − ρ2

[
(y1 − μ1)

2

σ 2
1

− 2ρ
(y1 − μ1)(y2 − μ2)

σ1σ2
+ (y2 − μ2)

2

σ 2
2

]
.

The bivariate normal density function is a function of five parameters: μ1, μ2, σ 2
1 ,

σ 2
2 , and ρ. The choice of notation employed for these parameters is not coincidental.

In Exercise 5.128, you will show that the marginal distributions of Y1 and Y2 are
normal distributions with means μ1 and μ2 and variances σ 2

1 and σ 2
2 , respectively.

With a bit of somewhat tedious integration, we can show that Cov(Y1, Y2) = ρσ1σ2.
If Cov(Y1, Y2) = 0—or, equivalently, if ρ = 0—then

f (y1, y2) = g(y1)h(y2),

where g(y1) is a nonnegative function of y1 alone and h(y2) is a nonnegative function
of y2 alone. Therefore, if ρ = 0, Theorem 5.5 implies that Y1 and Y2 are indepen-
dent. Recall that zero covariance for two random variables does not generally imply
independence. However, if Y1 and Y2 have a bivariate normal distribution, they are
independent if and only if their covariance is zero.

The expression for the joint density function, k > 2, is most easily expressed by
using the matrix algebra. A discussion of the general case can be found in the refer-
ences at the end of this chapter.

Exercises
*5.128 Let Y1 and Y2 have a bivariate normal distribution.

a Show that the marginal distribution of Y1 is normal with mean μ1 and variance σ 2
1 .

b What is the marginal distribution of Y2?

*5.129 Let Y1 and Y2 have a bivariate normal distribution. Show that the conditional distribution of

Y1 given that Y2 = y2 is a normal distribution with mean μ1 + ρ
σ1

σ2
(y2 − μ2) and variance

σ 2
1 (1 − ρ2).

*5.130 Let Y1, Y2, . . . , Yn be independent random variables with E(Yi ) = μ and V (Yi ) = σ 2 for
i = 1, 2, . . . , n. Let

U1 =
n∑

i=1

ai Yi and U2 =
n∑

i=1

bi Yi ,

where a1, a2, . . . , an , and b1, b2, . . . , bn are constants. U1 and U2 are said to be orthogonal if
Cov(U1, U2) = 0.

a Show that U1 and U2 are orthogonal if and only if
∑n

i=1 ai bi = 0.

b Suppose, in addition, that Y1, Y2, . . . , Yn have a multivariate normal distribution. Then U1

and U2 have a bivariate normal distribution. Show that U1 and U2 are independent if they
are orthogonal.
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*5.131 Let Y1 and Y2 be independent normally distributed random variables with means μ1 and μ2,
respectively, and variances σ 2

1 = σ 2
2 = σ 2.

a Show that Y1 and Y2 have a bivariate normal distribution with ρ = 0.

b Consider U1 = Y1 + Y2 and U2 = Y1 − Y2. Use the result in Exercise 5.130 to show that
U1 and U2 have a bivariate normal distribution and that U1 and U2 are independent.

*5.132 Refer to Exercise 5.131. What are the marginal distributions of U1 and U2?

5.11 Conditional Expectations
Section 5.3 contains a discussion of conditional probability functions and conditional
density functions, which we will now relate to conditional expectations. Conditional
expectations are defined in the same manner as univariate expectations except that
conditional densities and probability functions are used in place of their marginal
counterparts.

DEFINITION 5.13 If Y1 and Y2 are any two random variables, the conditional expectation of g(Y1),
given that Y2 = y2, is defined to be

E(g(Y1) | Y2 = y2) =
∫ ∞

−∞
g(y1) f (y1 | y2) dy1

if Y1 and Y2 are jointly continuous and

E(g(Y1) | Y2 = y2) =
∑
all y1

g(y1)p(y1 | y2)

if Y1 and Y2 are jointly discrete.

EXAMPLE 5.31 Refer to the random variables Y1 and Y2 of Example 5.8, where the joint density
function is given by

f (y1, y2) =
{ 1/2, 0 ≤ y1 ≤ y2 ≤ 2,

0, elsewhere.

Find the conditional expectation of the amount of sales, Y1, given that Y2 = 1.5.

Solution In Example 5.8, we found that, if 0 < y2 ≤ 2,

f (y1 | y2) =
{ 1/y2, 0 < y1 ≤ y2,

0, elsewhere.

Thus, from Definition 5.13, for any value of y2 such that 0 < y2 ≤ 2,

E(Y1 | Y2 = y2) =
∫ ∞

−∞
y1 f (y1 | y2) dy1

=
∫ y2

0
y1

(
1

y2

)
dy1 = 1

y2

(
y2

1

2

]y2

0

)
= y2

2
.
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Because we are interested in the value y2 = 1.5, it follows that E(Y1 | Y2 = 1.5) =
1.5/2 = 0.75. That is, if the soft-drink machine contains 1.5 gallons at the start of
the day, the expected amount to be sold that day is 0.75 gallon.

In general, the conditional expectation of Y1 given Y2 = y2 is a function of y2. If
we now let Y2 range over all of its possible values, we can think of the conditional
expectation E(Y1 | Y2) as a function of the random variable Y2. In Example 5.31,
we obtained E(Y1 | Y2 = y2) = y2/2. It follows that E(Y1 | Y2) = Y2/2. Because
E(Y1 | Y2) is a function of the random variable Y2, it is itself a random variable; and
as such, it has a mean and a variance. We consider the mean of this random variable
in Theorem 5.14 and the variance in Theorem 5.15.

THEOREM 5.14 Let Y1 and Y2 denote random variables. Then

E(Y1) = E[E(Y1 | Y2)],

where on the right-hand side the inside expectation is with respect to the con-
ditional distribution of Y1 given Y2 and the outside expectation is with respect
to the distribution of Y2.

Proof Suppose that Y1 and Y2 are jointly continuous with joint density function
f (y1, y2) and marginal densities f1(y1) and f2(y2), respectively. Then

E(Y1) =
∫ ∞

−∞

∫ ∞

−∞
y1 f (y1, y2) dy1 dy2

=
∫ ∞

−∞

∫ ∞

−∞
y1 f (y1 | y2) f2(y2) dy1 dy2

=
∫ ∞

−∞

{∫ ∞

−∞
y1 f (y1 | y2) dy1

}
f2(y2) dy2

=
∫ ∞

−∞
E(Y1 | Y2 = y2) f2(y2) dy2 = E [E(Y1 | Y2)] .

The proof is similar for the discrete case.

EXAMPLE 5.32 A quality control plan for an assembly line involves sampling n = 10 finished items
per day and counting Y , the number of defectives. If p denotes the probability of
observing a defective, then Y has a binomial distribution, assuming that a large number
of items are produced by the line. But p varies from day to day and is assumed to have
a uniform distribution on the interval from 0 to 1/4. Find the expected value of Y .

Solution From Theorem 5.14, we know that E(Y ) = E [E(Y |p)]. For a given p, Y has a
binomial distribution, and hence E(Y |p) = np. Thus,

E(Y ) = E[E(Y |p)] = E(np) = nE(p) = n

(
1/4 − 0

2

)
= n

8
,
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and for n = 10

E(Y ) = 10/8 = 1.25.

In the long run, this inspection policy will average 1.25 defectives per day.

The conditional variance of Y1 given Y2 = y2 is defined by analogy with an
ordinary variance, again using the conditional density or probability function of
Y1 given Y2 = y2 in place of the ordinary density or probability function of Y1.
That is,

V (Y1 | Y2 = y2) = E(Y 2
1 | Y2 = y2) − [E(Y1 | Y2 = y2)]

2 .

As in the case of the conditional mean, the conditional variance is a function of y2.
Letting Y2 range over all of its possible values, we can define V (Y1 | Y2) as a random
variable that is a function of Y2. Specifically, if g(y2) = V (Y1 | Y2 = y2) is a particular
function of the observed value, y2, then g(Y2) = V (Y1 | Y2) is the same function of
the random variable, Y2. The expected value of V (Y1 | Y2) is useful in computing the
variance of Y1, as detailed in Theorem 5.15.

THEOREM 5.15 Let Y1 and Y2 denote random variables. Then

V (Y1) = E
[
V (Y1 | Y2)

] + V
[
E(Y1 | Y2)

]
.

Proof As previously indicated, V (Y1 | Y2) is given by

V (Y1 | Y2) = E(Y 2
1 | Y2) − [

E(Y1 | Y2)
]2

and

E
[
V (Y1 | Y2)

] = E
[
E(Y 2

1 | Y2)
] − E

{[
E(Y1 | Y2)

]2}
.

By definition,

V
[
E(Y1 | Y2)

] = E
{[

E(Y1 | Y2)
]2

}
− {

E
[
E(Y1 | Y2)

]}2
.

The variance of Y1 is

V (Y1) = E
[
Y 2

1

] − [
E(Y1)

]2

= E
{

E
[
Y 2

1 | Y2
]} − {

E
[
E(Y1 | Y2)

]}2

= E
{

E
[
Y 2

1 | Y2
]} − E

{[
E(Y1 | Y2)

]2} + E
{[

E(Y1 | Y2)
]2}

− {
E

[
E(Y1 | Y2)

]}2

= E
[
V (Y1 | Y2)

] + V
[
E(Y1 | Y2)

]
.
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EXAMPLE 5.33 Refer to Example 5.32. Find the variance of Y .

Solution From Theorem 5.15 we know that

V (Y1) = E
[
V (Y1 | Y2)

] + V
[
E(Y1 | Y2)

]
.

For a given p, Y has a binomial distribution, and hence E(Y | p) = np and V (Y | p) =
npq. Thus,

V (Y ) = E
[
V (Y | p)

] + V
[
E(Y | p)

]
= E(npq) + V (np) = nE [p(1 − p)] + n2V (p).

Because p is uniformly distributed on the interval (0, 1/4) and E(p2) = V (p) +
[E(p)]2, it follows that

E(p) = 1

8
, V (p) = (1/4 − 0)2

12
= 1

192
, E(p2) = 1

192
+ 1

64
= 1

48
.

Thus,

V (Y ) = nE [p(1 − p)] + n2V (p) = n
[
E(p) − E(p2)

] + n2V (p)

= n

(
1

8
− 1

48

)
+ n2

(
1

192

)
= 5n

48
+ n2

192
,

and for n = 10,

V (Y ) = 50/48 + 100/192 = 1.5625.

Thus, the standard deviation of Y is σ = √
1.5625 = 1.25.

The mean and variance of Y calculated in Examples 5.32 and 5.33 could be checked
by finding the unconditional probability function of Y and computing E(Y ) and V (Y )

directly. In doing so, we would need to find the joint distribution of Y and p. From
this joint distribution, the marginal probability function of Y can be obtained and
E(Y ) determined by evaluating

∑
y yp(y). The variance can be determined in the

usual manner, again using the marginal probability function of Y . In Examples 5.32
and 5.33, we avoided working directly with these joint and marginal distributions.
Theorems 5.14 and 5.15 permitted a much quicker calculation of the desired mean
and variance. As always, the mean and variance of a random variable can be used
with Tchebysheff’s theorem to provide bounds for probabilities when the distribution
of the variable is unknown or difficult to derive.

In Examples 5.32 and 5.33, we encountered a situation where the distribution
of a random variable (Y = the number of defectives) was given conditionally for
possible values of a quantity p that could vary from day to day. The fact that p varied
was accommodated by assigning a probability distribution to this variable. This is
an example of a hierarchical model. In such models, the distribution of a variable of
interest, say, Y , is given, conditional on the value of a “parameter” θ . Uncertainty
about the actual value of θ is modeled by assigning a probability distribution to it.
Once we specify the conditional distribution of Y given θ and the marginal distribution
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of θ , the joint distribution of Y and θ is obtained by multiplying the conditional by the
marginal. The marginal distribution of Y is then obtained from the joint distribution
by integrating or summing over the possible values of θ . The results of this section
can be used to find E(Y ) and V (Y ) without finding this marginal distribution. Other
examples of hierarchical models are contained in Exercises 5.136, 5.138, 5.141 and
5.142.

Exercises
5.133 In Exercise 5.9, we determined that

f (y1, y2) =
{

6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1,

0, elsewhere

is a valid joint probability density function.

a Find E(Y1|Y2 = y2).

b Use the answer derived in part (a) to find E(Y1). (Compare this with the answer found in
Exercise 5.77.)

5.134 In Examples 5.32 and 5.33, we determined that if Y is the number of defectives, E(Y ) = 1.25
and V (Y ) = 1.5625. Is it likely that, on any given day, Y will exceed 6?

5.135 In Exercise 5.41, we considered a quality control plan that calls for randomly selecting three
items from the daily production (assumed large) of a certain machine and observing the number
of defectives. The proportion p of defectives produced by the machine varies from day to day
and has a uniform distribution on the interval (0, 1). Find the

a expected number of defectives observed among the three sampled items.

b variance of the number of defectives among the three sampled.

5.136 In Exercise 5.42, the number of defects per yard in a certain fabric, Y , was known to have a
Poisson distribution with parameter λ. The parameter λ was assumed to be a random variable
with a density function given by

f (λ) =
{

e−λ, λ ≥ 0,

0, elsewhere.

a Find the expected number of defects per yard by first finding the conditional expectation
of Y for given λ.

b Find the variance of Y .

c Is it likely that Y exceeds 9?

5.137 In Exercise 5.38, we assumed that Y1, the weight of a bulk item stocked by a supplier, had a
uniform distribution over the interval (0, 1). The random variable Y2 denoted the weight of the
item sold and was assumed to have a uniform distribution over the interval (0, y1), where y1

was a specific value of Y1. If the supplier stocked 3/4 ton, what amount could be expected to
be sold during the week?

5.138 Assume that Y denotes the number of bacteria per cubic centimeter in a particular liquid and
that Y has a Poisson distribution with parameter λ. Further assume that λ varies from location
to location and has a gamma distribution with parameters α and β, where α is a positive integer.
If we randomly select a location, what is the
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a expected number of bacteria per cubic centimeter?

b standard deviation of the number of bacteria per cubic centimeter?

5.139 Suppose that a company has determined that the the number of jobs per week, N , varies from
week to week and has a Poisson distribution with mean λ. The number of hours to complete
each job, Yi , is gamma distributed with parameters α and β. The total time to complete all jobs
in a week is T = ∑N

i=1 Yi . Note that T is the sum of a random number of random variables.
What is

a E(T | N = n)?

b E(T ), the expected total time to complete all jobs?

5.140 Why is E[V (Y1|Y2)] ≤ V (Y1)?

5.141 Let Y1 have an exponential distribution with mean λ and the conditional density of Y2 given
Y1 = y1 be

f (y2 | y1) =
{

1/y1, 0 ≤ y2 ≤ y1,

0, elsewhere.

Find E(Y2) and V (Y2), the unconditional mean and variance of Y2.

5.142 Suppose that Y has a binomial distribution with parameters n and p but that p varies from day
to day according to a beta distribution with parameters α and β. Show that

a E(Y ) = nα/(α + β).

b V (Y ) = nαβ(α + β + n)

(α + β)2(α + β + 1)
.

*5.143 If Y1 and Y2 are independent random variables, each having a normal distribution with mean 0
and variance 1, find the moment-generating function of U = Y1Y2. Use this moment-generating
function to find E(U ) and V (U ). Check the result by evaluating E(U ) and V (U ) directly from
the density functions for Y1 and Y2.

5.12 Summary
The multinomial experiment (Section 5.9) and its associated multinomial probabil-
ity distribution convey the theme of this chapter. Most experiments yield sample
measurements, y1, y2, . . . , yk , which may be regarded as observations on k random
variables. Inferences about the underlying structure that generates the observations—
the probabilities of falling into cells 1, 2, . . . , k—are based on knowledge of the
probabilities associated with various samples (y1, y2, . . . , yk). Joint, marginal, and
conditional distributions are essential concepts in finding the probabilities of various
sample outcomes.

Generally we draw from a population a sample of n observations, which are specific
values of Y1, Y2, . . . , Yn . Many times the random variables are independent and have
the same probability distribution. As a consequence, the concept of independence is
useful in finding the probability of observing the given sample.

The objective of this chapter has been to convey the ideas contained in the two
preceding paragraphs. The numerous details contained in the chapter are essential in
providing a solid background for a study of inference. At the same time, you should
be careful to avoid overemphasis on details; be sure to keep the broader inferential
objectives in mind.
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Supplementary Exercises
5.144 Prove Theorem 5.9 when Y1 and Y2 are independent discrete random variables.

5.145 A technician starts a job at a time Y1 that is uniformly distributed between 8:00 A.M. and
8:15 A.M. The amount of time to complete the job, Y2, is an independent random variable that
is uniformly distributed between 20 and 30 minutes. What is the probability that the job will
be completed before 8:30 A.M.?

5.146 A target for a bomb is in the center of a circle with radius of 1 mile. A bomb falls at a randomly
selected point inside that circle. If the bomb destroys everything within 1/2 mile of its landing
point, what is the probability that the target is destroyed?

5.147 Two friends are to meet at the library. Each independently and randomly selects an arrival time
within the same one-hour period. Each agrees to wait a maximum of ten minutes for the other
to arrive. What is the probability that they will meet?

5.148 A committee of three people is to be randomly selected from a group containing four Repub-
licans, three Democrats, and two independents. Let Y1 and Y2 denote numbers of Republicans
and Democrats, respectively, on the committee.

a What is the joint probability distribution for Y1 and Y2?

b Find the marginal distributions of Y1 and Y2.

c Find P(Y1 = 1|Y2 ≥ 1).

5.149 Let Y1 and Y2 have a joint density function given by

f (y1, y2) =
{

3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

a Find the marginal density functions of Y1 and Y2.

b Find P(Y1 ≤ 3/4|Y2 ≤ 1/2).

c Find the conditional density function of Y1 given Y2 = y2.

d Find P(Y1 ≤ 3/4|Y2 = 1/2).
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5.150 Refer to Exercise 5.149.

a Find E(Y2|Y1 = y1).

b Use Theorem 5.14 to find E(Y2).

c Find E(Y2) directly from the marginal density of Y2.

5.151 The lengths of life Y for a type of fuse has an exponential distribution with a density function
given by

f (y) =
{

(1/β)e−y/β , y ≥ 0,

0, elsewhere.

a If two such fuses have independent life lengths Y1 and Y2, find their joint probability density
function.

b One fuse from part (a) is in a primary system, and the other is in a backup system that
comes into use only if the primary system fails. The total effective life length of the two
fuses, therefore, is Y1 + Y2. Find P(Y1 + Y2 ≤ a), where a > 0.

5.152 In the production of a certain type of copper, two types of copper powder (types A and B) are
mixed together and sintered (heated) for a certain length of time. For a fixed volume of sintered
copper, the producer measures the proportion Y1 of the volume due to solid copper (some pores
will have to be filled with air) and the proportion Y2 of the solid mass due to type A crystals.
Assume that appropriate probability densities for Y1 and Y2 are

f1(y1) =
{

6y1(1 − y1), 0 ≤ y1 ≤ 1,

0, elsewhere,

f2(y2) =
{

3y2
2 , 0 ≤ y2 ≤ 1,

0, elsewhere.

The proportion of the sample volume due to type A crystals is then Y1Y2. Assuming that Y1

and Y2 are independent, find P(Y1Y2 ≤ .5).

5.153 Suppose that the number of eggs laid by a certain insect has a Poisson distribution with mean
λ. The probability that any one egg hatches is p. Assume that the eggs hatch independently of
one another. Find the

a expected value of Y , the total number of eggs that hatch.

b variance of Y .

5.154 In a clinical study of a new drug formulated to reduce the effects of rheumatoid arthritis,
researchers found that the proportion p of patients who respond favorably to the drug is a
random variable that varies from batch to batch of the drug. Assume that p has a probability
density function given by

f (p) =
{

12p2(1 − p), 0 ≤ p ≤ 1,

0, elsewhere.

Suppose that n patients are injected with portions of the drug taken from the same batch. Let
Y denote the number showing a favorable response. Find

a the unconditional probability distribution of Y for general n.

b E(Y ) for n = 2.
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5.155 Suppose that Y1, Y2, and Y3 are independent χ 2-distributed random variables with ν1, ν2, and
ν3 degrees of freedom, respectively, and that W1 = Y1 + Y2 and W2 = Y1 + Y3.

a In Exercise 5.87, you derived the mean and variance of W1. Find Cov(W1, W2).

b Explain why you expected the answer to part (a) to be positive.

5.156 Refer to Exercise 5.86. Suppose that Z is a standard normal random variable and that Y is an
independent χ 2 random variable with ν degrees of freedom.

a Define W = Z/
√

Y . Find Cov(Z , W ). What assumption do you need about the value of ν?

b With Z , Y , and W as above, find Cov(Y, W ).

c One of the covariances from parts (a) and (b) is positive, and the other is zero. Explain why.

5.157 A forester studying diseased pine trees models the number of diseased trees per acre, Y , as a
Poisson random variable with mean λ. However, λ changes from area to area, and its random
behavior is modeled by a gamma distribution. That is, for some integer α,

f (λ) =

⎧⎪⎨⎪⎩
1

"(α)βα
λα−1e−λ/β , λ > 0,

0, elsewhere.

Find the unconditional probability distribution for Y .

5.158 A coin has probability p of coming up heads when tossed. In n independent tosses of the coin,
let X i = 1 if the i th toss results in heads and X i = 0 if the i th toss results in tails. Then
Y , the number of heads in the n tosses, has a binomial distribution and can be represented as
Y = ∑n

i=1 X i . Find E(Y ) and V (Y ), using Theorem 5.12.

*5.159 The negative binomial random variable Y was defined in Section 3.6 as the number of the trial
on which the r th success occurs, in a sequence of independent trials with constant probability
p of success on each trial. Let X i denote a random variable defined as the number of the trial
on which the i th success occurs, for i = 1, 2, . . . , r . Now define

Wi = X i − X i−1, i = 1, 2, . . . , r,

where X0 is defined to be zero. Then we can write Y = ∑r
i=1 Wi . Notice that the random

variables W1, W2, . . . , Wr have identical geometric distributions and are mutually independent.
Use Theorem 5.12 to show that E(Y ) = r/p and V (Y ) = r(1 − p)/p2.

5.160 A box contains four balls, numbered 1 through 4. One ball is selected at random from this box.
Let

X1 = 1 if ball 1 or ball 2 is drawn,

X2 = 1 if ball 1 or ball 3 is drawn,

X3 = 1 if ball 1 or ball 4 is drawn.

The X i values are zero otherwise. Show that any two of the random variables X1, X2, and X3

are independent but that the three together are not.

5.161 Suppose that we are to observe two independent random samples: Y1, Y2, . . . , Yn denoting a
random sample from a normal distribution with mean μ1 and variance σ 2

1 ; and X1, X2, . . . , Xm

denoting a random sample from another normal distribution with mean μ2 and variance σ 2
2 .

An approximation for μ1 − μ2 is given by Y − X , the difference between the sample means.
Find E(Y − X) and V (Y − X).
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5.162 In Exercise 5.65, you determined that, for −1 ≤ α ≤ 1, the probability density function of
(Y1, Y2) is given by

f (y1, y2) =
{

[1 − α{(1 − 2e−y1)(1 − 2e−y2)}]e−y1−y2 , 0 ≤ y1, 0 ≤ y2,

0, elsewhere,

and is such that the marginal distributions of Y1 and Y2 are both exponential with mean 1. You
also showed that Y1 and Y2 are independent if and only if α = 0. Give two specific and different
joint densities that yield marginal densities for Y1 and Y2 that are both exponential with mean
1.

*5.163 Refer to Exercise 5.66. If F1(y1) and F2(y2) are two distribution functions then for any α, −1 ≤
α ≤ 1,

F(y1, y2) = F1(y1)F2(y2)[1 − α{1 − F1(y1)}{1 − F2(y2)}]
is a joint distribution function such that Y1 and Y2 have marginal distribution functions F1(y1)

and F2(y2), respectively.

a If F1(y1) and F2(y2) are both distribution functions associated with exponentially dis-
tributed random variables with mean 1, show that the joint density function of Y1 and Y2 is
the one given in Exercise 5.162.

b If F1(y1) and F2(y2) are both distribution functions associated with uniform (0, 1) random
variables, for any α, −1 ≤ α ≤ 1, evaluate F(y1, y2).

c Find the joint density functions associated with the distribution functions that you found in
part (b).

d Give two specific and different joint densities such that the marginal distributions of Y1 and
Y2 are both uniform on the interval (0, 1).

*5.164 Let X1, X2, and X3 be random variables, either continuous or discrete. The joint moment-
generating function of X1, X2, and X3 is defined by

m(t1, t2, t3) = E(et1 X1+t2 X2+t3 X3).

a Show that m(t, t, t) gives the moment-generating function of X1 + X2 + X3.

b Show that m(t, t, 0) gives the moment-generating function of X1 + X2.

c Show that

∂k1+k2+k3 m(t1, t2, t3)

∂t k1
1 ∂t k2

2 ∂t k3
3

]
t1=t2=t3=0

= E
(

X k1
1 X k2

2 X k3
3

)
.

*5.165 Let X1, X2, and X3 have a multinomial distribution with probability function

p(x1, x2, x3) = n!

x1!x2!x3!
px1

1 px2
2 px3

3 ,

n∑
i=1

xi = n.

Use the results of Exercise 5.164 to do the following:

a Find the joint moment-generating function of X1, X2, and X3.

b Use the answer to part (a) to show that the marginal distribution of X1 is binomial with
parameter p1.

c Use the joint moment-generating function to find Cov(X1, X2).

*5.166 A box contains N1 white balls, N2 black balls, and N3 red balls (N1 + N2 + N3 = N ). A
random sample of n balls is selected from the box (without replacement). Let Y1, Y2, and Y3
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denote the number of white, black, and red balls, respectively, observed in the sample. Find
the correlation coefficient for Y1 and Y2. (Let pi = Ni/N , for i = 1, 2, 3.)

*5.167 Let Y1 and Y2 be jointly distributed random variables with finite variances.

a Show that [E(Y1Y2)]2 ≤ E(Y 2
1)E(Y 2

2). [Hint: Observe that E[(tY1 − Y2)
2] ≥ 0 for any

real number t or, equivalently,

t2 E(Y 2
1) − 2t E(Y1Y2) + E(Y 2

2) ≥ 0.

This is a quadratic expression of the form At2 + Bt + C ; and because it is nonnegative,
we must have B2 − 4AC ≤ 0. The preceding inequality follows directly.]

b Let ρ denote the correlation coefficient of Y1 and Y2. Using the inequality in part (a), show
that ρ2 ≤ 1.
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CHAPTER 6

Functions of
Random Variables
6.1 Introduction

6.2 Finding the Probability Distribution of a Function of Random Variables

6.3 The Method of Distribution Functions

6.4 The Method of Transformations

6.5 The Method of Moment-Generating Functions

6.6 Multivariable Transformations Using Jacobians (Optional)

6.7 Order Statistics

6.8 Summary

References and Further Readings

6.1 Introduction
As we indicated in Chapter 1, the objective of statistics is to make inferences about
a population based on information contained in a sample taken from that popula-
tion. Any truly useful inference must be accompanied by an associated measure of
goodness. Each of the topics discussed in the preceding chapters plays a role in the
development of statistical inference. However, none of the topics discussed thus far
pertains to the objective of statistics as closely as the study of the distributions of
functions of random variables. This is because all quantities used to estimate popula-
tion parameters or to make decisions about a population are functions of the n random
observations that appear in a sample.

To illustrate, consider the problem of estimating a population mean, μ. Intuitively
we draw a random sample of n observations, y1, y2, . . . , yn , from the population and
employ the sample mean

y = y1 + y2 + · · · + yn

n
= 1

n

n∑
i=1

yi
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as an estimate for μ. How good is this estimate? The answer depends upon the
behavior of the random variables Y1, Y2, . . . , Yn and their effect on the distribution of
Y = (1/n)

∑n
i=1 Yi .

A measure of the goodness of an estimate is the error of estimation, the difference
between the estimate and the parameter estimated (for our example, the difference
between y and μ). Because Y1, Y2, . . . , Yn are random variables, in repeated sampling
Y is also a random variable (and a function of the n variables Y1, Y2, . . . , Yn). There-
fore, we cannot be certain that the error of estimation will be less than a specific value,
say, B. However, if we can determine the probability distribution of the estimator Y ,
this probability distribution can be used to determine the probability that the error of
estimation is less than or equal to B.

To determine the probability distribution for a function of n random variables,
Y1, Y2, . . . , Yn , we must find the joint probability distribution for the random variables
themselves. We generally assume that observations are obtained through random
sampling, as defined in Section 2.12. We saw in Section 3.7 that random sampling
from a finite population (sampling without replacement) results in dependent trials
but that these trials become essentially independent if the population is large when
compared to the size of the sample.

We will assume throughout the remainder of this text that populations are large in
comparison to the sample size and consequently that the random variables obtained
through a random sample are in fact independent of one another. Thus, in the discrete
case, the joint probability function for Y1, Y2, . . . , Yn , all sampled from the same
population, is given by

p(y1, y2, . . . , yn) = p(y1)p(y2) · · · p(yn).

In the continuous case, the joint density function is

f (y1, y2, . . . , yn) = f (y1) f (y2) · · · f (yn).

The statement “Y1, Y2, . . . , Yn is a random sample from a population with density
f (y)” will mean that the random variables are independent with common density
function f (y).

6.2 Finding the Probability Distribution
of a Function of Random Variables
We will present three methods for finding the probability distribution for a function
of random variables and a fourth method for finding the joint distribution of several
functions of random variables. Any one of these may be employed to find the distri-
bution of a given function of the variables, but one of the methods usually leads to
a simpler derivation than the others. The method that works “best” varies from one
application to another. Hence, acquaintance with the first three methods is desirable.
The fourth method is presented in (optional) Section 6.6. Although the first three
methods will be discussed separately in the next three sections, a brief summary of
each of these methods is provided here.
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298 Chapter 6 Functions of Random Variables

Consider random variables Y1, Y2, . . . , Yn and a function U (Y1, Y2, . . . , Yn),
denoted simply as U . Then three of the methods for finding the probability distribution
of U are as follows:

1. The method of distribution functions: This method is typically used when the
Y ’s have continuous distributions. First, find the distribution function for U ,
FU (u) = P(U ≤ u), by using the methods that we discussed in Chapter 5. To
do so, we must find the region in the y1, y2, . . . , yn space for which U ≤ u and
then find P(U ≤ u) by integrating f (y1, y2, . . . , yn) over this region. The
density function for U is then obtained by differentiating the distribution
function, FU (u). A detailed account of this procedure will be presented in
Section 6.3.

2. The method of transformations: If we are given the density function of a random
variable Y , the method of transformations results in a general expression for the
density of U = h(Y ) for an increasing or decreasing function h(y). Then if Y1

and Y2 have a bivariate distribution, we can use the univariate result explained
earlier to find the joint density of Y1 and U = h(Y1, Y2). By integrating over y1,
we find the marginal probability density function of U , which is our objective.
This method will be illustrated in Section 6.4.

3. The method of moment-generating functions: This method is based on a
uniqueness theorem, Theorem 6.1, which states that, if two random variables
have identical moment-generating functions, the two random variables pos-
sess the same probability distributions. To use this method, we must find the
moment-generating function for U and compare it with the moment-generating
functions for the common discrete and continuous random variables derived in
Chapters 3 and 4. If it is identical to one of these moment-generating functions,
the probability distribution of U can be identified because of the uniqueness
theorem. Applications of the method of moment-generating functions will be
presented in Section 6.5. Probability-generating functions can be employed
in a way similar to the method of moment-generating functions. If you are
interested in their use, see the references at the end of the chapter.

6.3 The Method of Distribution Functions
We will illustrate the method of distribution functions with a simple univariate ex-
ample. If Y has probability density function f (y) and if U is some function of Y ,
then we can find FU (u) = P(U ≤ u) directly by integrating f (y) over the region for
which U ≤ u. The probability density function for U is found by differentiating
FU (u). The following example illustrates the method.

EXAMPLE 6.1 A process for refining sugar yields up to 1 ton of pure sugar per day, but the actual
amount produced, Y , is a random variable because of machine breakdowns and other
slowdowns. Suppose that Y has density function given by

f (y) =
{

2y, 0 ≤ y ≤ 1,

0, elsewhere.
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The company is paid at the rate of $300 per ton for the refined sugar, but it also has a
fixed overhead cost of $100 per day. Thus the daily profit, in hundreds of dollars, is
U = 3Y − 1. Find the probability density function for U .

Solution To employ the distribution function approach, we must find

FU (u) = P(U ≤ u) = P(3Y − 1 ≤ u) = P

(
Y ≤ u + 1

3

)
.

If u < −1, then (u + 1)/3 < 0 and, therefore, FU (u) = P (Y ≤ (u + 1)/3) = 0.
Also, if u > 2, then (u + 1)/3 > 1 and FU (u) = P (Y ≤ (u + 1)/3) = 1. However,
if −1 ≤ u ≤ 2, the probability can be written as an integral of f (y), and

P

(
Y ≤ u + 1

3

)
=

∫ (u+1)/3

−∞
f (y)dy =

∫ (u+1)/3

0
2y dy =

(
u + 1

3

)2

.

(Notice that, as Y ranges from 0 to 1, U ranges from −1 to 2.) Thus, the distribution
function of the random variable U is given by

FU (u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, u < −1,(

u + 1

3

)2

, −1 ≤ u ≤ 2,

1, u > 2,

and the density function for U is

fU (u) = d FU (u)

du
=

{
(2/9)(u + 1), −1 ≤ u < 2,

0, elsewhere.

In the bivariate situation, let Y1 and Y2 be random variables with joint density
f (y1, y2) and let U = h(Y1, Y2) be a function of Y1 and Y2. Then for every point
(y1, y2), there corresponds one and only one value of U . If we can find the region of
values (y1, y2) such that U ≤ u, then the integral of the joint density function f (y1, y2)

over this region equals P(U ≤ u) = FU (u). As before, the density function for
U can be obtained by differentiation.

We will illustrate these ideas with two examples.

EXAMPLE 6.2 In Example 5.4, we considered the random variables Y1 (the proportional amount
of gasoline stocked at the beginning of a week) and Y2 (the proportional amount of
gasoline sold during the week). The joint density function of Y1 and Y2 is given by

f (y1, y2) =
{

3y1, 0 ≤ y2 ≤ y1 ≤ 1,

0, elsewhere.

Find the probability density function for U = Y1 − Y2, the proportional amount of
gasoline remaining at the end of the week. Use the density function of U to find E(U ).
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y2

y10

1

1u

y 1
– y 2

= u

F I G U R E 6.1
Region over which

f (y1, y2) is positive,
Example 6.2

Solution The region over which f (y1, y2) is not zero is sketched in Figure 6.1. Also shown
there is the line y1 − y2 = u, for a value of u between 0 and 1. Notice that any point
(y1, y2) such that y1 − y2 ≤ u lies above the line y1 − y2 = u.

If u < 0, the line y1 − y2 = u has intercept −u < 0 and FU (u) = P(Y1 − Y2 ≤
u) = 0. When u > 1, the line y1 − y2 = u has intercept −u < −1 and FU (u) = 1.
For 0 ≤ u ≤ 1, FU (u) = P(Y1 − Y2 ≤ u) is the integral over the dark shaded region
above the line y1 − y2 = u. Because it is easier to integrate over the lower triangular
region, we can write, for 0 ≤ u ≤ 1,

FU (u) = P(U ≤ u) = 1 − P(U ≥ u)

= 1 −
∫ 1

u

∫ y1−u

0
3y1 dy2 dy1

= 1 −
∫ 1

u
3y1(y1 − u) dy1

= 1 − 3

(
y3

1

3
− uy2

1

2

) ]1

u

= 1 −
[

1 − 3

2
(u) + u3

2

]
= 1

2
(3u − u3).

Summarizing,

FU (u) =
⎧⎨⎩

0, u < 0,

(3u − u3)/2, 0 ≤ u ≤ 1,

1, u > 1.

A graph of FU (u) is given in Figure 6.2(a).
It follows that

fU (u) = d FU (u)

du
=

{
3(1 − u2)/2, 0 ≤ u ≤ 1,

0, elsewhere.

The density function fU (u) is graphed in Figure 6.2(b).
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FU (u) fU (u)

1.5

1

1 u u

1

10 0

(a) Distribution Function (b) Density Function

F I G U R E 6.2
Distribution and

density functions
for Example 6.2

We can use this derived density function to find E(U ), because

E(U ) =
∫ 1

0
u

(
3

2

)
(1 − u2) du = 3

2

(
u2

2
− u4

4

) ]1

0

= 3

8
,

which agrees with the value of E(Y1 − Y2) found in Example 5.20 by using the
methods developed in Chapter 5 for finding the expected value of a linear function of
random variables.

EXAMPLE 6.3 Let (Y1, Y2) denote a random sample of size n = 2 from the uniform distribution on
the interval (0, 1). Find the probability density function for U = Y1 + Y2.

Solution The density function for each Yi is

f (y) =
{

1, 0 ≤ y ≤ 1,

0, elsewhere.

Therefore, because we have a random sample, Y1 and Y2 are independent, and

f (y1, y2) = f (y1) f (y2) =
{

1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

The random variables Y1 and Y2 have nonzero density over the unit square, as
shown in Figure 6.3. We wish to find FU (u) = P(U ≤ u). The first step is to find
the points (y1, y2) that imply y1 + y2 ≤ u. The easiest way to find this region is to
locate the points that divide the regions U ≤ u and U > u. These points lie on the
line y1 + y2 = u.

Graphing this relationship in Figure 6.3 and arbitrarily selecting y2 as the dependent
variable, we find that the line possesses a slope equal to −1 and a y2 intercept equal
to u. The points associated with U < u are either above or below the line and can
be determined by testing points on either side of the line. Suppose that u = 1.5.
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y
1 +

y
2 =

u

y1 + y2 < u
or U < u

1

10 y1

y2
F I G U R E 6.3

The region of
integration for

Example 6.3

Let y1 = y2 = 1/4; then y1 + y2 = 1/4 + 1/4 = 1/2 and (y1, y2) satisfies the
inequality y1 + y2 < u. Therefore, y1 = y2 = 1/4 falls in the shaded region below
the line. Similarly, all points such that y1 + y2 < u lie below the line y1 + y2 = u.
Thus,

FU (u) = P(U ≤ u) = P(Y1 + Y2 ≤ u) =
∫ ∫

y1+y2≤u

f (y1, y2) dy1 dy2.

If u < 0,

FU (u) = P(U ≤ u) =
∫ ∫

y1+y2≤u

f (y1, y2) dy1 dy2 =
∫ ∫

y1+y2≤u

0 dy1 dy2 = 0

and for u > 2,

FU (u) = P(U ≤ u) =
∫ ∫

y1+y2≤u

f (y1, y2) dy1 dy2 =
∫ 1

0

∫ 1

0
(1) dy1 dy2 = 1.

For 0 ≤ u ≤ 2, the limits of integration depend upon the particular value of u
(where u is the y2 intercept of the line y1+y2 = u). Thus, the mathematical expression
for FU (u) changes depending on whether 0 ≤ u ≤ 1 or 1 < u ≤ 2.

If 0 ≤ u ≤ 1, the region y1 + y2 ≤ u, is the shaded area in Figure 6.4. Then for
0 ≤ u ≤ 1, we have

FU (u) =
∫ ∫

y1+y2≤u

f (y1, y2) dy1 dy2 =
∫ u

0

∫ u−y2

0
(1) dy1 dy2 =

∫ u

0
(u − y2) dy2

=
(

uy2 − y2
2

2

) ]u

0

= u2 − u2

2
= u2

2
.

The solution, FU (u), 0 ≤ u ≤ 1, could have been acquired directly by using
elementary geometry. The bivariate density f (y1, y2) = 1 is uniform over the unit
square, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1. Hence, FU (u) is the volume of a solid with height
equal to f (y1, y2) = 1 and a triangular cross section, as shown in Figure 6.4. Hence,

FU (u) = (area of triangle) · (height) = u2

2
(1) = u2

2
.

The distribution function can be acquired in a similar manner when u is defined
over the interval 1 < u ≤ 2. Although the geometric solution is easier, we will obtain
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y
1 +

y
2 =

u

1

10 y1

y2
F I G U R E 6.4

The region
y1 + y2 ≤ u for

0 ≤ u ≤ 1

FU (u) directly by integration. The region y1 + y2 ≤ u, 1 ≤ u ≤ 2 is the shaded area
indicated in Figure 6.5.

The complement of the event U ≤ u is the event that (Y1, Y2) falls in the region
A of Figure 6.5. Then for 1 < u ≤ 2,

FU (u) = 1 −
∫

A

∫
f (y1, y2) dy1 dy2

= 1 −
∫ 1

u−1

∫ 1

u−y2

(1) dy1 dy2 = 1 −
∫ 1

u−1

(
y1

]1

u−y2

)
dy2

= 1 −
∫ 1

u−1
(1 − u + y2) dy2 = 1 −

[
(1 − u)y2 + y2

2

2

] ]1

u−1

= (−u2/2) + 2u − 1.

To summarize,

FU (u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, u < 0,

u2/2, 0 ≤ u ≤ 1,

(−u2/2) + 2u − 1, 1 < u ≤ 2,

1, u > 2.

The distribution function for U is shown in Figure 6.6(a).

y
1 +

y
2 =

u

1

10 y1

y2

A

F I G U R E 6.5
The region

y1 + y2 ≤ u,

1 < u ≤ 2
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FU (u) fU (u)

1 1

1 12 20 0 uu

(a) Distribution Function (b) Density Funciton

F I G U R E 6.6
Distribution and

density functions
for Example 6.3

The density function fU (u) can be obtained by differentiating FU (u). Thus,

fU (u) = d FU (u)

du

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d
du (0) = 0, u < 0,

d
du (u2/2) = u, 0 ≤ u ≤ 1,

d
du [(−u2/2) + 2u − 1] = 2 − u, 1 < u ≤ 2,

d
du (1) = 0, u > 2,

or, more simply,

fU (u) =
⎧⎨⎩

u, 0 ≤ u ≤ 1,

2 − u, 1 < u ≤ 2,

0, otherwise.
A graph of fU (u) is shown in Figure 6.6(b).

Summary of the Distribution Function Method
Let U be a function of the random variables Y1, Y2, . . . , Yn .

1. Find the region U = u in the (y1, y2, . . . , yn) space.
2. Find the region U ≤ u.
3. Find FU (u) = P(U ≤ u) by integrating f (y1, y2, . . . , yn) over the

region U ≤ u.
4. Find the density function fU (u) by differentiating FU (u). Thus,

fU (u) = d FU (u)/du.

To illustrate, we will consider the case U = h(Y ) = Y 2, where Y is a continuous
random variable with distribution function FY (y) and density function fY (y). If u ≤ 0,
FU (u) = P(U ≤ u) = P(Y 2 ≤ u) = 0 and for u > 0 (see Figure 6.7),

FU (u) = P(U ≤ u) = P(Y 2 ≤ u)

= P(−√
u ≤ Y ≤ √

u)

=
∫ √

u

−√
u

f (y) dy = FY (
√

u) − FY (−√
u).
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u

u u0

h ( y) = y2

h ( y)

– y

F I G U R E 6.7
The function

h(y) = y2

In general,

FU (u) =
{

FY (
√

u) − FY (−√
u), u > 0,

0, otherwise.

On differentiating with respect to u, we see that

fU (u) =
⎧⎨⎩ fY (

√
u)

(
1

2
√

u

)
+ fY (−√

u)

(
1

2
√

u

)
, u > 0,

0, otherwise,

or, more simply,

fU (u) =
⎧⎨⎩

1

2
√

u

[
fY (

√
u) + fY (−√

u)
]
, u > 0,

0, otherwise.

EXAMPLE 6.4 Let Y have probability density function given by

fY (y) =
⎧⎨⎩

y + 1

2
, −1 ≤ y ≤ 1,

0, elsewhere.

Find the density function for U = Y 2.

Solution We know that

fU (u) =
⎧⎨⎩

1

2
√

u

[
fY (

√
u) + fY (−√

u)
]
, u > 0,

0, otherwise,

and on substituting into this equation, we obtain

fU (u) =
⎧⎨⎩

1

2
√

u

(√
u + 1

2
+ −√

u + 1

2

)
= 1

2
√

u
, 0 < u ≤ 1,

0, elsewhere.
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Because Y has positive density only over the interval −1 ≤ y ≤ 1, it follows that
U = Y 2 has positive density only over the interval 0 < u ≤ 1.

In some instances, it is possible to find a transformation that, when applied to a
random variable with a uniform distribution on the interval (0, 1), results in a random
variable with some other specified distribution function, say, F(y). The next example
illustrates a technique for achieving this objective. A brief discussion of one practical
use of this transformation follows the example.

EXAMPLE 6.5 Let U be a uniform random variable on the interval (0, 1). Find a transformation
G(U ) such that G(U ) possesses an exponential distribution with mean β.

Solution If U possesses a uniform distribution on the interval (0, 1), then the distribution
function of U (see Exercise 4.38) is given by

FU (u) =
⎧⎨⎩

0, u < 0,

u, 0 ≤ u ≤ 1,

1, u > 1.

Let Y denote a random variable that has an exponential distribution with mean β.
Then (see Section 4.6) Y has distribution function

FY (y) =
{

0, y < 0,

1 − e−y/β, y ≥ 0.

Notice that FY (y) is strictly increasing on the interval [0, ∞). Let 0 < u < 1
and observe that there is a unique value y such that FY (y) = u. Thus, F−1

Y (u),
0 < u < 1, is well defined. In this case, FY (y) = 1 − e−y/β = u if and only if
y = −β ln(1−u) = F−1

Y (u). Consider the random variable F−1
Y (U ) = −β ln(1−U )

and observe that, if y > 0,

P
(
F−1

Y (U ) ≤ y
) = P[−β ln(1 − U ) ≤ y]

= P[ln(1 − U ) ≥ −y/β]

= P(U ≤ 1 − e−y/β)

= 1 − e−y/β .

Also, P
[
F−1

Y (U ) ≤ y
] = 0 if y ≤ 0. Thus, F−1

Y (U ) = −β ln(1 − U ) possesses an
exponential distribution with mean β, as desired.

Computer simulations are frequently used to evaluate proposed statistical tech-
niques. Typically, these simulations require that we obtain observed values of random
variables with a prescribed distribution. As noted in Section 4.4, most computer
systems contain a subroutine that provides observed values of a random variable
U that has a uniform distribution on the interval (0, 1). How can the result of
Example 6.5 be used to generate a set of observations from an exponential distribution
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with mean β? Simply use the computer’s random number generator to produce
values u1, u2, . . . , un from a uniform (0, 1) distribution and then calculate yi =
−β ln(1−ui ), i = 1, 2, . . . , n to obtain values of random variables with the required
exponential distribution.

As long as a prescribed distribution function F(y) possesses a unique inverse
F−1(·), the preceding technique can be applied. In instances such as that illustrated
in Example 6.5, we can readily write down the form of F−1(·) and proceed as earlier.
If the form of a distribution function cannot be written in an easily invertible form
(recall that the distribution functions of normally, gamma-, and beta- distributed
random variables are given in tables that were obtained by using numerical integration
techniques), our task is more difficult. In these instances, other methods are used to
generate observations with the desired distribution.

In the following exercise set, you will find problems that can be solved by using the
techniques presented in this section. The exercises that involve finding F−1(U ) for
some specific distribution F(y) focus on cases where F−1(·) exists in a closed form.

Exercises
6.1 Let Y be a random variable with probability density function given by

f (y) =
{

2(1 − y), 0 ≤ y ≤ 1,

0, elsewhere.

a Find the density function of U1 = 2Y − 1.

b Find the density function of U2 = 1 − 2Y .

c Find the density function of U3 = Y 2.

d Find E(U1), E(U2), and E(U3) by using the derived density functions for these random
variables.

e Find E(U1), E(U2), and E(U3) by the methods of Chapter 4.

6.2 Let Y be a random variable with a density function given by

f (y) =
{

(3/2)y2, −1 ≤ y ≤ 1,

0, elsewhere.

a Find the density function of U1 = 3Y .

b Find the density function of U2 = 3 − Y .

c Find the density function of U3 = Y 2.

6.3 A supplier of kerosene has a weekly demand Y possessing a probability density function
given by

f (y) =
⎧⎨⎩

y, 0 ≤ y ≤ 1,

1, 1 < y ≤ 1.5,

0, elsewhere,

with measurements in hundreds of gallons. (This problem was introduced in Exercise 4.13.)
The supplier’s profit is given by U = 10Y − 4.

a Find the probability density function for U .

b Use the answer to part (a) to find E(U ).

c Find E(U ) by the methods of Chapter 4.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



308 Chapter 6 Functions of Random Variables

6.4 The amount of flour used per day by a bakery is a random variable Y that has an exponential
distribution with mean equal to 4 tons. The cost of the flour is proportional to U = 3Y + 1.

a Find the probability density function for U .

b Use the answer in part (a) to find E(U ).

6.5 The waiting time Y until delivery of a new component for an industrial operation is uniformly
distributed over the interval from 1 to 5 days. The cost of this delay is given by U = 2Y 2 + 3.
Find the probability density function for U .

6.6 The joint distribution of amount of pollutant emitted from a smokestack without a cleaning
device (Y1) and a similar smokestack with a cleaning device (Y2) was given in Exercise 5.10
to be

f (y1, y2) =
{

1, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, 2y2 ≤ y1,

0, elsewhere.

The reduction in amount of pollutant due to the cleaning device is given by U = Y1 − Y2.

a Find the probability density function for U .

b Use the answer in part (a) to find E(U ). Compare your results with those of Exercise
5.78(c).

6.7 Suppose that Z has a standard normal distribution.

a Find the density function of U = Z 2.

b Does U have a gamma distribution? What are the values of α and β?

c What is another name for the distribution of U?

6.8 Assume that Y has a beta distribution with parameters α and β.

a Find the density function of U = 1 − Y .

b Identify the density of U as one of the types we studied in Chapter 4. Be sure to identify
any parameter values.

c How is E(U ) related to E(Y )?

d How is V (U ) related to V (Y )?

6.9 Suppose that a unit of mineral ore contains a proportion Y1 of metal A and a proportion Y2

of metal B. Experience has shown that the joint probability density function of Y1 and Y2 is
uniform over the region 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0 ≤ y1 + y2 ≤ 1. Let U = Y1 + Y2, the
proportion of either metal A or B per unit. Find

a the probability density function for U .

b E(U ) by using the answer to part (a).

c E(U ) by using only the marginal densities of Y1 and Y2.

6.10 The total time from arrival to completion of service at a fast-food outlet, Y1, and the time spent
waiting in line before arriving at the service window, Y2, were given in Exercise 5.15 with joint
density function

f (y1, y2) =
{

e−y1 , 0 ≤ y2 ≤ y1 < ∞,

0, elsewhere.

Another random variable of interest is U = Y1 −Y2, the time spent at the service window. Find

a the probability density function for U .

b E(U ) and V (U ). Compare your answers with the results of Exercise 5.108.
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6.11 Suppose that two electronic components in the guidance system for a missile operate indepen-
dently and that each has a length of life governed by the exponential distribution with mean 1
(with measurements in hundreds of hours). Find the

a probability density function for the average length of life of the two components.

b mean and variance of this average, using the answer in part (a). Check your answer by
computing the mean and variance, using Theorem 5.12.

6.12 Suppose that Y has a gamma distribution with parameters α and β and that c > 0 is a constant.

a Derive the density function of U = cY .

b Identify the density of U as one of the types we studied in Chapter 4. Be sure to identify
any parameter values.

c The parameters α and β of a gamma-distributed random variable are, respectively, “shape”
and “scale” parameters. How do the scale and shape parameters for U compare to those
for Y ?

6.13 If Y1 and Y2 are independent exponential random variables, both with mean β, find the density
function for their sum. (In Exercise 5.7, we considered two independent exponential random
variables, both with mean 1 and determined P(Y1 + Y2 ≤ 3).)

6.14 In a process of sintering (heating) two types of copper powder (see Exercise 5.152), the density
function for Y1, the volume proportion of solid copper in a sample, was given by

f1(y1) =
{

6y1(1 − y1), 0 ≤ y1 ≤ 1,

0, elsewhere.
The density function for Y2, the proportion of type A crystals among the solid copper, was
given as

f2(y2) =
{

3y2
2 , 0 ≤ y2 ≤ 1,

0, elsewhere.
The variable U = Y1Y2 gives the proportion of the sample volume due to type A crystals. If Y1

and Y2 are independent, find the probability density function for U .

6.15 Let Y have a distribution function given by

F(y) =
{

0, y < 0,

1 − e−y2
, y ≥ 0.

Find a transformation G(U ) such that, if U has a uniform distribution on the interval (0, 1),
G(U ) has the same distribution as Y .

6.16 In Exercise 4.15, we determined that

f (y) =
⎧⎨⎩

b

y2
, y ≥ b,

0, elsewhere,

is a bona fide probability density function for a random variable, Y . Assuming b is a known
constant and U has a uniform distribution on the interval (0, 1), transform U to obtain a random
variable with the same distribution as Y .

6.17 A member of the power family of distributions has a distribution function given by

F(y) =

⎧⎪⎨⎪⎩
0, y < 0,( y

θ

)α

, 0 ≤ y ≤ θ,

1, y > θ,

where α, θ > 0.
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310 Chapter 6 Functions of Random Variables

a Find the density function.

b For fixed values of α and θ , find a transformation G(U ) so that G(U ) has a distribution
function of F when U possesses a uniform (0, 1) distribution.

c Given that a random sample of size 5 from a uniform distribution on the interval (0, 1)

yielded the values .2700, .6901, .1413, .1523, and .3609, use the transformation derived in
part (b) to give values associated with a random variable with a power family distribution
with α = 2, θ = 4.

6.18 A member of the Pareto family of distributions (often used in economics to model income
distributions) has a distribution function given by

F(y) =
⎧⎨⎩

0, y < β,

1 −
(

β

y

)α

, y ≥ β,

where α, β > 0.

a Find the density function.

b For fixed values of β and α, find a transformation G(U ) so that G(U ) has a distribution
function of F when U has a uniform distribution on the interval (0, 1).

c Given that a random sample of size 5 from a uniform distribution on the interval (0, 1)

yielded the values .0058, .2048, .7692, .2475 and .6078, use the transformation derived in
part (b) to give values associated with a random variable with a Pareto distribution with
α = 2, β = 3.

6.19 Refer to Exercises 6.17 and 6.18. If Y possesses a Pareto distribution with parameters α and
β, prove that X = 1/Y has a power family distribution with parameters α and θ = β−1.

6.20 Let the random variable Y possess a uniform distribution on the interval (0, 1). Derive the

a distribution of the random variable W = Y 2.

b distribution of the random variable W = √
Y .

*6.21 Suppose that Y is a random variable that takes on only integer values 1, 2, . . . . Let F(y) denote
the distribution function of this random variable. As discussed in Section 4.2, this distribution
function is a step function, and the magnitude of the step at each integer value is the probability
that Y takes on that value. Let U be a continuous random variable that is uniformly distributed
on the interval (0, 1). Define a variable X such that X = k if and only if F(k −1) < U ≤ F(k),
k = 1, 2, . . . . Recall that F(0) = 0 because Y takes on only positive integer values. Show that
P(X = i) = F(i)− F(i −1) = P(Y = i), i = 1, 2, . . . . That is, X has the same distribution
as Y . [Hint: Recall Exercise 4.5.]1

*6.22 Use the results derived in Exercises 4.6 and 6.21 to describe how to generate values of a
geometrically distributed random variable.

6.4 The Method of Transformations
The transformation method for finding the probability distribution of a function of
random variables is an offshoot of the distribution function method of Section 6.3.
Through the distribution function approach, we can arrive at a simple method of

1. Exercises preceded by an asterisk are optional.
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6.4 The Method of Transformations 311

u1 = h ( y1)

u = h ( y)

y1 = h –1( u1) y

u

0

F I G U R E 6.8
An increasing

function

writing down the density function of U = h(Y ), provided that h(y) is either decreas-
ing or increasing. [By h(y) increasing, we mean that if y1 < y2, then h(y1) < h(y2)

for any real numbers y1 and y2.] The graph of an increasing function h(y) appears in
Figure 6.8.

Suppose that h(y) is an increasing function of y and that U = h(Y ), where Y has
density function fY (y). Then h−1(u) is an increasing function of u: If u1 < u2, then
h−1(u1) = y1 < y2 = h−1(u2). We see from Figure 6.8 that the set of points y such
that h(y) ≤ u1 is precisely the same as the set of points y such that y ≤ h−1(u1).
Therefore (see Figure 6.8),

P(U ≤ u) = P[h(Y ) ≤ u] = P{h−1[h(Y )] ≤ h−1(u)} = P[Y ≤ h−1(u)]

or

FU (u) = FY [h−1(u)].

Then differentiating with respect to u, we have

fU (u) = d FU (u)

du
= d FY [h−1(u)]

du
= fY (h−1(u))

d[h−1(u)]

du
.

To simplify notation, we will write dh−1/du instead of d[h−1(u)]/du and

fU (u) = fY [h−1(u)]
dh−1

du
.

Thus, we have acquired a new way to find fU (u) that evolved from the general
method of distribution functions. To find fU (u), solve for y in terms of u; that is, find
y = h−1(u) and substitute this expression into fY (y). Then multiply this quantity by
dh−1/du. We will illustrate the procedure with an example.

EXAMPLE 6.6 In Example 6.1, we worked with a random variable Y (amount of sugar produced)
with a density function given by

fY (y) =
{

2y, 0 ≤ y ≤ 1,

0, elsewhere.

We were interested in a new random variable (profit) given by U = 3Y − 1. Find the
probability density function for U by the transformation method.
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312 Chapter 6 Functions of Random Variables

Solution The function of interest here is h(y) = 3y −1, which is increasing in y. If u = 3y −1,
then

y = h−1(u) = u + 1

3
and

dh−1

du
= d

(
u+1

3

)
du

= 1

3
.

Thus,

fU (u) = fY [h−1(u)]
dh−1

du

=
⎧⎨⎩ 2[h−1(u)]

dh−1

du
= 2

(
u + 1

3

) (
1

3

)
, 0 ≤ u + 1

3
≤ 1,

0, elsewhere,

or, equivalently,

fU (u) =
{

2(u + 1)/9, −1 ≤ u ≤ 2,

0, elsewhere.

The range over which fU (u) is positive is simply the interval 0 ≤ y ≤ 1 transformed to
the u axis by the function u = 3y −1. This answer agrees with that of Example 6.1.

If h(y) is a decreasing function of y, then h−1(u) is a decreasing function of u.
That is, if u1 < u2, then h−1(u1) = y1 > y2 = h−1(u2). Also, as in Figure 6.9, the set
of points y such that h(y) ≤ u1 is the same as the set of points such that y ≥ h−1(u1).

It follows that, for U = h(Y ), as shown in Figure 6.9,

P(U ≤ u) = P[Y ≥ h−1(u)] or FU (u) = 1 − FY [h−1(u)].

If we differentiate with respect to u, we obtain

fU (u) = − fY [h−1(u)]
d[h−1(u)]

du
.

u1 = h ( y1)

u = h ( y)

y1 = h –1( u1) y

u

0

F I G U R E 6.9
A decreasing function
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If we again use the simplified notation dh−1/du instead of d[h−1(u)]/du and recall
that dh−1/du is negative because h−1(u) is a decreasing function of u, the density
of U is

fU (u) = fY [h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣ .
Actually, it is not necessary that h(y) be increasing or decreasing (and hence

invertable) for all values of y. The function h(·) need only be increasing or decreasing
for the values of y such that fY (y)>0. The set of points {y : fY (y)>0} is called the
support of the density fY (y). If y = h−1(u) is not in the support of the density, then
fY [h−1(u)] = 0. These results are combined in the following statement:

Let Y have probability density function fY (y). If h(y) is either increasing or
decreasing for all y such that fY (y) > 0, then U = h(Y ) has density function

fU (u) = fY [h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣ , where
dh−1

du
= d[h−1(u)]

du
.

EXAMPLE 6.7 Let Y have the probability density function given by

fY (y) =
{

2y, 0 ≤ y ≤ 1,

0, elsewhere.

Find the density function of U = −4Y + 3.

Solution In this example, the set of values of y such that fY (y) > 0 are the values 0 < y ≤ 1.
The function of interest, h(y) = −4y + 3, is decreasing for all y, and hence for all
0 < y ≤ 1, if u = −4y + 3, then

y = h−1(u) = 3 − u

4
and

dh−1

du
= −1

4
.

Notice that h−1(u) is a decreasing function of u and that dh−1/du < 0. Thus,

fU (u) = fY [h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣ =

⎧⎪⎨⎪⎩ 2

(
3 − u

4

) ∣∣∣∣−1

4

∣∣∣∣, 0 ≤ 3 − u

4
≤ 1,

0, elsewhere.

Finally, some simple algebra gives

fU (u) =
⎧⎨⎩

3 − u

8
, −1 ≤ u ≤ 3,

0, elsewhere.

Direct application of the method of transformation requires that the function h(y)

be either increasing or decreasing for all y such that fY (y) > 0. If you want to use this
method to find the distribution of U = h(Y ), you should be very careful to check that
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314 Chapter 6 Functions of Random Variables

the function h(·) is either increasing or decreasing for all y in the support of fY (y).
If it is not, the method of transformations cannot be used, and you should instead use
the method of distribution functions discussed in Section 6.3.

The transformation method can also be used in multivariate situations. The fol-
lowing example illustrates the bivariate case.

EXAMPLE 6.8 Let Y1 and Y2 have a joint density function given by

f (y1, y2) =
{

e−(y1+y2), 0 ≤ y1, 0 ≤ y2,

0, elsewhere.

Find the density function for U = Y1 + Y2.

Solution This problem must be solved in two stages: First, we will find the joint density of Y1

and U ; second, we will find the marginal density of U . The approach is to let Y1 be
fixed at a value y1 ≥ 0. Then U = y1 + Y2, and we can consider the one-dimensional
transformation problem in which U = h(Y2) = y1 + Y2. Letting g(y1, u) denote the
joint density of Y1 and U , we have, with y2 = u − y1 = h−1(u),

g(y1, u) =
⎧⎨⎩ f [y1, h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣ = e−(y1+u−y1)(1), 0 ≤ y1, 0 ≤ u − y1,

0, elsewhere.

Simplifying, we obtain

g(y1, u) =
{

e−u, 0 ≤ y1 ≤ u,

0, elsewhere.

(Notice that Y1 ≤ U .) The marginal density of U is then given by

fU (u) =
∫ ∞

−∞
g(y1, u) dy1

=
⎧⎨⎩

∫ u

0
e−u dy1 = ue−u, 0 ≤ u,

0, elsewhere.

We will illustrate the use of the bivariate transformation with another example,
this one involving the product of two random variables.

EXAMPLE 6.9 In Example 5.19, we considered a random variable Y1, the proportion of impurities in
a chemical sample, and Y2, the proportion of type I impurities among all impurities
in the sample. The joint density function was given by

f (y1, y2) =
{

2(1 − y1), 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere.

We are interested in U = Y1Y2, which is the proportion of type I impurities in the
sample. Find the probability density function for U and use it to find E(U ).
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6.4 The Method of Transformations 315

Solution Because we are interested in U = Y1Y2, let us first fix Y1 at a value y1, 0 < y1 ≤ 1,
and think in terms of the univariate transformation U = h(Y2) = y1Y2. We can then
determine the joint density function for Y1 and U (with y2 = u/y1 = h−1(u)) to be

g(y1, u) = f [y1, h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣
=

⎧⎨⎩ 2(1 − y1)

∣∣∣∣ 1

y1

∣∣∣∣ , 0 < y1 ≤ 1, 0 ≤ u/y1 ≤ 1,

0, elsewhere.

Equivalently,

g(y1, u) =
⎧⎨⎩ 2(1 − y1)

(
1

y1

)
, 0 ≤ u ≤ y1 ≤ 1,

0, elsewhere.

(U also ranges between 0 and 1, but Y1 always must be greater than or equal to U .)
Further,

fU (u) =
∫ ∞

−∞
g(y1, u) dy1

=
⎧⎨⎩

∫ 1

u
2(1 − y1)

(
1

y1

)
dy1, 0 ≤ u ≤ 1,

0, elsewhere.

Because, for 0 ≤ u ≤ 1,∫ 1

u
2(1 − y1)

(
1

y1

)
dy1 = 2

∫ 1

u

(
1

y1
− 1

)
dy1

= 2
(

ln y1
]1

u
− y1

]1
u

)
= 2 (−ln u − 1 + u)

= 2(u − ln u − 1),

we obtain

fU (u) =
{

2(u − ln u − 1), 0 ≤ u ≤ 1,

0, elsewhere.

(The symbol ln stands for natural logarithm.)
We now find E(U ):

E(U ) =
∫ ∞

−∞
u fU (u) du =

∫ 1

0
2u(u − ln u − 1) du

= 2

{∫ 1

0
u2 du −

∫ 1

0
u(ln u) du −

∫ 1

0
u du

}

= 2

{
u3

3

]1

0

−
∫ 1

0
u(ln u) du − u2

2

]1

0

}
.
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The middle integral is most easily solved by using integration by parts, which
yields∫ 1

0
u(ln u) du =

(
u2

2

)
(ln u)

]1

0

−
∫ 1

0

(
u2

2

)(
1

u

)
du = 0 − u2

4

]1

0

= −1

4
.

Thus,

E(U ) = 2[(1/3) − (−1/4) − (1/2)] = 2(1/12) = 1/6.

This answer agrees with the answer to Example 5.21, where E(U ) = E(Y1Y2) was
found by a different method.

Summary of the Transformation Method
Let U = h(Y ), where h(y) is either an increasing or decreasing function of y
for all y such that fY (y) > 0.

1. Find the inverse function, y = h−1(u).

2. Evaluate
dh−1

du
= d[h−1(u)]

du
.

3. Find fU (u) by

fU (u) = fY [h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣ .

Exercises
6.23 In Exercise 6.1, we considered a random variable Y with probability density function given by

f (y) =
{

2(1 − y), 0 ≤ y ≤ 1,

0, elsewhere,

and used the method of distribution functions to find the density functions of

a U1 = 2Y − 1.

b U2 = 1 − 2Y .

c U3 = Y 2.

Use the method of transformation to find the densities of U1, U2, and U3.

6.24 In Exercise 6.4, we considered a random variable Y that possessed an exponential distribution
with mean 4 and used the method of distribution functions to derive the density function for
U = 3Y + 1. Use the method of transformations to derive the density function for U .

6.25 In Exercise 6.11, we considered two electronic components that operate independently, each
with life length governed by the exponential distribution with mean 1. We proceeded to use
the method of distribution functions to obtain the distribution of the average length of life for
the two components. Use the method of transformations to obtain the density function for the
average life length of the two components.
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6.26 The Weibull density function is given by

f (y) =
⎧⎨⎩

1

α
mym−1e−ym/α, y > 0,

0, elsewhere,

where α and m are positive constants. This density function is often used as a model for the
lengths of life of physical systems. Suppose Y has the Weibull density just given. Find

a the density function of U = Y m .

b E(Y k) for any positive integer k.

6.27 Let Y have an exponential distribution with mean β.

a Prove that W = √
Y has a Weibull density with α = β and m = 2.

b Use the result in Exercise 6.26(b) to give E(Y k/2) for any positive integer k.

6.28 Let Y have a uniform (0, 1) distribution. Show that U = −2 ln(Y ) has an exponential distri-
bution with mean 2.

6.29 The speed of a molecule in a uniform gas at equilibrium is a random variable V whose density
function is given by

f (v) = av2e−bv2
, v > 0,

where b = m/2kT and k, T , and m denote Boltzmann’s constant, the absolute temperature,
and the mass of the molecule, respectively.

a Derive the distribution of W = mV 2/2, the kinetic energy of the molecule.

b Find E(W ).

6.30 A fluctuating electric current I may be considered a uniformly distributed random variable
over the interval (9, 11). If this current flows through a 2-ohm resistor, find the probability
density function of the power P = 2I 2.

6.31 The joint distribution for the length of life of two different types of components operating in a
system was given in Exercise 5.18 by

f (y1, y2) =
{

(1/8)y1e−(y1+y2)/2, y1 > 0, y2 > 0,

0, elsewhere.

The relative efficiency of the two types of components is measured by U = Y2/Y1. Find the
probability density function for U .

6.32 In Exercise 6.5, we considered a random variable Y that has a uniform distribution on the
interval [1, 5]. The cost of delay is given by U = 2Y 2 + 3. Use the method of transformations
to derive the density function of U .

6.33 The proportion of impurities in certain ore samples is a random variable Y with a density
function given by

f (y) =
{

(3/2)y2 + y, 0 ≤ y ≤ 1,

0, elsewhere.

The dollar value of such samples is U = 5−(Y/2). Find the probability density function for U .
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6.34 A density function sometimes used by engineers to model lengths of life of electronic compo-
nents is the Rayleigh density, given by

f (y) =

⎧⎪⎨⎪⎩
(

2y

θ

)
e−y2/θ , y > 0,

0, elsewhere.

a If Y has the Rayleigh density, find the probability density function for U = Y 2.

b Use the result of part (a) to find E(Y ) and V (Y ).

6.35 Let Y1 and Y2 be independent random variables, both uniformly distributed on (0, 1). Find the
probability density function for U = Y1Y2.

6.36 Refer to Exercise 6.34. Let Y1 and Y2 be independent Rayleigh-distributed random variables.
Find the probability density function for U = Y 2

1 + Y 2
2 . [Hint: Recall Example 6.8.]

6.5 The Method of Moment-Generating
Functions
The moment-generating function method for finding the probability distribution of
a function of random variables Y1, Y2, . . . , Yn is based on the following uniqueness
theorem.

THEOREM 6.1 Let m X (t) and mY (t) denote the moment-generating functions of random vari-
ables X and Y , respectively. If both moment-generating functions exist and
m X (t) = mY (t) for all values of t , then X and Y have the same probability
distribution.

(The proof of Theorem 6.1 is beyond the scope of this text.)
If U is a function of n random variables, Y1, Y2, . . . , Yn , the first step in using

Theorem 6.1 is to find the moment-generating function of U :

mU (t) = E(etU ).

Once the moment-generating function for U has been found, it is compared with the
moment-generating functions for random variables with well-known distributions. If
mU (t) is identical to one of these, say, the moment-generating function for a random
variable V , then, by Theorem 6.1, U and V possess identical probability distribu-
tions. The density functions, means, variances, and moment-generating functions for
some frequently encountered random variables are presented in Appendix 2. We will
illustrate the procedure with a few examples.

EXAMPLE 6.10 Suppose that Y is a normally distributed random variable with mean μ and variance
σ 2. Show that

Z = Y − μ

σ

has a standard normal distribution, a normal distribution with mean 0 and variance 1.
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Solution We have seen in Example 4.16 that Y − μ has moment-generating function et2σ 2/2.
Hence,

m Z (t) = E(et Z ) = E[e(t/σ)(Y−μ)] = m(Y−μ)

(
t

σ

)
= e(t/σ)2(σ 2/2) = et2/2.

On comparing m Z (t) with the moment-generating function of a normal random vari-
able, we see that Z must be normally distributed with E(Z) = 0 and V (Z) = 1.

EXAMPLE 6.11 Let Z be a normally distributed random variable with mean 0 and variance 1. Use the
method of moment-generating functions to find the probability distribution of Z2.

Solution The moment-generating function for Z2 is

m Z2(t) = E(et Z2
) =

∫ ∞

−∞
et z2

f (z) dz =
∫ ∞

−∞
et z2 e−z2/2

√
2π

dz

=
∫ ∞

−∞

1√
2π

e−(z2/2)(1−2t) dz.

This integral can be evaluated either by consulting a table of integrals or by noting
that, if 1 − 2t > 0 (equivalently, t < 1/2), the integrand

exp

[
−

(
z2

2

)
(1 − 2t)

]
√

2π
=

exp

[
−

(
z2

2

)/
(1 − 2t)−1

]
√

2π

is proportional to the density function of a normally distributed random variable with
mean 0 and variance (1 − 2t)−1. To make the integrand a normal density function (so
that the definite integral is equal to 1), multiply the numerator and denominator by
the standard deviation, (1 − 2t)−1/2. Then

m Z2(t) = 1

(1 − 2t)1/2

∫ ∞

−∞

1√
2π(1 − 2t)−1/2

exp

[
−

(
z2

2

)/
(1 − 2t)−1

]
dz.

Because the integral equals 1, if t < 1/2,

m Z2(t) = 1

(1 − 2t)1/2
= (1 − 2t)−1/2.

A comparison of m Z2(t) with the moment-generating functions in Appendix 2
shows that m Z2(t) is identical to the moment-generating function for the gamma-
distributed random variable with α = 1/2 and β = 2. Thus, using Definition 4.10,
Z2 has a χ2 distribution with ν = 1 degree of freedom. It follows that the density
function for U = Z2 is given by

fU (u) =
⎧⎨⎩

u−1/2e−u/2

"(1/2)21/2
, u ≥ 0,

0, elsewhere.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



320 Chapter 6 Functions of Random Variables

The method of moment-generating functions is often very useful for finding the
distributions of sums of independent random variables.

THEOREM 6.2 Let Y1, Y2, . . . , Yn be independent random variables with moment-
generating functions mY1(t), mY2(t), . . . , mYn (t), respectively. If U = Y1 +
Y2 + · · · + Yn , then

mU (t) = mY1(t) × mY2(t) × · · · × mYn (t).

Proof We know that, because the random variables Y1, Y2, . . . , Yn are independent
(see Theorem 5.9),

mU (t) = E
[
et (Y1+···+Yn)

] = E
(
etY1 etY2 · · · etYn

)
= E

(
etY1

) × E
(
etY2

) × · · · × E
(
etYn

)
.

Thus, by the definition of moment-generating functions,

mU (t) = mY1(t) × mY2(t) × · · · × mYn (t).

EXAMPLE 6.12 The number of customer arrivals at a checkout counter in a given interval of time
possesses approximately a Poisson probability distribution (see Section 3.8). If Y1

denotes the time until the first arrival, Y2 denotes the time between the first and
second arrival, . . . , and Yn denotes the time between the (n − 1)st and nth arrival,
then it can be shown that Y1, Y2, . . . , Yn are independent random variables, with the
density function for Yi given by

fYi (yi ) =
⎧⎨⎩

1

θ
e−yi /θ , yi > 0,

0, otherwise.
[Because the Yi , for i = 1, 2, . . . , n, are exponentially distributed, it follows that
E(Yi ) = θ ; that is, θ is the average time between arrivals.] Find the probability
density function for the waiting time from the opening of the counter until the nth
customer arrives. (If Y1, Y2, . . . denote successive interarrival times, we want the
density function of U = Y1 + Y2 + · · · + Yn .)

Solution To use Theorem 6.2, we must first know mYi (t), i = 1, 2, . . . , n. Because each of
the Yi ’s is exponentially distributed with mean θ , mYi (t) = (1 − θ t)−1 and, by
Theorem 6.2,

mU (t) = mY1(t) × mY1(t) × · · · × mYn (t)

= (1 − θ t)−1 × (1 − θ t)−1 × · · · × (1 − θ t)−1 = (1 − θ t)−n.

This is the moment-generating function of a gamma-distributed random variable with
α = n and β = θ . Theorem 6.1 implies that U actually has this gamma distribution
and therefore that

fU (u) =
⎧⎨⎩

1

"(n)θn
(un−1e−u/θ ), u > 0,

0, elsewhere.
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6.5 The Method of Moment-Generating Functions 321

The method of moment-generating functions can be used to establish some inter-
esting and useful results about the distributions of functions of normally distributed
random variables. Because these results will be used throughout Chapters 7–9, we
present them in the form of theorems.

THEOREM 6.3 Let Y1, Y2, . . . , Yn be independent normally distributed random variables with
E(Yi ) = μi and V (Yi ) = σ 2

i , for i = 1, 2, . . . , n, and let a1, a2, . . . , an be
constants. If

U =
n∑

i=1

ai Yi = a1Y1 + a2Y2 + · · · + anYn,

then U is a normally distributed random variable with

E(U ) =
n∑

i=1

aiμi = a1μ1 + a2μ2 + · · · + anμn

and

V (U ) =
n∑

i=1

a2
i σ

2
i = a2

1σ
2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n .

Proof Because Yi is normally distributed with mean μi and variance σ 2
i , Yi has

moment-generating function given by

mYi (t) = exp

(
μi t + σ 2

i t2

2

)
.

[Recall that exp(·) is a more convenient way to write e(·) when the term in the
exponent is long or complex.] Therefore, ai Yi has moment-generating function
given by

mai Yi (t) = E(etai Yi ) = mYi (ai t) = exp

(
μi ai t + a2

i σ
2
i t2

2

)
.

Because the random variables Yi are independent, the random variables ai Yi

are independent, for i = 1, 2, . . . , n, and Theorem 6.2 implies that

mU (t) = ma1Y1(t) × ma2Y2(t) × · · · × manYn (t)

= exp

(
μ1a1t + a2

1σ
2
1 t2

2

)
× · · · × exp

(
μnant + a2

nσ
2
n t2

2

)

= exp

(
t

n∑
i=1

aiμi + t2

2

n∑
i=1

a2
i σ

2
i

)
.

Thus, U has a normal distribution with mean
∑n

i=1 aiμi and variance∑n
i=1 a2

i σ
2
i .

THEOREM 6.4 Let Y1, Y2, . . . , Yn be defined as in Theorem 6.3 and define Z i by

Z i = Yi − μi

σi
, i = 1, 2, . . . , n.

Then
∑n

i=1 Z2
i has a χ2 distribution with n degrees of freedom.
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322 Chapter 6 Functions of Random Variables

Proof Because Yi is normally distributed with mean μi and variance σ 2
i , the result of

Example 6.10 implies that Z i is normally distributed with mean 0 and variance 1.
From Example 6.11, we then have that Z2

i is a χ2-distributed random variable
with 1 degree of freedom. Thus,

m Z2
i
(t) = (1 − 2t)−1/2,

and from Theorem 6.2, with V = ∑n
i=1 Z2

i ,

mV (t) = m Z2
1
(t) × m Z2

2
(t) × · · · × m Z2

n
(t)

= (1 − 2t)−1/2 × (1 − 2t)−1/2 × · · · × (1 − 2t)−1/2 = (1 − 2t)−n/2.

Because moment-generating functions are unique, V has a χ2 distribution with
n degrees of freedom.

Theorem 6.4 provides some clarification of the degrees of freedom associated with
a χ2 distribution. If n independent, standard normal random variables are squared and
added together, the resulting sum has a χ2 distribution with n degrees of freedom.

Summary of the Moment-Generating Function Method
Let U be a function of the random variables Y1, Y2, . . . , Yn .

1. Find the moment-generating function for U, mU (t).
2. Compare mU (t) with other well-known moment-generating functions. If

mU (t) = mV (t) for all values of t , Theorem 6.1 implies that U and V
have identical distributions.

Exercises
6.37 Let Y1, Y2, . . . , Yn be independent and identically distributed random variables such that for

0 < p < 1, P(Yi = 1) = p and P(Yi = 0) = q = 1 − p. (Such random variables are called
Bernoulli random variables.)

a Find the moment-generating function for the Bernoulli random variable Y1.

b Find the moment-generating function for W = Y1 + Y2 + · · · + Yn .

c What is the distribution of W ?

6.38 Let Y1 and Y2 be independent random variables with moment-generating functions mY1(t)
and mY2(t), respectively. If a1 and a2 are constants, and U = a1Y1 + a2Y2 show that the
moment-generating function for U is mU (t) = mY1(a1t) × mY2(a2t).

6.39 In Exercises 6.11 and 6.25, we considered two electronic components that operate indepen-
dently, each with a life length governed by the exponential distribution with mean 1. Use the
method of moment-generating functions to obtain the density function for the average life
length of the two components.
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6.40 Suppose that Y1 and Y2 are independent, standard normal random variables. Find the density
function of U = Y 2

1 + Y 2
2 .

6.41 Let Y1, Y2, . . . , Yn be independent, normal random variables, each with mean μ and variance σ 2.
Let a1, a2, . . . , an denote known constants. Find the density function of the linear combination
U = ∑n

i=1 ai Yi .

6.42 A type of elevator has a maximum weight capacity Y1, which is normally distributed with mean
5000 pounds and standard deviation 300 pounds. For a certain building equipped with this type
of elevator, the elevator’s load, Y2, is a normally distributed random variable with mean 4000
pounds and standard deviation 400 pounds. For any given time that the elevator is in use, find
the probability that it will be overloaded, assuming that Y1 and Y2 are independent.

6.43 Refer to Exercise 6.41. Let Y1, Y2, . . . , Yn be independent, normal random variables, each with
mean μ and variance σ 2.

a Find the density function of Y = 1

n

n∑
i=1

Yi .

b If σ 2 = 16 and n = 25, what is the probability that the sample mean, Y , takes on a value
that is within one unit of the population mean, μ? That is, find P(|Y − μ| ≤ 1).

c If σ 2 = 16, find P(|Y − μ| ≤ 1) if n = 36, n = 64, and n = 81. Interpret the results of
your calculations.

*6.44 The weight (in pounds) of “medium-size” watermelons is normally distributed with mean 15
and variance 4. A packing container for several melons has a nominal capacity of 140 pounds.
What is the maximum number of melons that should be placed in a single packing container
if the nominal weight limit is to be exceeded only 5% of the time? Give reasons for your
answer.

6.45 The manager of a construction job needs to figure prices carefully before submitting a bid. He
also needs to account for uncertainty (variability) in the amounts of products he might need.
To oversimplify the real situation, suppose that a project manager treats the amount of sand, in
yards, needed for a construction project as a random variable Y1, which is normally distributed
with mean 10 yards and standard deviation .5 yard. The amount of cement mix needed, in
hundreds of pounds, is a random variable Y2, which is normally distributed with mean 4 and
standard deviation .2. The sand costs $7 per yard, and the cement mix costs $3 per hundred
pounds. Adding $100 for other costs, he computes his total cost to be

U = 100 + 7Y1 + 3Y2.

If Y1 and Y2 are independent, how much should the manager bid to ensure that the true costs
will exceed the amount bid with a probability of only .01? Is the independence assumption
reasonable here?

6.46 Suppose that Y has a gamma distribution with α = n/2 for some positive integer n and β

equal to some specified value. Use the method of moment-generating functions to show that
W = 2Y/β has a χ2 distribution with n degrees of freedom.

6.47 A random variable Y has a gamma distribution with α = 3.5 and β = 4.2. Use the result in
Exercise 6.46 and the percentage points for the χ 2 distributions given in Table 6, Appendix 3,
to find P(Y > 33.627).

6.48 In a missile-testing program, one random variable of interest is the distance between the point
at which the missile lands and the center of the target at which the missile was aimed. If we
think of the center of the target as the origin of a coordinate system, we can let Y1 denote

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



324 Chapter 6 Functions of Random Variables

the north–south distance between the landing point and the target center and let Y2 denote the
corresponding east–west distance. (Assume that north and east define positive directions.) The
distance between the landing point and the target center is then U =

√
Y 2

1 + Y 2
2 . If Y1 and Y2

are independent, standard normal random variables, find the probability density function for U .

6.49 Let Y1 be a binomial random variable with n1 trials and probability of success given by p. Let
Y2 be another binomial random variable with n2 trials and probability of success also given
by p. If Y1 and Y2 are independent, find the probability function of Y1 + Y2.

6.50 Let Y be a binomial random variable with n trials and probability of success given by p. Show
that n −Y is a binomial random variable with n trials and probability of success given by 1− p.

6.51 Let Y1 be a binomial random variable with n1 trials and p1 = .2 and Y2 be an independent bino-
mial random variable with n2 trials and p2 = .8. Find the probability function of Y1 + n2 − Y2.

6.52 Let Y1 and Y2 be independent Poisson random variables with means λ1 and λ2, respectively.
Find the

a probability function of Y1 + Y2.

b conditional probability function of Y1, given that Y1 + Y2 = m.

6.53 Let Y1, Y2, . . . , Yn be independent binomial random variable with ni trials and probability of
success given by pi , i = 1, 2, . . . , n.

a If all of the ni ’s are equal and all of the p’s are equal, find the distribution of
∑n

i=1 Yi .

b If all of the ni ’s are different and all of the p’s are equal, find the distribution of
∑n

i=1 Yi .

c If all of the ni ’s are different and all of the p’s are equal, find the conditional distribution
Y1 given

∑n
i=1 Yi = m.

d If all of the ni ’s are different and all of the p’s are equal, find the conditional distribution
Y1 + Y2 given

∑n
i=1 Yi = m.

e If all of the p’s are different, does the method of moment-generating functions work well
to find the distribution of

∑n
i=1 Yi ? Why?

6.54 Let Y1, Y2, . . . , Yn be independent Poisson random variables with means λ1, λ2, . . . , λn ,
respectively. Find the

a probability function of
∑n

i=1 Yi .

b conditional probability function of Y1, given that
∑n

i=1 Yi = m.

c conditional probability function of Y1 + Y2, given that
∑n

i=1 Yi = m.

6.55 Customers arrive at a department store checkout counter according to a Poisson distribution
with a mean of 7 per hour. In a given two-hour period, what is the probability that 20 or more
customers will arrive at the counter?

6.56 The length of time necessary to tune up a car is exponentially distributed with a mean of
.5 hour. If two cars are waiting for a tune-up and the service times are independent, what is
the probability that the total time for the two tune-ups will exceed 1.5 hours? [Hint: Recall the
result of Example 6.12.]

6.57 Let Y1, Y2, . . . , Yn be independent random variables such that each Yi has a gamma distribution
with parameters αi and β. That is, the distributions of the Y ’s might have different α’s, but all
have the same value for β. Prove that U = Y1 + Y2 + · · · + Yn has a gamma distribution with
parameters α1 + α2 + · · · + αn and β.

6.58 We saw in Exercise 5.159 that the negative binomial random variable Y can be written as
Y = ∑r

i=1 Wi , where W1, W2, . . . , Wr are independent geometric random variables with
parameter p.
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a Use this fact to derive the moment-generating function for Y .

b Use the moment-generating function to show that E(Y ) = r/p and V (Y ) = r(1 − p)/p2.

c Find the conditional probability function for W1, given that Y = W1 +W2 +· · ·+Wr = m.

6.59 Show that if Y1 has a χ 2 distribution with ν1 degrees of freedom and Y2 has a χ 2 distribution
with ν2 degrees of freedom, then U = Y1 + Y2 has a χ 2 distribution with ν1 + ν2 degrees of
freedom, provided that Y1 and Y2 are independent.

6.60 Suppose that W = Y1 + Y2 where Y1 and Y2 are independent. If W has a χ 2 distribution with
ν degrees of freedom and W1 has a χ 2 distribution with ν1 < ν degrees of freedom, show that
Y2 has a χ 2 distribution with ν − ν1 degrees of freedom.

6.61 Refer to Exercise 6.52. Suppose that W = Y1 + Y2 where Y1 and Y2 are independent. If W has
a Poisson distribution with mean λ and W1 has a Poisson distribution with mean λ1 < λ, show
that Y2 has a Poisson distribution with mean λ − λ1.

*6.62 Let Y1 and Y2 be independent normal random variables, each with mean 0 and variance σ 2.
Define U1 = Y1 + Y2 and U2 = Y1 − Y2. Show that U1 and U2 are independent normal random
variables, each with mean 0 and variance 2σ 2. [Hint: If (U1, U2) has a joint moment-generating
function m(t1, t2), then U1 and U2 are independent if and only if m(t1, t2) = mU1(t1)mU2(t2).]

6.6 Multivariable Transformations Using
Jacobians (Optional)
If Y is a random variable with density function fY (y), the method of transformations
(Section 6.4) can be used to find the density function for U = h(Y ), provided that h(y)

is either increasing or decreasing for all y such that fY (y) > 0. If h(y) is increasing or
decreasing for all y in the support of fY (y), the function h(·) is one-to-one, and there
is an inverse function, h−1(·) such that u = h−1(y). Further, the density function for
U is given by

fU (u) = fY (h−1(u))

∣∣∣∣dh−1(u)

du

∣∣∣∣ .
Suppose that Y1 and Y2 are jointly continuous random variables and that U1 = Y1 +Y2

and U2 = Y1 − Y2. How can we find the joint density function of U1 and U2?
For the rest of this section, we will write the joint density of Y1 and Y2 as

fY1,Y2(y1, y2). Extending the ideas of Section 6.4, the support of the joint density
fY1,Y2(y1, y2) is the set of all values of (y1, y2) such that fY1,Y2(y1, y2) > 0.

The Bivariate Transformation Method
Suppose that Y1 and Y2 are continuous random variables with joint density
function fY1,Y2(y1, y2) and that for all (y1, y2), such that fY1,Y2(y1, y2) > 0,

u1 = h1(y1, y2) and u2 = h2(y1, y2)

is a one-to-one transformation from (y1, y2) to (u1, u2) with inverse

y1 = h−1
1 (u1, u2) and y2 = h−1

2 (u1, u2).
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If h−1
1 (u1, u2) and h−1

2 (u1, u2) have continuous partial derivatives with respect
to u1 and u2 and Jacobian

J = det

⎡⎢⎢⎢⎣
∂h−1

1

∂u1

∂h−1
1

∂u2

∂h−1
2

∂u1

∂h−1
2

∂u2

⎤⎥⎥⎥⎦ = ∂h−1
1

∂u1

∂h−1
2

∂u2
− ∂h−1

2

∂u1

∂h−1
1

∂u2
7= 0,

then the joint density of U1 and U2 is

fU1,U2(u1, u2) = fY1,Y2

(
h−1

1 (u1, u2), h−1
2 (u1, u2)

) |J |,
where |J | is the absolute value of the Jacobian.

We will not prove this result, but it follows from calculus results used for change
of variables in multiple integration. (Recall that sometimes double integrals are more
easily calculated if we use polar coordinates instead of Euclidean coordinates; see
Exercise 4.194.) The absolute value of the Jacobian, |J |, in the multivariate trans-
formation is analogous to the quantity |dh−1(u)/du| that is used when making the
one-variable transformation U = h(Y ).

A word of caution is in order. Be sure that the bivariate transformation u1 =
h1(y1, y2), u2 = h2(y1, y2) is a one-to-one transformation for all (y1, y2) such that
fY1,Y2(y1, y2)>0. This step is easily overlooked. If the bivariate transformation is not
one-to-one and this method is blindly applied, the resulting “density” function will
not have the necessary properties of a valid density function. We illustrate the use of
this method in the following examples.

EXAMPLE 6.13 Let Y1 and Y2 be independent standard normal random variables. If U1 = Y1 + Y2

and U2 = Y1 − Y2, both U1 and U2 are linear combinations of independent normally
distributed random variables, and Theorem 6.3 implies that U1 is normally distributed
with mean 0 + 0 = 0 and variance 1 + 1 = 2. Similarly, U2 has a normal distribution
with mean 0 and variance 2. What is the joint density of U1 and U2?

Solution The density functions for Y1 and Y2 are

f1(y1) = e−(1/2)y2
1√

2π
, −∞ < y1 < ∞

f2(y2) = e−(1/2)y2
2√

2π
, −∞ < y2 < ∞,

and the independence of Y1 and Y2 implies that their joint density is

fY1,Y2(y1, y2) = e−(1/2)y2
1 −(1/2)y2

2

2π
, −∞ < y1 < ∞, −∞ < y2 < ∞.

In this case fY1,Y2(y1, y2) > 0 for all −∞ < y1 < ∞ and − ∞ < y2 < ∞, and we
are interested in the transformation

u1 = y1 + y2 = h1(y1, y2) and u2 = y1 − y2 = h2(y1, y2)
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with inverse transformation

y1 = (u1 + u2)/2 = h−1
1 (u1, u2) and y2 = (u1 − u2)/2 = h−1

2 (u1, u2).

Because ∂h−1
1 /∂u1 =1/2, ∂h−1

1 /∂u2 =1/2, ∂h−1
2 /∂u1 =1/2 and ∂h−1

2 /∂u2 =−1/2,
the Jacobian of this transformation is

J = det

[
1/2 1/2

1/2 −1/2

]
= (1/2)(−1/2) − (1/2)(1/2) = −1/2

and the joint density of U1 and U2 is [with exp(·) = e(·)]

fU1,U2(u1, u2) =
exp

[
− 1

2

( u1+u2
2

)2 − 1
2

( u1−u2
2

)2
]

2π

∣∣∣∣−1

2

∣∣∣∣ , −∞ < (u1 + u2)/2 < ∞,

−∞ < (u1 − u2)/2 < ∞.

A little algebra yields

−1

2

(
u1 + u2

2

)2

− 1

2

(
u1 − u2

2

)2

= −1

4
u2

1 − 1

4
u2

2

and

{(u1, u2) :−∞ < (u1 + u2)/2 < ∞, −∞ < (u1 − u2)/2 < ∞}
= {(u1, u2) :−∞ < u1 < ∞, −∞ < u2 < ∞}.

Finally, because 4π = √
2
√

2π
√

2
√

2π ,

fU1,U2(u1, u2) = e−u2
1/4

√
2
√

2π

e−u2
2/4

√
2
√

2π
, −∞ < u1 < ∞, −∞ < u2 < ∞.

Notice that U1 and U2 are independent and normally distributed, both with mean 0
and variance 2. The extra information provided by the joint distribution of U1 and U2

is that the two variables are independent!

The multivariable transformation method is also useful if we are interested in
a single function of Y1 and Y2—say, U1 = h(Y1, Y2). Because we have only one
function of Y1 and Y2, we can use the method of bivariate transformations to find
the joint distribution of U1 and another function U2 = h2(Y1, Y2) and then find the
desired marginal density of U1 by integrating the joint density. Because we are really
interested in only the distribution of U1, we would typically choose the other function
U2 = h2(Y1, Y2) so that the bivariate transformation is easy to invert and the Jacobian
is easy to work with. We illustrate this technique in the following example.

EXAMPLE 6.14 Let Y1 and Y2 be independent exponential random variables, both with mean β > 0.
Find the density function of

U = Y1

Y1 + Y2
.
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Solution The density functions for Y1 and Y2 are, again using exp(·) = e(·),

f1(y1) =
⎧⎨⎩

1

β
exp(−y1/β), 0 < y1,

0, otherwise,
and

f2(y2)

⎧⎨⎩
1

β
exp(−y2/β), 0 < y2,

0, otherwise.
Their joint density is

fY1,Y2(y1, y2) =
⎧⎨⎩

1

β2
exp[−(y1 + y2)/β], 0 < y1, 0 < y2,

0, otherwise,
because Y1 and Y2 are independent.

In this case, fY1,Y2(y1, y2) > 0 for all (y1, y2) such that 0 < y1, 0 < y2, and
we are interested in the function U1 = Y1/(Y1 + Y2). If we consider the function
u1 = y1/(y1 + y2), there are obviously many values for (y1, y2) that will give the
same value for u1. Let us define

u1 = y1

y1 + y2
= h1(y1, y2) and u2 = y1 + y2 = h2(y1, y2).

This choice of u2 yields a convenient inverse transformation:

y1 = u1u2 = h−1
1 (u1, u2) and y2 = u2(1 − u1) = h−1

2 (u1, u2).

The Jacobian of this transformation is

J = det

[
u2 u1

−u2 1 − u1

]
= u2(1 − u1) − (−u2)(u1) = u2,

and the joint density of U1 and U2 is

fU1,U2(u1, u2)

=
⎧⎨⎩

1

β2
exp {− [u1u2 + u2(1 − u1)] /β} |u2| , 0 < u1u2, 0 < u2(1 − u1),

0, otherwise.

In this case, fU1,U2(u1, u2) > 0 if u1 and u2 are such that 0 < u1u2, 0 < u2(1 − u1).
Notice that if 0 < u1u2, then

0 < u2(1 − u1) = u2 − u1u2 ⇔ 0 < u1u2 < u2 ⇔ 0 < u1 < 1.

If 0 < u1 < 1, then 0 < u2(1 − u1) implies that 0 < u2. Therefore, the region of sup-
port for the joint density of U1 and U2 is {(u1, u2): 0 < u1 < 1, 0 < u2}, and the
joint density of U1 and U2 is given by

fU1,U2(u1, u2) =
⎧⎨⎩

1

β2
u2e−u2/β, 0 < u1 < 1, 0 < u2,

0, otherwise.
Using Theorem 5.5 it is easily seen that U1 and U2 are independent. The marginal

densities of U1 and U2 can be obtained by integrating the joint density derived earlier.
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In Exercise 6.63 you will show that U1 is uniformly distributed over (0, 1) and that
U2 has a gamma density with parameters α = 2 and β.

The technique described in this section can be viewed to be a one-step version of
the two-step process illustrated in Example 6.9.

In Example 6.14, it was more difficult to find the region of support (where the joint
density is positive) than it was to find the equation of the joint density function. As
you will see in the next example and the exercises, this is often the case.

EXAMPLE 6.15 In Example 6.9, we considered a random variables Y1 and Y2 with joint density
function

fY1,Y2(y1, y2) =
{

2(1 − y1), 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0, elsewhere,

and were interested in U = Y1Y2. Find the probability density function for U by using
the bivariate transformation method.

Solution In this case fY1,Y2(y1, y2) > 0 for all (y1, y2), such that 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, and
we are interested in the function U2 = Y1Y2. If we consider the function u2 = y1 y2,
this function alone is not a one-to-one function of the variables (y1, y2). Consider

u1 = y1 = h1(y1, y2) and u2 = y1 y2 = h2(y1, y2).

For this choice of u1, and 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, the transformation from (y1, y2)

to (u1, u2) is one-to-one and

y1 = u1 = h−1
1 (u1, u2) and y2 = u2/u1 = h−1

2 (u1, u2).

The Jacobian is

J = det

[
1 0

−u2/u2
1 1/u1

]
= 1(1/u1) − (−u2/u2

1)(0) = 1/u1.

The original variable of interest is U2 = Y1Y2, and the joint density of U1 and
U2 is

fU1,U2(u1, u2) =
⎧⎨⎩ 2(1 − u1)

∣∣∣∣ 1

u1

∣∣∣∣, 0 ≤ u1 ≤ 1, 0 ≤ u2/u1 ≤ 1,

0, otherwise.

Because

{(u1, u2): 0 ≤ u1 ≤ 1, 0 ≤ u2/u1 ≤ 1} = {(u1, u2): 0 ≤ u2 ≤ u1 ≤ 1},
the joint density of U1 and U2 is

fU1,U2(u1, u2) =
⎧⎨⎩ 2(1 − u1)

1

u1
, 0 ≤ u2 ≤ u1 ≤ 1,

0, otherwise.

This joint density is exactly the same as the joint density obtained in Example 6.9 if
we identify the variables Y1 and U used in Example 6.9 with the variables U1 and
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U2, respectively, used here. With this identification, the marginal density of U2 is
precisely the density of U obtained in Example 6.9—that is,

f2(u2) =
{

2(u2 − ln u2 − 1), 0 ≤ u2 ≤ 1,

0, elsewhere.

If Y1, Y2, . . . , Yk are jointly continuous random variables and

U1 = h1(Y1, Y2, . . . , Yk), U2 = h2(Y1, Y2, . . . , Yk), . . . , Uk = hk(Y1, Y2, . . . , Yk),

where the transformation

u1 = h1(y1, y2, . . . , yk), u2 = h2(y1, y2, . . . , yk), . . . , uk = hk(y1, y2, . . . , yk)

is a one-to-one transformation from (y1, y2, . . . , yk) to (u1, u2, . . . , uk) with inverse

y1 = h−1
1 (u1, u2, . . . , uk), y2 = h−1

2 (u1, u2, . . . , uk), . . . ,

yk = h−1
k (u1, u2, . . . , uk),

and h−1
1 (u1, u2, . . . , uk), h−1

2 (u1, u2, . . . , uk), . . . , h−1
k (u1, u2, . . . , uk) have contin-

uous partial derivatives with respect to u1, u2, . . . , uk and Jacobian

J = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h−1
1

∂u1

∂h−1
1

∂u2
· · · ∂h−1

1

∂uk

∂h−1
2

∂u1

∂h−1
2

∂u2
· · · ∂h−1

2

∂uk

...
...

. . .
...

∂h−1
k

∂u1

∂h−1
k

∂u2
· · · ∂h−1

k

∂uk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7= 0,

then a result analogous to the one presented in this section can be used to find the
joint density of U1, U2, . . . , Uk . This requires the user to find the determinant of a
k × k matrix, a skill that is not required in the rest of this text. For more details, see
“References and Further Readings” at the end of the chapter.

Exercises
*6.63 In Example 6.14, Y1 and Y2 were independent exponentially distributed random variables, both

with mean β. We defined U1 = Y1/(Y1 + Y2) and U2 = Y1 + Y2 and determined the joint
density of (U1, U2) to be

fU1,U2(u1, u2) =
⎧⎨⎩

1

β2
u2e−u2/β , 0 < u1 < 1, 0 < u2,

0, otherwise.

a Show that U1 is uniformly distributed over the interval (0, 1).

b Show that U2 has a gamma density with parameters α = 2 and β.

c Establish that U1 and U2 are independent.
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*6.64 Refer to Exercise 6.63 and Example 6.14. Suppose that Y1 has a gamma distribution with
parameters α1 and β, that Y1 is gamma distributed with parameters α2 and β, and that Y1 and
Y2 are independent. Let U1 = Y1/(Y1 + Y2) and U2 = Y1 + Y2.

a Derive the joint density function for U1 and U2.

b Show that the marginal distribution of U1 is a beta distribution with parameters α1 and α2.

c Show that the marginal distribution of U2 is a gamma distribution with parameters α =
α1 + α2 and β.

d Establish that U1 and U2 are independent.

6.65 Let Z1 and Z2 be independent standard normal random variables and U1 = Z1 and U2 =
Z1 + Z2.

a Derive the joint density of U1 and U2.

b Use Theorem 5.12 to give E(U1), E(U2), V (U1), V (U2), and Cov(U1, U2).

c Are U1 and U2 independent? Why?

d Refer to Section 5.10. Show that U1 and U2 have a bivariate normal distribution. Identify
all the parameters of the appropriate bivariate normal distribution.

*6.66 Let (Y1, Y2) have joint density function fY1,Y2(y1, y2) and let U1 = Y1 + Y2 and U2 = Y2.

a Show that the joint density of (U1, U2) is

fU1, U2(u1, u2) = fY1,Y2(u1 − u2, u2).

b Show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1,Y2(u1 − u2, u2) du2.

c If Y1 and Y2 are independent, show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1(u1 − u2) fY2(u2) du2.

That is, that the density of Y1 + Y2 is the convolution of the densities fY1(·) and fY2(·)
*6.67 Let (Y1, Y2) have joint density function fY1,Y2(y1, y2) and let U1 = Y1/Y2 and U2 = Y2.

a Show that the joint density of (U1, U2) is

fU1, U2(u1, u2) = fY1,Y2(u1u2, u2)|u2|.
b Show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1,Y2(u1u2, u2)|u2| du2.

c If Y1 and Y2 are independent, show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1(u1u2) fY2(u2)|u2| du2.

*6.68 Let Y1 and Y2 have joint density function

fY1,Y2(y1, y2) =
{

8y1 y2, 0 ≤ y1 < y2 ≤ 1,

0, otherwise,

and U1 = Y1/Y2 and U2 = Y2.
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a Derive the joint density function for (U1, U2).

b Show that U1 and U2 are independent.

*6.69 The random variables Y1 and Y2 are independent, both with density

f (y) =
⎧⎨⎩

1

y2
, 1 < y,

0, otherwise.

Let U1 = Y1

Y1 + Y2
and U2 = Y1 + Y2.

a What is the joint density of Y1 and Y2?

b Show that the joint density of U1 and U2 is given by

fU1,U2(u1, u2) =
⎧⎨⎩

1

u2
1(1 − u1)2u3

2

,
1/u1 < u2, 0 < u1 < 1/2 and

1/(1 − u1) < u2, 1/2 ≤ u1 ≤ 1,

0, otherwise.

c Sketch the region where fU1,U2(u1, u2) > 0.

d Show that the marginal density of U1 is

fU1(u1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2(1 − u1)2
, 0 ≤ u1 < 1/2,

1

2u2
1

, 1/2 ≤ u1 ≤ 1,

0, otherwise.

e Are U1 and U2 are independent? Why or why not?

*6.70 Suppose that Y1 and Y2 are independent and that both are uniformly distributed on the interval
(0, 1), and let U1 = Y1 + Y2 and U2 = Y1 − Y2.

a Show that the joint density of U1 and U2 is given by

fU1,U2(u1, u2) =
⎧⎨⎩

1/2, −u1 < u2 < u1, 0 < u1 < 1 and

u1 − 2 < u2 < 2 − u1, 1 ≤ u1 < 2,

0, otherwise.

b Sketch the region where fU1,U2(u1, u2) > 0.

c Show that the marginal density of U1 is

fU1(u1) =
⎧⎨⎩

u1, 0 < u1 < 1,

2 − u1, 1 ≤ u1 < 2,

0, otherwise.

d Show that the marginal density of U2 is

fU2(u2) =
⎧⎨⎩

1 + u2, −1 < u2 < 0,

1 − u2, 0 ≤ u1 < 1,

0, otherwise.

e Are U1 and U2 independent? Why or why not?

*6.71 Suppose that Y1 and Y2 are independent exponentially distributed random variables, both with
mean β, and define U1 = Y1 + Y2 and U2 = Y1/Y2.
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a Show that the joint density of (U1, U2) is

fU1,U2(u1, u2) =
⎧⎨⎩

1

β2
u1e−u1/β 1

(1 + u2)2
, 0 < u1, 0 < u2,

0, otherwise.

b Are U1 and U2 are independent? Why?

6.7 Order Statistics
Many functions of random variables of interest in practice depend on the relative
magnitudes of the observed variables. For instance, we may be interested in the
fastest time in an automobile race or the heaviest mouse among those fed on a certain
diet. Thus, we often order observed random variables according to their magnitudes.
The resulting ordered variables are called order statistics.

Formally, let Y1, Y2, . . . , Yn denote independent continuous random variables with
distribution function F(y) and density function f (y). We denote the ordered random
variables Yi by Y(1), Y(2), . . . , Y(n), where Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). (Because the ran-
dom variables are continuous, the equality signs can be ignored.) Using this notation,

Y(1) = min(Y1, Y2, . . . , Yn)

is the minimum of the random variables Yi , and

Y(n) = max(Y1, Y2, . . . , Yn)

is the maximum of the random variables Yi .
The probability density functions for Y(1) and Y(n) can be found using the method

of distribution functions. We will derive the density function of Y(n) first. Because
Y(n) is the maximum of Y1, Y2, . . . , Yn , the event (Y(n) ≤ y) will occur if and only if
the events (Yi ≤ y) occur for every i = 1, 2, . . . , n. That is,

P(Y(n) ≤ y) = P(Y1 ≤ y, Y2 ≤ y, . . . , Yn ≤ y).

Because the Yi are independent and P(Yi ≤ y) = F(y) for i = 1, 2, . . . , n, it
follows that the distribution function of Y(n) is given by

FY(n)
(y) = P(Y(n) ≤ y) = P(Y1 ≤ y)P(Y2 ≤ y) · · · P(Yn ≤ y) = [F(y)]n.

Letting g(n)(y) denote the density function of Y(n), we see that, on taking derivatives
of both sides,

g(n)(y) = n[F(y)]n−1 f (y).

The density function for Y(1) can be found in a similar manner. The distribution
function of Y(1) is

FY(1)
(y) = P(Y(1) ≤ y) = 1 − P(Y(1) > y).

Because Y(1) is the minimum of Y1, Y2, . . . , Yn , it follows that the event (Y(1) > y)

occurs if and only if the events (Yi > y) occur for i = 1, 2, . . . , n. Because the Yi are
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independent and P(Yi > y) = 1 − F(y) for i = 1, 2, . . . , n, we see that

FY(1)
(y) = P(Y(1) ≤ y) = 1 − P(Y(1) > y)

= 1 − P(Y1 > y, Y2 > y, . . . , Yn > y)

= 1 − [P(Y1 > y)P(Y2 > y) · · · P(Yn > y)]

= 1 − [1 − F(y)]n.

Thus, if g(1)(y) denotes the density function of Y(1), differentiation of both sides of
the last expression yields

g(1)(y) = n[1 − F(y)]n−1 f (y).

Let us now consider the case n = 2 and find the joint density function for Y(1)

and Y(2). The event (Y(1) ≤ y1, Y(2) ≤ y2) means that either (Y1 ≤ y1, Y2 ≤ y2) or
(Y2 ≤ y1, Y1 ≤ y2). [Notice that Y(1) could be either Y1 or Y2, whichever is smaller.]
Therefore, for y1 ≤ y2, P(Y(1) ≤ y1, Y(2) ≤ y2) is equal to the probability of the
union of the two events (Y1 ≤ y1, Y2 ≤ y2) and (Y2 ≤ y1, Y1 ≤ y2). That is,

P(Y(1) ≤ y1, Y(2) ≤ y2) = P[(Y1 ≤ y1, Y2 ≤ y2) ∪ (Y2 ≤ y1, Y1 ≤ y2)].

Using the additive law of probability and recalling that y1 ≤ y2, we see that

P(Y(1) ≤ y1, Y(2) ≤ y2) = P(Y1 ≤ y1, Y2 ≤ y2) + P(Y2 ≤ y1, Y1 ≤ y2)

− P(Y1 ≤ y1, Y2 ≤ y1).

Because Y1 and Y2 are independent and P(Yi ≤ w) = F(w), for i = 1, 2, it follows
that, for y1 ≤ y2,

P(Y(1) ≤ y1, Y(2) ≤ y2) = F(y1)F(y2) + F(y2)F(y1) − F(y1)F(y1)

= 2F(y1)F(y2) − [F(y1)]
2.

If y1 > y2 (recall that Y(1) ≤ Y(2)),

P(Y(1) ≤ y1, Y(2) ≤ y2) = P(Y(1) ≤ y2, Y(2) ≤ y2)

= P(Y1 ≤ y2, Y2 ≤ y2) = [F(y2)]
2 .

Summarizing, the joint distribution function of Y(1) and Y(2) is

FY(1)Y(2)
(y1, y2) =

{
2F(y1)F(y2) − [F(y1)]2, y1 ≤ y2,

[F(y2)]
2 , y1 > y2.

Letting g(1)(2)(y1, y2) denote the joint density of Y(1) and Y(2), we see that, on
differentiating first with respect to y2 and then with respect to y1,

g(1)(2)(y1, y2) =
{

2 f (y1) f (y2), y1 ≤ y2,

0, elsewhere.

The same method can be used to find the joint density of Y(1), Y(2), . . . , Y(n), which
turns out to be

g(1)(2)···(n)(y1, y2, . . . , yn) =
{

n! f (y1) f (y2), . . . , f (yn), y1 ≤ y2 ≤ · · · ≤ yn,

0, elsewhere.
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The marginal density function for any of the order statistics can be found from this
joint density function, but we will not pursue this matter formally in this text.

EXAMPLE 6.16 Electronic components of a certain type have a length of life Y , with probability
density given by

f (y) =
{

(1/100)e−y/100, y > 0,

0, elsewhere.

(Length of life is measured in hours.) Suppose that two such components operate
independently and in series in a certain system (hence, the system fails when either
component fails). Find the density function for X , the length of life of the system.

Solution Because the system fails at the first component failure, X = min(Y1, Y2), where
Y1 and Y2 are independent random variables with the given density. Then, because
F(y) = 1 − e−y/100, for y ≥ 0,

fX (y) = g(1)(y) = n[1 − F(y)]n−1 f (y)

=
{

2e−y/100(1/100)e−y/100, y > 0,

0, elsewhere,

and it follows that

fX (y) =
{

(1/50)e−y/50, y > 0,

0, elsewhere.

Thus, the minimum of two exponentially distributed random variables has an ex-
ponential distribution. Notice that the mean length of life for each component is
100 hours, whereas the mean length of life for the system is E(X) = E(Y(1)) = 50 =
100/2.

EXAMPLE 6.17 Suppose that the components in Example 6.16 operate in parallel (hence, the system
does not fail until both components fail). Find the density function for X , the length
of life of the system.

Solution Now X = max(Y1, Y2), and

fX (y) = g(2)(y) = n[F(y)]n−1 f (y)

=
{

2(1 − e−y/100)(1/100)e−y/100, y > 0,

0, elsewhere,

and, therefore,

fX (y) =
{

(1/50)(e−y/100 − e−y/50), y > 0,

0, elsewhere.

We see here that the maximum of two exponential random variables is not an expo-
nential random variable.
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Although a rigorous derivation of the density function of the kth-order statistic
(k an integer, 1<k <n) is somewhat complicated, the resulting density function has
an intuitively sensible structure. Once that structure is understood, the density can
be written down with little difficulty. Think of the density function of a continuous
random variable at a particular point as being proportional to the probability that the
variable is “close” to that point. That is, if Y is a continuous random variable with
density function f (y), then

P(y ≤ Y ≤ y + dy) ≈ f (y) dy.

Now consider the kth-order statistic, Y(k). If the kth-largest value is near yk , then k −1
of the Y ’s must be less than yk , one of the Y ’s must be near yk , and the remaining n−k
of the Y ’s must be larger than yk . Recall the multinomial distribution, Section 5.9. In
the present case, we have three classes of values of Y :

Class 1: Y ’s that have values less than yk need k − 1.

Class 2: Y ’s that have values near yk need 1.

Class 3: Y ’s that have values larger than yk need n − k.

The probabilities of each of these classes are, respectively, p1 = P(Y < yk) =
F(yk), p2 = P(yk ≤Y ≤ yk +dyk) ≈ f (yk)dyk, and p3 = P(y > yk) = 1−F(yk).
Using the multinomial probabilities discussed earlier, we see that

P(yk ≤ Y(k) ≤ yk + dyk)

≈ P[(k − 1) from class 1, 1 from class 2, (n − k) from class 3]

≈
(

n

k − 1 1 n − k

)
pk−1

1 p1
2 pn−k

3

≈ n!

(k − 1)! 1! (n − k)!

{
[F(yk)]

k−1 f (yk) dyk [1 − F(yk)]
n−k

}
and

g(k)(yk) dyk ≈ n!

(k − 1)! 1! (n − k)!
Fk−1(yk) f (yk) [1 − F(yk)]

n−k dyk .

The density of the kth-order statistic and the joint density of two-order statistics are
given in the following theorem.

THEOREM 6.5 Let Y1, . . . , Yn be independent identically distributed continuous random vari-
ables with common distribution function F(y) and common density function
f (y). If Y(k) denotes the kth-order statistic, then the density function of Y(k) is
given by

g(k)(yk) = n!

(k − 1)! (n − k)!
[F(yk)]

k−1 [1 − F(yk)]
n−k f (yk),

−∞ < yk < ∞.
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If j and k are two integers such that 1 ≤ j < k ≤ n, the joint density of Y( j) and
Y(k) is given by

g( j)(k)(y j , yk) = n!

( j − 1)! (k − 1 − j)! (n − k)!
[F(y j )]

j−1

× [F(yk) − F(y j )]
k−1− j × [1 − F(yk)]

n−k f (y j ) f (yk),

−∞ < y j < yk < ∞.

The heuristic, intuitive derivation of the joint density given in Theorem 6.5 is
similar to that given earlier for the density of a single order statistic. For y j < yk , the
joint density can be interpreted as the probability that the j th largest observation is
close to y j and the kth largest is close to yk . Define five classes of values of Y :

Class 1: Y ’s that have values less than y j need j − 1.

Class 2: Y ’s that have values near y j need 1.

Class 3: Y ’s that have values between y j and yk need k − 1 − j.
Class 4: Y ’s that have values near yk need 1.

Class 5: Y ’s that have values larger than yk need n − k.

Again, use the multinomial distribution to complete the heuristic argument.

EXAMPLE 6.18 Suppose that Y1, Y2, . . . , Y5 denotes a random sample from a uniform distribution
defined on the interval (0, 1). That is,

f (y) =
{

1, 0 ≤ y ≤ 1,

0, elsewhere.

Find the density function for the second-order statistic. Also, give the joint density
function for the second- and fourth-order statistics.

Solution The distribution function associated with each of the Y ’s is

F(y) =
⎧⎨⎩

0, y < 0,

y, 0 ≤ y ≤ 1,

1, y > 1.

The density function of the second-order statistic, Y(2), can be obtained directly from
Theorem 6.5 with n = 5, k = 2. Thus, with f (y) and F(y) as noted,

g(2)(y2) = 5!

(2 − 1)! (5 − 2)!
[F(y2)]

2−1[1 − F(y2)]
5−2 f (y2), −∞ < y2 < ∞,

=
{

20y2(1 − y2)
3, 0 ≤ y2 ≤ 1,

0, elsewhere.

The preceding density is a beta density with α = 2 and β = 4. In general, the kth-
order statistic based on a sample of size n from a uniform (0, 1) distribution has a
beta density with α = k and β = n − k + 1.
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The joint density of the second- and fourth-order statistics is readily obtained from
the second result in Theorem 6.5. With f (y) and F(y) as before, j = 2, k = 4, and
n = 5,

g(2)(4)(y2, y4) = 5!

(2 − 1)! (4 − 1 − 2)! (5 − 4)!
[F(y2)]

2−1[F(y4) − F(y2)]
4−1−2

× [1 − F(y4)]
5−4 f (y2) f (y4), −∞ < y2 < y4 < ∞

=
{

5! y2(y4 − y2)(1 − y4), 0 ≤ y2 < y4 ≤ 1

0, elsewhere.

Of course, this joint density can be used to evaluate joint probabilities about Y(2) and
Y(4) or to evaluate the expected value of functions of these two variables.

Exercises
6.72 Let Y1 and Y2 be independent and uniformly distributed over the interval (0, 1). Find

a the probability density function of U1 = min(Y1, Y2).

b E (U1) and V (U1).

6.73 As in Exercise 6.72, let Y1 and Y2 be independent and uniformly distributed over the interval
(0, 1). Find

a the probability density function of U2 = max(Y1, Y2).

b E (U2) and V (U2).

6.74 Let Y1, Y2, . . . , Yn be independent, uniformly distributed random variables on the interval [0, θ ].
Find the

a probability distribution function of Y(n) = max(Y1, Y2, . . . , Yn).

b density function of Y(n).

c mean and variance of Y(n).

6.75 Refer to Exercise 6.74. Suppose that the number of minutes that you need to wait for a bus
is uniformly distributed on the interval [0, 15]. If you take the bus five times, what is the
probability that your longest wait is less than 10 minutes?

*6.76 Let Y1, Y2, . . . , Yn be independent, uniformly distributed random variables on the interval [0, θ ].

a Find the density function of Y(k), the kth-order statistic, where k is an integer between 1
and n.

b Use the result from part (a) to find E(Y(k)).

c Find V (Y(k)).

d Use the result from part (c) to find E(Y(k) − Y(k−1)), the mean difference between two
successive order statistics. Interpret this result.

*6.77 Let Y1, Y2, . . . , Yn be independent, uniformly distributed random variables on the interval [0, θ ].

a Find the joint density function of Y( j) and Y(k) where j and k are integers 1 ≤ j < k ≤ n.

b Use the result from part (a) to find Cov(Y( j), Y(k)) when j and k are integers 1 ≤ j < k ≤ n.
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c Use the result from part (b) and Exercise 6.76 to find V (Y(k) − Y( j)), the variance of the
difference between two order statistics.

6.78 Refer to Exercise 6.76. If Y1, Y2, . . . , Yn are independent, uniformly distributed random vari-
ables on the interval [0, 1], show that Y(k), the kth-order statistic, has a beta density function
with α = k and β = n − k + 1.

6.79 Refer to Exercise 6.77. If Y1, Y2, . . . , Yn are independent, uniformly distributed random vari-
ables on the interval [0, θ ], show that U = Y(1)/Y(n) and Y(n) are independent.

6.80 Let Y1, Y2, . . . , Yn be independent random variables, each with a beta distribution, with α =
β = 2. Find

a the probability distribution function of Y(n) = max(Y1, Y2, . . . , Yn).

b the density function of Y(n).

c E(Y(n)) when n = 2.

6.81 Let Y1, Y2, . . . , Yn be independent, exponentially distributed random variables with mean β.

a Show that Y(1) = min(Y1, Y2, . . . , Yn) has an exponential distribution, with mean β/n.

b If n = 5 and β = 2, find P(Y(1) ≤ 3.6).

6.82 If Y is a continuous random variable and m is the median of the distribution, then m is such
that P(Y ≤ m) = P(Y ≥ m) = 1/2. If Y1, Y2, . . . , Yn are independent, exponentially dis-
tributed random variables with mean β and median m, Example 6.17 implies that Y(n) =
max(Y1, Y2, . . . , Yn) does not have an exponential distribution. Use the general form of FY(n)

(y)

to show that P(Y(n) > m) = 1 − (.5)n .

6.83 Refer to Exercise 6.82. If Y1, Y2, . . . , Yn is a random sample from any continuous distribution
with mean m, what is P(Y(n) > m)?

6.84 Refer to Exercise 6.26. The Weibull density function is given by

f (y) =
⎧⎨⎩

1

α
mym−1e−ym/α, y > 0,

0, elsewhere,

where α and m are positive constants. If a random sample of size n is taken from a Weibull
distributed population, find the distribution function and density function for Y(1) = min(Y1,

Y2, . . . , Yn). Does Y(1) = have a Weibull distribution?

6.85 Let Y1 and Y2 be independent and uniformly distributed over the interval (0, 1). Find
P(2Y(1) < Y(2)).

*6.86 Let Y1, Y2, . . . , Yn be independent, exponentially distributed random variables with mean β.
Give the

a density function for Y(k), the kth-order statistic, where k is an integer between 1 and n.

b joint density function for Y( j) and Y(k) where j and k are integers 1 ≤ j < k ≤ n.

6.87 The opening prices per share Y1 and Y2 of two similar stocks are independent random variables,
each with a density function given by

f (y) =
{

(1/2)e−(1/2)(y−4), y ≥ 4,

0, elsewhere.

On a given morning, an investor is going to buy shares of whichever stock is less expensive.
Find the
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a probability density function for the price per share that the investor will pay.

b expected cost per share that the investor will pay.

6.88 Suppose that the length of time Y it takes a worker to complete a certain task has the probability
density function given by

f (y) =
{

e−(y−θ), y > θ,

0, elsewhere,

where θ is a positive constant that represents the minimum time until task completion. Let
Y1, Y2, . . . , Yn denote a random sample of completion times from this distribution. Find

a the density function for Y(1) = min(Y1, Y2, . . . , Yn).

b E(Y(1)).

*6.89 Let Y1, Y2, . . . , Yn denote a random sample from the uniform distribution f (y) = 1, 0 ≤ y ≤ 1.
Find the probability density function for the range R = Y(n) − Y(1).

*6.90 Suppose that the number of occurrences of a certain event in time interval (0, t) has a Poisson
distribution. If we know that n such events have occurred in (0, t), then the actual times,
measured from 0, for the occurrences of the event in question form an ordered set of random
variables, which we denote by W(1) ≤ W(2) ≤ · · · ≤ W(n). [W(i) actually is the waiting time
from 0 until the occurrence of the i th event.] It can be shown that the joint density function for
W(1), W(2), . . . , W(n) is given by

f (w1, w2, . . . , wn) =
⎧⎨⎩

n!

tn
, w1 ≤ w2 ≤ · · · ≤ wn,

0, elsewhere.

[This is the density function for an ordered sample of size n from a uniform distribution on
the interval (0, t).] Suppose that telephone calls coming into a switchboard follow a Poisson
distribution with a mean of ten calls per minute. A slow period of two minutes’ duration had
only four calls. Find the

a probability that all four calls came in during the first minute; that is, find P(W(4) ≤ 1).

b expected waiting time from the start of the two-minute period until the fourth call.

*6.91 Suppose that n electronic components, each having an exponentially distributed length of life
with mean θ , are put into operation at the same time. The components operate independently
and are observed until r have failed (r ≤ n). Let W j denote the length of time until the j th
failure, with W1 ≤ W2 ≤ · · · ≤ Wr . Let T j = W j − W j−1 for j ≥ 2 and T1 = W1. Notice that
T j measures the time elapsed between successive failures.

a Show that T j , for j = 1, 2, . . . , r , has an exponential distribution with mean θ/(n − j +1).

b Show that

Ur =
r∑

j=1

W j + (n − r)Wr =
r∑

j=1

(n − j + 1)T j

and hence that E(Ur ) = rθ . [Ur is called the total observed life, and we can use Ur/r as
an approximation to (or “estimator” of ) θ .]
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6.8 Summary
This chapter has been concerned with finding probability distributions for functions
of random variables. This is an important problem in statistics because estimators
of population parameters are functions of random variables. Hence, it is necessary
to know something about the probability distributions of these functions (or estima-
tors) in order to evaluate the goodness of our statistical procedures. A discussion of
estimation will be presented in Chapters 8 and 9.

The methods for finding probability distributions for functions of random variables
are the distribution function method (Section 6.3), the transformation method (Section
6.4), and the moment-generating-function method (Section 6.5). It should be noted
that no particular method is best for all situations because the method of solution
depends a great deal upon the nature of the function involved. If U1 and U2 are two
functions of the continuous random variables Y1 and Y2, the joint density function
for U1 and U2 can be found using the Jacobian technique in Section 6.6. Facility for
handling these methods can be achieved only through practice. The exercises at the
end of each section and at the end of the chapter provide a good starting point.

The density functions of order statistics were presented in Section 6.7.
Some special functions of random variables that are particularly useful in statistical

inference will be considered in Chapter 7.
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Supplementary Exercises
6.92 If Y1 and Y2 are independent and identically distributed normal random variables with mean μ

and variance σ 2, find the probability density function for U = (1/2)(Y1 − 3Y2).

6.93 When current I flows through resistance R, the power generated is given by W = I 2 R. Suppose
that I has a uniform distribution over the interval (0, 1) and R has a density function given by

f (r) =
{

2r, 0 ≤ r ≤ 1,

0, elsewhere.

Find the probability density function for W . (Assume that I is independent of R.)
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6.94 Two efficiency experts take independent measurements Y1 and Y2 on the length of time workers
take to complete a certain task. Each measurement is assumed to have the density function
given by

f (y) =
{

(1/4)ye−y/2, y > 0,

0, elsewhere.

Find the density function for the average U = (1/2)(Y1 + Y2). [Hint: Use the method of
moment-generating functions.]

6.95 Let Y1 and Y2 be independent and uniformly distributed over the interval (0, 1). Find the
probability density function of each of the following:

a U1 = Y1/Y2.

b U2 = −ln (Y1Y2).

c U3 = Y1Y2.

6.96 Suppose that Y1 is normally distributed with mean 5 and variance 1 and Y2 is normally distributed
with mean 4 and variance 3. If Y1 and Y2 are independent, what is P(Y1 > Y2)?

6.97 Suppose that Y1 is a binomial random variable with four trials and success probability .2 and
that Y2 is an independent binomial random variable with three trials and success probability
.5. Let W = Y1 + Y2. According to Exercise 6.53(e), W does not have a binomial distribution.
Find the probability mass function for W . [Hint: P(W = 0) = P(Y1 = 0, Y2 = 0); P(W =
1) = P(Y1 = 1, Y2 = 0) + P(Y1 = 0, Y2 = 1); etc.]

*6.98 The length of time that a machine operates without failure is denoted by Y1 and the length of
time to repair a failure is denoted by Y2. After a repair is made, the machine is assumed to
operate like a new machine. Y1 and Y2 are independent and each has the density function

f (y) =
{

e−y, y > 0,

0, elsewhere.

Find the probability density function for U = Y1/(Y1 + Y2), the proportion of time that the
machine is in operation during any one operation–repair cycle.

*6.99 Refer to Exercise 6.98. Show that U , the proportion of time that the machine is operating during
any one operation–repair cycle, is independent of Y1 + Y2, the length of the cycle.

6.100 The time until failure of an electronic device has an exponential distribution with mean 15
months. If a random sample of five such devices are tested, what is the probability that the first
failure among the five devices occurs

a after 9 months?

b before 12 months?

*6.101 A parachutist wants to land at a target T , but she finds that she is equally likely to land at
any point on a straight line (A, B), of which T is the midpoint. Find the probability density
function of the distance between her landing point and the target. [Hint: Denote A by −1, B by
+1, and T by 0. Then the parachutist’s landing point has a coordinate X , which is uniformly
distributed between −1 and +1. The distance between X and T is |X |.]

6.102 Two sentries are sent to patrol a road 1 mile long. The sentries are sent to points chosen
independently and at random along the road. Find the probability that the sentries will be less
than 1/2 mile apart when they reach their assigned posts.

*6.103 Let Y1 and Y2 be independent, standard normal random variables. Find the probability density
function of U = Y1/Y2.
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6.104 Let Y1 and Y2 be independent random variables, each having the same geometric distribution.

a Find P(Y1 = Y2) = P(Y1 −Y2 = 0). [Hint: Your answer will involve evaluating an infinite
geometric series. The results in Appendix A1.11 will be useful.]

b Find P(Y1 − Y2 = 1).

*c If U = Y1 − Y2, find the (discrete) probability function for U . [Hint: Part (a) gives P(U =
0), and part (b) gives P(U = 1). Consider the positive and negative integer values for U
separately.]

6.105 A random variable Y has a beta distribution of the second kind, if, for α > 0 and β > 0, its
density is

fY (y) =
⎧⎨⎩

yα−1

B(α, β)(1 + y)α+β
, y > 0,

0, elsewhere.

Derive the density function of U = 1/(1 + Y ).

6.106 If Y is a continuous random variable with distribution function F(y), find the probability
density function of U = F(Y ).

6.107 Let Y be uniformly distributed over the interval (−1, 3). Find the probability density function
of U = Y 2.

6.108 If Y denotes the length of life of a component and F(y) is the distribution function of Y , then
P(Y > y) = 1− F(y) is called the reliability of the component. Suppose that a system consists
of four components with identical reliability functions, 1 − F(y), operating as indicated in
Figure 6.10. The system operates correctly if an unbroken chain of components is in operation
between A and B. If the four components operate independently, find the reliability of the
system in terms of F(y).

A BC1 C2

C3

C4

F I G U R E 6.10
Circuit diagram

6.109 The percentage of alcohol in a certain compound is a random variable Y , with the following
density function:

f (y) =
{

20y3(1 − y), 0 < y < 1

0, otherwise.

Suppose that the compound’s selling price depends on its alcohol content. Specifically, if
1/3 < y < 2/3, the compound sells for C1 dollars per gallon; otherwise, it sells for C2 dollars
per gallon. If the production cost is C3 dollars per gallon, find the probability distribution of
the profit per gallon.
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6.110 An engineer has observed that the gap times between vehicles passing a certain point on a
highway have an exponential distribution with mean 10 seconds. Find the

a probability that the next gap observed will be no longer than one minute.

b probability density function for the sum of the next four gap times to be observed. What
assumptions are necessary for this answer to be correct?

*6.111 If a random variable U is normally distributed with mean μ and variance σ 2 and Y = eU

[equivalently, U = ln(Y )], then Y is said to have a log-normal distribution. The log-normal
distribution is often used in the biological and physical sciences to model sizes, by volume or
weight, of various quantities, such as crushed coal particles, bacteria colonies, and individual
animals. Let U and Y be as stated. Show that

a the density function for Y is

f (y) =

⎧⎪⎨⎪⎩
(

1

yσ
√

2π

)
e−(ln y−μ)2/(2σ 2), y > 0,

0, elsewhere.

b E(Y ) = eμ+(σ 2/2) and V (Y ) = e2μ+σ 2
(eσ 2 − 1). [Hint: Recall that E(Y ) = E(eU ) and

E(Y 2) = E(e2U ), where U is normally distributed with mean μ and variance σ 2. Recall
that the moment-generating function of U is mU (t) = etU .]

*6.112 If a random variable U has a gamma distribution with parameters α > 0 and β > 0, then
Y = eU [equivalently, U = ln(Y )] is said to have a log-gamma distribution. The log-gamma
distribution is used by actuaries as part of an important model for the distribution of insurance
claims. Let U and Y be as stated.

a Show that the density function for Y is

f (y) =
⎧⎨⎩

[
1

"(α)βα

]
y−(1+β)/β(ln y)α−1, y > 1,

0, elsewhere.

b If β < 1, show that E(Y ) = (1 − β)−α . [See the hint for part (c).]

c If β < .5, show that V (Y ) = (1 − 2β)−α − (1 − β)−2α . [Hint: Recall that E(Y ) = E(eU )

and E(Y 2) = E(e2U ), where U is gamma distributed with parameters α > 0 and β > 0,

and that the moment-generating function of a gamma-distributed random variable only
exists if t < β−1; see Example 4.13.]

*6.113 Let (Y1, Y2) have joint density function fY1,Y2(y1, y2) and let U1 = Y1Y2 and U2 = Y2.

a Show that the joint density of (U1, U2) is

fU1, U2(u1, u2) = fY1,Y2

(
u1

u2
, u2

)
1

|u2| .

b Show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1,Y2

(
u1

u2
, u2

)
1

|u2| du2.

c If Y1 and Y2 are independent, show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1

(
u1

u2

)
fY2(u2)

1

|u2| du2.
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*6.114 A machine produces spherical containers whose radii vary according to the probability density
function given by

f (r) =
{

2r, 0 ≤ r ≤ 1,

0, elsewhere.

Find the probability density function for the volume of the containers.

*6.115 Let v denote the volume of a three-dimensional figure. Let Y denote the number of particles
observed in volume v and assume that Y has a Poisson distribution with mean λv . The particles
might represent pollution particles in air, bacteria in water, or stars in the heavens.

a If a point is chosen at random within the volume v , show that the distance R to the nearest
particle has the probability density function given by

f (r) =
{

4λπr 2e−(4/3)λπr3
, r > 0,

0, elsewhere.

b If R is as in part (a), show that U = R3 has an exponential distribution.

*6.116 Let (Y1, Y2) have joint density function fY1,Y2(y1, y2) and let U1 = Y1 − Y2 and U2 = Y2.

a Show that the joint density of (U1, U2) is

fU1, U2(u1, u2) = fY1,Y2(u1 + u2, u2).

b Show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1,Y2(u1 + u2, u2) du2.

c If Y1 and Y2 are independent, show that the marginal density function for U1 is

fU1(u1) =
∫ ∞

−∞
fY1(u1 + u2) fY2(u2) du2.
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CHAPTER 7

Sampling Distributions
and the Central
Limit Theorem
7.1 Introduction

7.2 Sampling Distributions Related to the Normal Distribution

7.3 The Central Limit Theorem

7.4 A Proof of the Central Limit Theorem (Optional)

7.5 The Normal Approximation to the Binomial Distribution

7.6 Summary

References and Further Readings

7.1 Introduction
In Chapter 6, we presented methods for finding the distributions of functions of random
variables. Throughout this chapter, we will be working with functions of the variables
Y1, Y2, . . . , Yn observed in a random sample selected from a population of interest.
As discussed in Chapter 6, the random variables Y1, Y2, . . . , Yn are independent and
have the same distribution. Certain functions of the random variables observed in a
sample are used to estimate or make decisions about unknown population parameters.

For example, suppose that we want to estimate a population mean μ. If we obtain
a random sample of n observations, y1, y2, . . . , yn , it seems reasonable to estimate
μ with the sample mean

y = 1

n

n∑
i=1

yi .

The goodness of this estimate depends on the behavior of the random variables
Y1, Y2, . . . , Yn and the effect that this behavior has on Y = (1/n)

∑n
i=1 Yi . Notice

that the random variable Y is a function of (only) the random variables Y1, Y2, . . . , Yn

and the (constant) sample size n. The random variable Y is therefore an example of
a statistic.
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7.1 Introduction 347

DEFINITION 7.1 A statistic is a function of the observable random variables in a sample and
known constants.

You have already encountered many statistics, the sample mean Y , the sample
variance S2, Y(n) = max(Y1, Y2, . . . , Yn), Y(1) = min(Y1, Y2, . . . , Yn), the range
R = Y(n) − Y(1), the sample median, and so on. Statistics are used to make inferences
(estimates or decisions) about unknown population parameters. Because all statistics
are functions of the random variables observed in a sample, all statistics are random
variables. Consequently, all statistics have probability distributions, which we will call
their sampling distributions. From a practical point of view, the sampling distribution
of a statistic provides a theoretical model for the relative frequency histogram of the
possible values of the statistic that we would observe through repeated sampling.

The next example provides a sampling distribution of the sample mean when
sampling from a familiar population, the one associated with tossing a balanced die.

EXAMPLE 7.1 A balanced die is tossed three times. Let Y1, Y2, and Y3 denote the number of spots
observed on the upper face for tosses 1, 2, and 3, respectively. Suppose we are inter-
ested in Y = (Y1 + Y2 + Y3)/3, the average number of spots observed in a sample of
size 3. What are the mean, μY , and standard deviation, σY , of Y ? How can we find the
sampling distribution of Y ?

Solution In Exercise 3.22, you showed that μ = E(Yi ) = 3.5 and σ 2 = V (Yi ) = 2.9167, i =
1, 2, 3. Since Y1, Y2 and Y3 are independent random variables, the result derived in
Example 5.27 (using Theorem 5.12) implies that

E(Y ) = μ = 3.5, V (Y ) = σ 2

3
= 2.9167

3
= .9722, σY =

√
.9722 = .9860.

How can we derive the distribution of the random variable Y ? The possible values
of the random variable W = Y1 + Y2 + Y3 are 3, 4, 5, . . . , 18 and Y = W/3. Because
the die is balanced, each of the 63 = 216 distinct values of the multivariate random
variable (Y1, Y2, Y3) are equally likely and

P(Y1 = y1, Y2 = y2, Y3 = y3) = p(y1, y2, y3) = 1/216,

yi = 1, 2, . . . , 6, i = 1, 2, 3.

Therefore,

P(Y = 1) = P(W = 3) = p(1, 1, 1) = 1/216

P(Y = 4/3) = P(W = 4) = p(1, 1, 2) + p(1, 2, 1) + p(2, 1, 1) = 3/216

P(Y = 5/3) = P(W = 5) = p(1, 1, 3) + p(1, 3, 1) + p(3, 1, 1)

+ p(1, 2, 2) + p(2, 1, 2) + p(2, 2, 1) = 6/216
.
.
.

The probabilities P(Y = i/3), i = 7, 8, . . . , 18 are obtained similarly.
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0

129

258

387

516
Number of Rolls = 4000Frequency

1 2 3 4 5 6

Mean of 3 Dice
(a)

F I G U R E 7.1
(a) Simulated

sampling distribution
for Y , Example 7.1;

(b) mean and
standard deviation of

the 4000 simulated
values of Y

Pop Prob: (1) 0.167 (2) 0.167 (3) 0.167 (4) 0.167 (5) 0.167 (6) 0.167
Population: Mean = 3.500 StDev = 1.708
Samples = 4000 of size 3
Mean = 3.495
StDev = 0.981
+/− 1 StDev: 0.683
+/− 2 StDev: 0.962
+/− 3 StDev: 1.000

(b)

The derivation of the sampling distribution of the random variable Y sketched in
Example 7.1 utilizes the sample point approach that was introduced in Chapter 2.
Although it is not difficult to complete the calculations in Example 7.1 and give
the exact sampling distribution for Y , the process is tedious. How can we get an
idea about the shape of this sampling distribution without going to the bother of
completing these calculations? One way is to simulate the sampling distribution by
taking repeated independent samples each of size 3, computing the observed value y
for each sample, and constructing a histogram of these observed values. The result
of one such simulation is given in Figure 7.1(a), a plot obtained using the applet
DiceSample (accessible at academic.cengage.com/statistics/wackerly).

What do you observe in Figure 7.1(a)? As predicted, the maximum observed value
of Y is 6, and the minimum value is 1. Also, the values obtained in the simulation
accumulate in a mound-shaped manner approximately centered on 3.5, the theoret-
ical mean of Y . In Figure 7.1(b), we see that the average and standard deviation of
the 4000 simulated values of Y are very close to the theoretical values obtained in
Example 7.1.
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Some of the exercises at the end of this section use the applet DiceSample to explore
the simulated sampling distribution of Y for different sample sizes and for die tosses
involving loaded dice. Other applets are used to simulate the sampling distributions
for the mean and variance of samples taken from a mound-shaped distribution.

Like the simulated sampling distributions that you will observe in the exercises,
the form of the theoretical sampling distribution of any statistic will depend upon the
distribution of the observable random variables in the sample. In the next section,
we will use the methods of Chapter 6 to derive the sampling distributions for some
statistics used to make inferences about the parameters of a normal distribution.

Exercises
7.1 Applet Exercise In Example 7.1, we derived the mean and variance of the random variable

Y based on a sample of size 3 from a familiar population, the one associated with tossing a
balanced die. Recall that if Y denotes the number of spots observed on the upper face on a
single toss of a balanced die, as in Exercise 3.22,

P(Y = i) = 1/6, i = 1, 2, . . . , 6,

μ = E(Y ) = 3.5,

Var(Y ) = 2.9167.

Use the applet DiceSample (at academic.cengage.com/statistics/wackerly) to complete the
following.

a Use the button “Roll One Set” to take a sample of size 3 from the die-tossing population.
What value did you obtain for the mean of this sample? Where does this value fall on the
histogram? Is the value that you obtained equal to one of the possible values associated
with a single toss of a balanced die? Why or why not?

b Use the button “Roll One Set” again to obtain another sample of size 3 from the die-tossing
population. What value did you obtain for the mean of this new sample? Is the value that
you obtained equal to the value you obtained in part (a)? Why or why not?

c Use the button “Roll One Set” eight more times to obtain a total of ten values of the sample
mean. Look at the histogram of these ten means. What do you observe? How many different
values for the sample mean did you obtain? Were any values observed more than once?

d Use the button “Roll 10 Sets” until you have obtained and plotted 100 realized values for
the sample mean, Y . What do you observe about the shape of the histogram of the 100
realized values? Click on the button “Show Stats” to see the mean and standard deviation
of the 100 values (y1, y2, . . . , y100) that you observed. How does the average of the 100
values of yi , i = 1, 2, . . . , 100 compare to E(Y ), the expected number of spots on a single
toss of a balanced die? (Notice that the mean and standard deviation of Y that you computed
in Exercise 3.22 are given on the second line of the “Stat Report” pop-up screen.)

e How does the standard deviation of the 100 values of yi , i = 1, 2, . . . , 100 compare to the
standard deviation of Y given on the second line of the “Stat Report” pop-up screen?

f Click the button “Roll 1000 Sets” a few times, observing changes to the histogram as
you generate more and more realized values of the sample mean. How does the resulting
histogram compare to the graph given in Figure 7.1(a)?
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350 Chapter 7 Sampling Distributions and the Central Limit Theorem

7.2 Refer to Example 7.1 and Exercise 7.1.

a Use the method of Example 7.1 to find the exact value of P(Y = 2).

b Refer to the histogram obtained in Exercise 7.1(d). How does the relative frequency with
which you observed Y = 2 compare to your answer to part (a)?

c If you were to generate 10,000 values of Y , what do you expect to obtain for the relative
frequency of observing Y = 2?

7.3 Applet Exercise Refer to Exercise 7.1. Use the applet DiceSample and scroll down to the
next part of the screen that corresponds to taking samples of size n = 12 from the population
corresponding to tossing a balanced die.

a Take a single sample of size n = 12 by clicking the button “Roll One Set.” Use the button
“Roll One Set” to generate nine more values of the sample mean. How does the histogram of
observed values of the sample mean compare to the histogram observed in Exercise 7.1(c)
that was based on ten samples each of size 3?

b Use the button “Roll 10 Sets” nine more times until you have obtained and plotted 100
realized values (each based on a sample of size n = 12) for the sample mean Y . Click
on the button “Show Stats” to see the mean and standard deviation of the 100 values
(y1, y2, . . . , y100) that you observed.

i How does the average of these 100 values of yi , i = 1, 2, . . . , 100 compare to the
average of the 100 values (based on samples of size n = 3) that you obtained in
Exercise 7.1(d)?

ii Divide the standard deviation of the 100 values of yi , i = 1, 2, . . . , 100 based on
samples of size 12 that you just obtained by the standard deviation of the 100 values
(based on samples of size n = 3) that you obtained in Exercise 7.1. Why do you expect
to get a value close to 1/2? [Hint: V (Y ) = σ 2/n.]

c Click on the button “Toggle Normal.” The (green) continuous density function plotted over
the histogram is that of a normal random variable with mean and standard deviation equal
to the mean and standard deviation of the 100 values, (y1, y2, . . . , y100), plotted on the
histogram. Does this normal distribution appear to reasonably approximate the distribution
described by the histogram?

7.4 Applet Exercise The population corresponding to the upper face observed on a single toss of a
balanced die is such that all six possible values are equally likely. Would the results analogous
to those obtained in Exercises 7.1 and 7.2 be observed if the die was not balanced? Access the
applet DiceSample and scroll down to the part of the screen dealing with “Loaded Die.”

a If the die is loaded, the six possible outcomes are not equally likely. What are the probabil-
ities associated with each outcome? Click on the buttons “1 roll,” “10 rolls,” and/or “1000
rolls” until you have a good idea of the probabilities associated with the values 1, 2, 3, 4,
5, and 6. What is the general shape of the histogram that you obtained?

b Click the button “Show Stats” to see the true values of the probabilities of the six possible
values. If Y is the random variable denoting the number of spots on the uppermost face,
what is the value for μ = E(Y )? What is the value of σ , the standard deviation of Y ? [Hint:
These values appear on the “Stat Report” screen.]

c How many times did you simulate rolling the die in part (a)? How do the mean and standard
deviation of the values that you simulated compare to the true values μ = E(Y ) and σ?
Simulate 2000 more rolls and answer the same question.

d Scroll down to the portion of the screen labeled “Rolling 3 Loaded Dice.” Click the button
“Roll 1000 Sets” until you have generated 3000 observed values for the random variable Y .
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i What is the general shape of the simulated sampling distribution that you obtained?

ii How does the mean of the 3000 values y1, y2, . . . , y3000 compare to the value of μ =
E(Y ) computed in part (a)? How does the standard deviation of the 3000 values compare
to σ/

√
3?

e Scroll down to the portion of the screen labeled “Rolling 12 Loaded Dice.”

i In part (ii), you will use the applet to generate 3000 samples of size 12, compute the
mean of each observed sample, and plot these means on a histogram. Before using the
applet, predict the approximate value that you will obtain for the mean and standard
deviation of the 3000 values of y that you are about to generate.

ii Use the applet to generate 3000 samples of size 12 and obtain the histogram associated
with the respective sample means, yi , i = 1, 2, . . . , 3000. What is the general shape
of the simulated sampling distribution that you obtained? Compare the shape of this
simulated sampling distribution with the one you obtained in part (d).

iii Click the button “Show Stats” to observe the mean and standard deviation of the 3000
values y1, y2, . . . , y3000. How do these values compare to those you predicted in part
(i)?

7.5 Applet Exercise What does the sampling distribution of the sample mean look like if samples
are taken from an approximately normal distribution? Use the applet Sampling Distribution
of the Mean (at academic.cengage.com/statistics/wackerly) to complete the following. The
population to be sampled is approximately normally distributed with μ = 16.50 and σ = 6.03
(these values are given above the population histogram and denoted M and S, respectively).

a Use the button “Next Obs” to select a single value from the approximately normal popu-
lation. Click the button four more times to complete a sample of size 5. What value did
you obtain for the mean of this sample? Locate this value on the bottom histogram (the
histogram for the values of Y ).

b Click the button “Reset” to clear the middle graph. Click the button “Next Obs” five more
times to obtain another sample of size 5 from the population. What value did you obtain for
the mean of this new sample? Is the value that you obtained equal to the value you obtained
in part (a)? Why or why not?

c Use the button “1 Sample” eight more times to obtain a total of ten values of the sample
mean. Look at the histogram of these ten means.

i What do you observe?

ii How does the mean of these 10 y-values compare to the population mean μ?

d Use the button “1 Sample” until you have obtained and plotted 25 realized values for the
sample mean Y , each based on a sample of size 5.

i What do you observe about the shape of the histogram of the 25 values of yi , i = 1,

2, . . . , 25?

ii How does the value of the standard deviation of the 25 y values compare with the
theoretical value for σY obtained in Example 5.27 where we showed that, if Y is
computed based on a sample of size n, then V (Y ) = σ 2/n?

e Click the button “1000 Samples” a few times, observing changes to the histogram as you
generate more and more realized values of the sample mean. What do you observe about
the shape of the resulting histogram for the simulated sampling distribution of Y ?

f Click the button “Toggle Normal” to overlay (in green) the normal distribution with
the same mean and standard deviation as the set of values of Y that you previously
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352 Chapter 7 Sampling Distributions and the Central Limit Theorem

generated. Does this normal distribution appear to be a good approximation to the sampling
distribution of Y ?

7.6 Applet Exercise What is the effect of the sample size on the sampling distribution of Y ?
Use the applet SampleSize to complete the following. As in Exercise 7.5, the population to be
sampled is approximately normally distributed with μ = 16.50 and σ = 6.03 (these values
are given above the population histogram and denoted M and S, respectively).

a Use the up/down arrows in the left “Sample Size” box to select one of the small sample
sizes that are available and the arrows in the right “Sample Size” box to select a larger
sample size.

b Click the button “1 Sample” a few times. What is similar about the two histograms that
you generated? What is different about them?

c Click the button “1000 Samples” a few times and answer the questions in part (b).

d Are the means and standard deviations of the two sampling distributions close to the values
that you expected? [Hint: V (Y ) = σ 2/n.]

e Click the button “Toggle Normal.” What do you observe about the adequacy of the approx-
imating normal distributions?

7.7 Applet Exercise What does the sampling distribution of the sample variance look like if we
sample from a population with an approximately normal distribution? Find out using the applet
Sampling Distribution of the Variance (Mound Shaped Population) (at academic.cengage.com/
statistics/wackerly) to complete the following.

a Click the button “Next Obs” to take a sample of size 1 from the population with distribution
represented by the top histogram. The value obtained is plotted on the middle histogram.
Click four more times to complete a sample of size 5. The value of the sample variance is
computed and given above the middle histogram. Is the value of the sample variance equal
to the value of the population variance? Does this surprise you?

b When you completed part (a), the value of the sample variance was also plotted on the
lowest histogram. Click the button “Reset” and repeat the process in part (a) to generate
a second observed value for the sample variance. Did you obtain the same value as you
observed in part (a)? Why or why not?

c Click the button “1 Sample” a few times. You will observe that different samples lead
to different values of the sample variance. Click the button “1000 Samples” a few times
to quickly generate a histogram of the observed values of the sample variance (based on
samples of size 5). What is the mean of the values of the sample variance that you generated?
Is this mean close to the value of the population variance?

d In the previous exercises in this section, you obtained simulated sampling distributions for
the sample mean. All these sampling distributions were well approximated (for large sample
sizes) by a normal distribution. Although the distribution that you obtained is mound-
shaped, does the sampling distribution of the sample variance seem to be symmetric (like
the normal distribution)?

e Click the button “Toggle Theory” to overlay the theoretical density function for the sampling
distribution of the variance of a sample of size 5 from a normally distributed population.
Does the theoretical density provide a reasonable approximation to the values represented
in the histogram?

f Theorem 7.3, in the next section, states that if a random sample of size n is taken from
a normally distributed population, then (n − 1)S2/σ 2 has a χ 2 distribution with (n − 1)

degrees of freedom. Does this result seem consistent with what you observed in parts (d)
and (e)?
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7.8 Applet Exercise What is the effect of the sample size on the sampling distribution of S2?
Use the applet VarianceSize to complete the following. As in some previous exercises, the
population to be sampled is approximately normally distributed with μ = 16.50 and σ = 6.03.

a What is the value of the population variance σ 2?

b Use the up/down arrows in the left “Sample Size” box to select one of the small sample
sizes that are available and the arrows in the right “Sample Size” box to select a larger
sample size.

i Click the button “1 Sample” a few times. What is similar about the two histograms that
you generated? What is different about them?

ii Click the button “1000 Samples” a few times and answer the questions in part (i).

iii Are the means of the two sampling distributions close to the value of the population
variance? Which of the two sampling distributions exhibits smaller variability?

iv Click the button “Toggle Theory.” What do you observe about the adequacy of the
approximating theoretical distributions?

c Select sample sizes of 10 and 50 for a new simulation and click the button “1000 Samples”
a few times

i Which of the sampling distributions appear to be more similar to a normal distribution?

ii Refer to Exercise 7.7(f). In Exercise 7.97, you will show that, for a large number of
degrees of freedom, the χ2 distribution can be approximated by a normal distribution.
Does this seem reasonable based on your current simulation?

7.2 Sampling Distributions Related
to the Normal Distribution
We have already noted that many phenomena observed in the real world have rela-
tive frequency distributions that can be modeled adequately by a normal probability
distribution. Thus, in many applied problems, it is reasonable to assume that the ob-
servable random variables in a random sample, Y1, Y2, . . . , Yn , are independent with
the same normal density function. In Exercise 6.43, you established that the statistic
Y = (1/n)(Y1 +Y2 +· · ·+Yn) actually has a normal distribution. Because this result
is used so often in our subsequent discussions, we present it formally in the following
theorem.

THEOREM 7.1 Let Y1, Y2, . . . , Yn be a random sample of size n from a normal distribution
with mean μ and variance σ 2. Then

Y = 1

n

n∑
i=1

Yi

is normally distributed with mean μY = μ and variance σ 2
Y

= σ 2/n.
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354 Chapter 7 Sampling Distributions and the Central Limit Theorem

Proof Because Y1, Y2, . . . , Yn is a random sample from a normal distribution with
mean μ and variance σ 2, Yi , i = 1, 2, . . . , n, are independent, normally dis-
tributed variables, with E(Yi ) = μ and V (Yi ) = σ 2. Further,

Y = 1

n

n∑
i=1

Yi = 1

n
(Y1) + 1

n
(Y2) + · · · + 1

n
(Yn)

= a1Y1 + a2Y2 + · · · + anYn, where ai = 1/n, i = 1, 2, . . . , n.

Thus, Y is a linear combination of Y1, Y2, . . . , Yn , and Theorem 6.3 can be
applied to conclude that Y is normally distributed with

E(Y ) = E

[
1

n
(Y1) + · · · + 1

n
(Yn)

]
= 1

n
(μ) + · · · + 1

n
(μ) = μ

and

V (Y ) = V

[
1

n
(Y1) + · · · + 1

n
(Yn)

]
= 1

n2
(σ 2) + · · · + 1

n2
(σ 2)

= 1

n2
(nσ 2) = σ 2

n
.

That is, the sampling distribution of Y is normal with mean μY = μ and variance
σ 2

Y
= σ 2/n.

Notice that the variance of each of the random variables Y1, Y2, . . . , Yn is σ 2 and
the variance of the sampling distribution of the random variable Y is σ 2/n. In the
discussions that follow, we will have occasion to refer to both of these variances. The
notation σ 2 will be retained for the variance of the random variables Y1, Y2, . . . , Yn ,
and σ 2

Y
will be used to denote the variance of the sampling distribution of the random

variable Y . Analogously, σ will be retained as the notation for the standard deviation
of the Yi ’s, and the standard deviation of the sampling distribution of Y is denoted σY .

Under the conditions of Theorem 7.1, Y is normally distributed with mean μY = μ

and variance σ 2
Y

= σ 2/n. It follows that

Z = Y − μY

σY

= Y − μ

σ/
√

n
= √

n

(
Y − μ

σ

)
has a standard normal distribution. We will illustrate the use of Theorem 7.1 in the
following example.

EXAMPLE 7.2 A bottling machine can be regulated so that it discharges an average of μ ounces per
bottle. It has been observed that the amount of fill dispensed by the machine is normally
distributed with σ = 1.0 ounce. A sample of n = 9 filled bottles is randomly selected
from the output of the machine on a given day (all bottled with the same machine
setting), and the ounces of fill are measured for each. Find the probability that the
sample mean will be within .3 ounce of the true mean μ for the chosen machine setting.
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7.2 Sampling Distributions Related to the Normal Distribution 355

Solution If Y1, Y2, . . . , Y9 denote the ounces of fill to be observed, then we know that the
Yi ’s are normally distributed with mean μ and variance σ 2 = 1 for i = 1, 2, . . . , 9.
Therefore, by Theorem 7.1, Y possesses a normal sampling distribution with mean
μY = μ and variance σ 2

Y
= σ 2/n = 1/9. We want to find

P(|Y − μ| ≤ .3) = P[−.3 ≤ (Y − μ) ≤ .3]

= P

(
− .3

σ/
√

n
≤ Y − μ

σ/
√

n
≤ .3

σ/
√

n

)
.

Because (Y − μY )/σY = (Y − μ)/(σ/
√

n) has a standard normal distribution, it fol-
lows that

P(|Y − μ| ≤ .3) = P

(
− .3

1/
√

9
≤ Z ≤ .3

1/
√

9

)
= P(−.9 ≤ Z ≤ .9).

Using Table 4, Appendix 3, we find

P(−.9 ≤ Z ≤ .9) = 1 − 2P(Z > .9) = 1 − 2(.1841) = .6318.

Thus, the probability is only .6318 that the sample mean will be within .3 ounce of
the true population mean.

EXAMPLE 7.3 Refer to Example 7.2. How many observations should be included in the sample if
we wish Y to be within .3 ounce of μ with probability .95?

Solution Now we want

P(|Y − μ| ≤ .3) = P[−.3 ≤ (Y − μ) ≤ .3] = .95.

Dividing each term of the inequality by σY = σ/
√

n (recall that σ = 1), we have

P

[
−.3

σ/
√

n
≤

(
Y − μ

σ/
√

n

)
≤ .3

σ/
√

n

]
= P(−.3

√
n ≤ Z ≤ .3

√
n) = .95.

But using Table 4, Appendix 3, we obtain

P(−1.96 ≤ Z ≤ 1.96) = .95.

It must follow that

.3
√

n = 1.96 or, equivalently, n =
(

1.96

.3

)2

= 42.68.

From a practical perspective, it is impossible to take a sample of size 42.68. Our
solution indicates that a sample of size 42 is not quite large enough to reach our
objective. If n = 43, P(|Y − μ| ≤ .3) slightly exceeds .95.
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356 Chapter 7 Sampling Distributions and the Central Limit Theorem

In succeeding chapters we will be interested in statistics that are functions of
the squares of the observations in a random sample from a normal population.
Theorem 7.2 establishes the sampling distribution of the sum of the squares of inde-
pendent, standard normal random variables.

THEOREM 7.2 Let Y1, Y2, . . . , Yn be defined as in Theorem 7.1. Then Z i = (Yi − μ)/σ are
independent, standard normal random variables, i = 1, 2, . . . , n, and

n∑
i=1

Z2
i =

n∑
i=1

(
Yi − μ

σ

)2

has a χ2 distribution with n degrees of freedom (df).

Proof Because Y1, Y2, . . . , Yn is a random sample from a normal distribution with
mean μ and variance σ 2, Example 6.10 implies that Z i = (Yi − μ)/σ has a
standard normal distribution for i = 1, 2, . . . , n. Further, the random variables
Z i are independent because the random variables Yi ’s are independent, i = 1,

2, . . . , n. The fact that
∑n

i=1 Z2
i has a χ2 distribution with n df follows directly

from Theorem 6.4.

From Table 6, Appendix 3, we can find values χ2
α so that

P
(
χ2 > χ2

α

) = α

for random variables with χ2 distributions (see Figure 7.2). For example, if the χ2

random variable of interest has 10 df, Table 6, Appendix 3, can be used to find χ2
.90.

To do so, look in the row labeled 10 df and the column headed χ2
.90 and read the value

4.86518. Therefore, if Y has a χ2 distribution with 10 df, P(Y > 4.86518) = .90.
It follows that P(Y ≤ 4.86518) = .10 and that 4.86518 is the .10 quantile, φ.10, of a
χ2 random variable with 10 df. In general,

P
(
χ2 > χ2

α

) = α implies that P
(
χ2 ≤ χ2

α

) = 1 − α

and that χ2
α = φ1−α , the (1 − α) quantile of the χ2 random variable.

Table 6, Appendix 3, contains χ2
α = φ1−α for ten values of α (.005, .01, .025, .05,

.1, .90, .95, .975, .99 and .995) for each of 37 different χ2 distributions (those with
degrees of freedom 1, 2, . . . , 30 and 40, 50, 60, 70, 80, 90 and 100). Considerably
more information about these distributions, and those associated with degrees of

f (u)

#

( 2
#

0 u

F I G U R E 7.2
A χ2 distribution

showing upper-tail
area α
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7.2 Sampling Distributions Related to the Normal Distribution 357

freedom not covered in the table, is provided by available statistical software. If Y
has a χ2 distribution with ν df, the R (and S-Plus) command pchisq(y0,ν) gives
P(Y ≤ y0) whereas qchisq(p,ν) yields the pth quantile, the value φp such that
P(Y ≤ φp) = p. Probabilities and quantiles associated with χ2 random variables
are also easily obtained using the Chi-Square Probabilities and Quantiles applet
(accessible at academic.cengage.com/statistics/wackerly).

The following example illustrates the combined use of Theorem 7.2 and the χ2

tables.

EXAMPLE 7.4 If Z1, Z2, . . . , Z6 denotes a random sample from the standard normal distribution,
find a number b such that

P

(
6∑

i=1

Z2
i ≤ b

)
= .95.

Solution By Theorem 7.2,
∑6

i=1 Z2
i has a χ2 distribution with 6 df. Looking at Table 6,

Appendix 3, in the row headed 6 df and the column headed χ2
.05, we see the number

12.5916. Thus,

P

(
6∑

i=1

Z2
i > 12.5916

)
= .05, or, equivalently, P

(
6∑

i=1

Z2
i ≤ 12.5916

)
= .95,

and b = 12.5916 is the .95 quantile (95th percentile) of the sum of the squares of six
independent standard normal random variables.

The χ2 distribution plays an important role in many inferential procedures. For
example, suppose that we wish to make an inference about the population variance
σ 2 based on a random sample Y1, Y2, . . . , Yn from a normal population. As we will
show in Chapter 8, a good estimator of σ 2 is the sample variance

S2 = 1

n − 1

n∑
i=1

(Yi − Y )2.

The following theorem gives the probability distribution for a function of the statis-
tic S2.

THEOREM 7.3 Let Y1, Y2, . . . , Yn be a random sample from a normal distribution with mean
μ and variance σ 2. Then

(n − 1)S2

σ 2
= 1

σ 2

n∑
i=1

(Yi − Y )2

has a χ2 distribution with (n − 1) df. Also, Y and S2 are independent random
variables.
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358 Chapter 7 Sampling Distributions and the Central Limit Theorem

Proof The complete proof of this theorem is outlined in Exercise 13.93. To make the
general result more plausible, we will consider the case n = 2 and show that
(n − 1)S2/σ 2 has a χ2 distribution with 1 df. In the case n = 2,

Y = (1/2)(Y1 + Y2),

and, therefore,

S2 = 1

2 − 1

2∑
i=1

(Yi − Y )2

=
[

Y1 − 1

2
(Y1 + Y2)

]2

+
[

Y2 − 1

2
(Y1 + Y2)

]2

=
[

1

2
(Y1 − Y2)

]2

+
[

1

2
(Y2 − Y1)

]2

= 2

[
1

2
(Y1 − Y2)

]2

= (Y1 − Y2)
2

2
.

It follows that, when n = 2,

(n − 1)S2

σ 2
= (Y1 − Y2)

2

2σ 2
=

(
Y1 − Y2√

2σ 2

)2

.

We will show that this quantity is equal to the square of a standard normal
random variable; that is, it is a Z2, which—as we have already shown in Example
6.11—possesses a χ2 distribution with 1 df.

Because Y1−Y2 is a linear combination of independent, normally distributed
random variables (Y1 −Y2 = a1Y1 +a2Y2 with a1 = 1 and a2 = −1), Theorem
6.3 tells us that Y1 − Y2 has a normal distribution with mean 1μ − 1μ = 0 and
variance (1)2σ 2 + (−1)2σ 2 = 2σ 2. Therefore,

Z = Y1 − Y2√
2σ 2

has a standard normal distribution. Because for n = 2

(n − 1)S2

σ 2
=

(
Y1 − Y2√

2σ 2

)2

= Z2,

it follows that (n − 1)S2/σ 2 has a χ2 distribution with 1 df.
In Example 6.13, we proved that U1 = (Y1 + Y2)/σ and U2 = (Y1 − Y2)/σ

are independent random variables. Notice that, because n = 2,

Y = Y1 + Y2

2
= σU1

2
and S2 = (Y1 − Y2)

2

2
= (σU2)

2

2
.

Because Y is a function of only U1 and S2 is a function of only U2, the inde-
pendence of U1 and U2 implies the independence of Y and S2.
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7.2 Sampling Distributions Related to the Normal Distribution 359

EXAMPLE 7.5 In Example 7.2, the ounces of fill from the bottling machine are assumed to have a
normal distribution with σ 2 = 1. Suppose that we plan to select a random sample
of ten bottles and measure the amount of fill in each bottle. If these ten observations
are used to calculate S2, it might be useful to specify an interval of values that will
include S2 with a high probability. Find numbers b1 and b2 such that

P(b1 ≤ S2 ≤ b2) = .90.

Solution Notice that

P(b1 ≤ S2 ≤ b2) = P

[
(n − 1)b1

σ 2
≤ (n − 1)S2

σ 2
≤ (n − 1)b2

σ 2

]
.

Because σ 2 = 1, it follows that (n − 1)S2/σ 2 = (n − 1)S2 has a χ2 distribution with
(n − 1) df. Therefore, we can use Table 6, Appendix 3, to find two numbers a1 and
a2 such that

P[a1 ≤ (n − 1)S2 ≤ a2] = .90.

One method of doing this is to find the value of a2 that cuts off an area of .05 in
the upper tail and the value of a1 that cuts off .05 in the lower tail (.95 in the upper
tail). Because there are n − 1 = 9 df, Table 6, Appendix 3, gives a2 = 16.919 and
a1 = 3.325. Consequently, values for b1 and b2 that satisfy our requirements are
given by

3.325 = a1 = (n − 1)b1

σ 2
= 9b1 or b1 = 3.325

9
= .369 and

16.919 = a2 = (n − 1)b2

σ 2
= 9b2 or b2 = 16.919

9
= 1.880.

Thus, if we wish to have an interval that will include S2 with probability .90, one such
interval is (.369, 1.880). Notice that this interval is fairly wide.

The result given in Theorem 7.1 provides the basis for development of inference-
making procedures about the mean μ of a normal population with known variance
σ 2. In that case, Theorem 7.1 tells us that

√
n(Y − μ)/σ has a standard normal

distribution. When σ is unknown, it can be estimated by S =
√

S2, and the quantity

√
n

(
Y − μ

S

)

provides the basis for developing methods for inferences about μ. We will show that√
n(Y − μ)/S has a distribution known as Student’s t distribution with n − 1 df. The

general definition of a random variable that possesses a Student’s t distribution (or
simply a t distribution) is as follows.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



360 Chapter 7 Sampling Distributions and the Central Limit Theorem

DEFINITION 7.2 Let Z be a standard normal random variable and let W be a χ2-distributed
variable with ν df. Then, if Z and W are independent,

T = Z√
W/ν

is said to have a t distribution with ν df.

If Y1, Y2, . . . , Yn constitute a random sample from a normal population with mean
μ and variance σ 2, Theorem 7.1 may be applied to show Z = √

n (Y − μ)/σ has a
standard normal distribution. Theorem 7.3 tells us that W = (n − 1)S2/σ 2 has a χ2

distribution with ν = n − 1 df and that Z and W are independent (because Y and S2

are independent). Therefore, by Definition 7.2,

T = Z√
W/ν

=
√

n(Y − μ)/σ√[
(n − 1)S2/σ 2

]
/(n − 1)

= √
n

(
Y − μ

S

)

has a t distribution with (n − 1) df.
The equation for the t density function will not be given here, but it can be found

in Exercise 7.98 where hints about its derivation are given. Like the standard normal
density function, the t density function is symmetric about zero. Further, for ν > 1,
E(T ) = 0; and for ν > 2, V (T ) = ν/(ν − 2). These results follow directly from
results developed in Exercises 4.111 and 4.112 (see Exercise 7.30). Thus, we see that,
if ν > 1, a t-distributed random variable has the same expected value as a standard
normal random variable. However, a standard normal random variable always has
variance 1 whereas, if ν > 2, the variance of a random variable with a t distribution
always exceeds 1.

A standard normal density function and a t density function are sketched in
Figure 7.3. Notice that both density functions are symmetric about the origin but
that the t density has more probability mass in its tails.

Values of tα such that P(T > tα) = α are given in Table 5, Appendix 3. For
example, if a random variable has a t distribution with 21 df, t.100 is found by looking
in the row labeled 21 df and the column headed t.100. Using Table 5, we see that
t.100 = 1.323 and that for 21 df, P(T > 1.323) = .100. It follows that 1.323 is the
.90 quantile (the 90th percentile) of the t distribution with 21 df and in general that
tα = φ1−α , the (1−α) quantile [the 100(1−α)th percentile] of a t-distributed random
variable.

Standard
Normal

0

t

F I G U R E 7.3
A comparison of the
standard normal and

t density functions.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7.2 Sampling Distributions Related to the Normal Distribution 361

Table 5, Appendix 3, contains tα = φ1−α for five values of α (.005, .010, .025,
.050 and .100) and 30 different t distributions (those with degrees of freedom 1,
2, . . . , 29 and ∞). Considerably more information about these distributions, and
those associated with degrees of freedom not covered in the table, is provided by
available statistical software. If Y has a t distribution with ν df, the R (and S-
Plus) command pt(y0,ν) gives P(Y ≤ y0) whereas qt(p,ν) yields the pth
quantile, the value of φp such that P(Y ≤ φp) = p. Probabilities and quantiles
associated with t-distributed random variables are also easily obtained using the
Student’s t Probabilitles and Quantiles applet (at academic.cengage.com/statistics/
wackerly).

EXAMPLE 7.6 The tensile strength for a type of wire is normally distributed with unknown mean
μ and unknown variance σ 2. Six pieces of wire were randomly selected from a
large roll; Yi , the tensile strength for portion i , is measured for i = 1, 2, . . . , 6.
The population mean μ and variance σ 2 can be estimated by Y and S2, respectively.
Becauseσ 2

Y
= σ 2/n, it follows thatσ 2

Y
can be estimated by S2/n. Find the approximate

probability that Y will be within 2S/
√

n of the true population mean μ.

Solution We want to find

P
[
− 2S√

n
≤ (Y − μ) ≤ 2S√

n

]
= P

[
−2 ≤ √

n

(
Y − μ

S

)
≤ 2

]

= P(−2 ≤ T ≤ 2),

where T has a t distribution with, in this case, n − 1 = 5 df. Looking at Table 5,
Appendix 3, we see that the upper-tail area to the right of 2.015 is .05. Hence,

P(−2.015 ≤ T ≤ 2.015) = .90,

and the probability that Y will be within 2 estimated standard deviations of μ is
slightly less than .90. In Exercise 7.24, the exact value for P(−2 ≤ T ≤ 2)

will be found using the Student’s t Probabilities and Quantiles applet available at
academic.cengage.com/statistics/wackerly.

Notice that, if σ 2 were known, the probability that Y will fall within 2σY of μ

would be given by

P
[
−2

(
σ√
n

)
≤ (Y − μ) ≤ 2

(
σ√
n

)]
= P

[
−2 ≤ √

n

(
Y − μ

σ

)
≤ 2

]

= P(−2 ≤ Z ≤ 2) = .9544.

Suppose that we want to compare the variances of two normal populations based
on information contained in independent random samples from the two populations.
Samples of sizes n1 and n2 are taken from the two populations with variances σ 2

1
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362 Chapter 7 Sampling Distributions and the Central Limit Theorem

and σ 2
2 , respectively. If we calculate S2

1 from the observations in sample 1, then S2
1

estimates σ 2
1 . Similarly, S2

2 , calculated from the observations in the second sample,
estimates σ 2

2 . Thus, it seems intuitive that the ratio S2
1/S2

2 could be used to make
inferences about the relative magnitudes of σ 2

1 and σ 2
2 . If we divide each S2

i by σ 2
i ,

then the resulting ratio

S2
1/σ 2

1

S2
2/σ 2

2

=
(

σ 2
2

σ 2
1

) (
S2

1

S2
2

)
has an F distribution with (n1 − 1) numerator degrees of freedom and (n2 − 1)

denominator degrees of freedom. The general definition of a random variable that
possesses an F distribution appears next.

DEFINITION 7.3 Let W1 and W2 be independent χ2-distributed random variables with ν1 and ν2

df, respectively. Then

F = W1/ν1

W2/ν2

is said to have an F distribution with ν1 numerator degrees of freedom and ν2

denominator degrees of freedom.

The density function for an F-distributed random variable is given in Exercise 7.99
where the method for its derivation is outlined. It can be shown (see Exercise 7.34)
that if F possesses an F distribution with ν1 numerator and ν2 denominator de-
grees of freedom, then E(F) = ν2/(ν2 − 2) if ν2 > 2. Also, if ν2 > 4, then
V (F) = [2ν2

2(ν1 + ν2 − 2)]/[ν1(ν2 − 2)2(ν2 − 4)]. Notice that the mean of an F-
distributed random variable depends only on the number of denominator degrees of
freedom, ν2.

Considering once again two independent random samples from normal distribu-
tions, we know that W1 = (n1 −1)S2

1/σ 2
1 and W2 = (n2 −1)S2

2/σ 2
2 have independent

χ2 distributions with ν1 = (n1 − 1) and ν2 = (n2 − 1) df, respectively. Thus, Defini-
tion 7.3 implies that

F = W1/ν1

W2/ν2
=

[
(n1 − 1)S2

1/σ 2
1

]
/(n1 − 1)[

(n2 − 1)S2
2/σ 2

2

]
/(n2 − 1)

= S2
1/σ 2

1

S2
2/σ 2

2

has an F distribution with (n1 − 1) numerator degrees of freedom and (n2 − 1)

denominator degrees of freedom.
A typical F density function is sketched in Figure 7.4. Values of Fα such that

P(F > Fα) = α are given in Table 7, Appendix 3, for values of α = .100, .050,
.025, .010, and .005. In Table 7, the column headings are the numerator degrees
of freedom whereas the denominator degrees of freedom are given in the main-row
headings. Opposite each denominator degrees of freedom (row heading), the values of
α = .100, .050, .025, 010, and .005 appear. For example, if the F variable of interest
has 5 numerator degrees of freedom and 7 denominator degrees of freedom, then
F.100 = 2.88, F.050 = 3.97, F.025 = 5.29, F.010 = 7.46, and F.005 = 9.52. Thus, if F
has an F distribution with 5 numerator degrees of freedom and 7 denominator degrees
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f (u)

u

F#

#

F I G U R E 7.4
A typical F
probability

density function

of freedom, then P(F > 7.46) = .01. It follows that 7.46 is the .99 quantile of the
F distribution with 5 numerator degrees of freedom and 7 denominator degrees of
freedom. In general, Fα = φ1−α , the (1 − α) quantile [the 100(1 − α)th percentile]
of an F-distributed random variable.

For the five previously mentioned values of α, Table 7, Appendix 3 gives the values
of Fα for 646 different F distributions (those with numerator degrees of freedom 1,
2, . . . , 10, 12, 15, 20, 24, 30, 40, 60, 120, and ∞, and denominator degrees of free-
dom 1, 2, . . . , 30, 40, 60, 120, and ∞). Considerably more information about these
distributions, and those associated with degrees of freedom not covered in the table,
is provided by available statistical software. If Y has an F distribution with ν1 numer-
ator degrees of freedom and ν2 denominator degrees of freedom, the R (and S-Plus)
command pf(y0,ν1,ν2) gives P(Y ≤ y0) whereas qf(p,ν1,ν2) yields the pth
quantile, the value of φp such that P(Y ≤ φp) = p. Probabilities and quantiles asso-
ciated with F-distributed random variables are also easily obtained using the F-Ratio
Probabilitles and Quantiles applet (at academic.cengage.com/statistics/wackerly).

EXAMPLE 7.7 If we take independent samples of size n1 = 6 and n2 = 10 from two normal pop-
ulations with equal population variances, find the number b such that

P
(

S2
1

S2
2

≤ b
)

= .95.

Solution Because n1 = 6, n2 = 10, and the population variances are equal, then

S2
1/σ 2

1

S2
2/σ 2

2

= S2
1

S2
2

has an F distribution with ν1 = n1 − 1 = 5 numerator degrees of freedom and
ν2 = n2 − 1 = 9 denominator degrees of freedom. Also,

P
(

S2
1

S2
2

≤ b
)

= 1 − P
(

S2
1

S2
2

> b
)

.

Therefore, we want to find the number b cutting off an upper-tail area of .05 under the
F density function with 5 numerator degrees of freedom and 9 denominator degrees
of freedom. Looking in column 5 and row 9 in Table 7, Appendix 3, we see that the
appropriate value of b is 3.48.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



364 Chapter 7 Sampling Distributions and the Central Limit Theorem

Even when the population variances are equal, the probability that the ratio of
the sample variances exceeds 3.48 is still .05 (assuming sample sizes of n1 = 6 and
n2 = 10).

This section has been devoted to developing the sampling distributions of various
statistics calculated by using the observations in a random sample from a normal pop-
ulation (or independent random samples from two normal populations). In particular,
if Y1, Y2, . . . , Yn represents a random sample from a normal population with mean μ

and variance σ 2, we have seen that
√

n(Y −μ)/σ has a standard normal distribution.
Also, (n −1)S2/σ 2 has a χ2 distribution, and

√
n(Y −μ)/S has a t distribution (both

with n − 1 df). If we have two independent random samples from normal popula-
tions with variances σ 2

1 and σ 2
2 , then F = (S2

1/σ 2
1 )/(S2

2/σ 2
2 ) has an F distribution.

These sampling distributions will enable us to evaluate the properties of inferential
procedures in later chapters. In the next section, we discuss approximations to certain
sampling distributions. These approximations can be very useful when the exact form
of the sampling distribution is unknown or when it is difficult or tedious to use the
exact sampling distribution to compute probabilities.

Exercises
7.9 Refer to Example 7.2. The amount of fill dispensed by a bottling machine is normally distributed

with σ = 1 ounce. If n = 9 bottles are randomly selected from the output of the machine,
we found that the probability that the sample mean will be within .3 ounce of the true mean is
.6318. Suppose that Y is to be computed using a sample of size n.

a If n = 16, what is P(|Y − μ| ≤ .3)?

b Find P(|Y − μ| ≤ .3) when Y is to be computed using samples of sizes n = 25, n = 36,
n = 49, and n = 64.

c What pattern do you observe among the values for P(|Y − μ| ≤ .3) that you observed for
the various values of n?

d Do the results that you obtained in part (b) seem to be consistent with the result obtained
in Example 7.3?

7.10 Refer to Exercise 7.9. Assume now that the amount of fill dispensed by the bottling machine
is normally distributed with σ = 2 ounces.

a If n = 9 bottles are randomly selected from the output of the machine, what is P(|Y −μ| ≤
.3)? Compare this with the answer obtained in Example 7.2.

b Find P(|Y − μ| ≤ .3) when Y is to be computed using samples of sizes n = 25, n = 36,
n = 49, and n = 64.

c What pattern do you observe among the values for P(|Y − μ| ≤ .3) that you observed for
the various values of n?

d How do the respective probabilities obtained in this problem (where σ = 2) compare to
those obtained in Exercise 7.9 (where σ = 1)?

7.11 A forester studying the effects of fertilization on certain pine forests in the Southeast is int-
erested in estimating the average basal area of pine trees. In studying basal areas of similar trees
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for many years, he has discovered that these measurements (in square inches) are normally
distributed with standard deviation approximately 4 square inches. If the forester samples
n = 9 trees, find the probability that the sample mean will be within 2 square inches of the
population mean.

7.12 Suppose the forester in Exercise 7.11 would like the sample mean to be within 1 square inch
of the population mean, with probability .90. How many trees must he measure in order to
ensure this degree of accuracy?

7.13 The Environmental Protection Agency is concerned with the problem of setting criteria for the
amounts of certain toxic chemicals to be allowed in freshwater lakes and rivers. A common
measure of toxicity for any pollutant is the concentration of the pollutant that will kill half of
the test species in a given amount of time (usually 96 hours for fish species). This measure is
called LC50 (lethal concentration killing 50% of the test species). In many studies, the values
contained in the natural logarithm of LC50 measurements are normally distributed, and, hence,
the analysis is based on ln(LC50) data.

Studies of the effects of copper on a certain species of fish (say, species A) show the variance
of ln(LC50) measurements to be around .4 with concentration measurements in milligrams per
liter. If n = 10 studies on LC50 for copper are to be completed, find the probability that the
sample mean of ln(LC50) will differ from the true population mean by no more than .5.

7.14 If in Exercise 7.13 we want the sample mean to differ from the population mean by no more
than .5 with probability .95, how many tests should be run?

7.15 Suppose that X1, X2, . . . , Xm and Y1, Y2, . . . , Yn are independent random samples, with the
variables X i normally distributed with mean μ1 and variance σ 2

1 and the variables Yi normally
distributed with mean μ2 and variance σ 2

2 . The difference between the sample means, X − Y ,
is then a linear combination of m + n normally distributed random variables and, by Theorem
6.3, is itself normally distributed.

a Find E(X − Y ).

b Find V (X − Y ).

c Suppose that σ 2
1 = 2, σ 2

2 = 2.5, and m = n. Find the sample sizes so that (X − Y ) will be
within 1 unit of (μ1 − μ2) with probability .95.

7.16 Referring to Exercise 7.13, suppose that the effects of copper on a second species (say, species
B) of fish show the variance of ln(LC50) measurements to be .8. If the population means of
ln(LC50) for the two species are equal, find the probability that, with random samples of ten
measurements from each species, the sample mean for species A exceeds the sample mean for
species B by at least 1 unit.

7.17 Applet Exercise Refer to Example 7.4. Use the applet Chi-Square Probabilities and Quantiles

to find P
( ∑6

i=1 Z 2
i ≤ 6

)
.
(

Recall that
∑6

i=1 Z 2
i has a χ 2 distribution with 6 df.

)
7.18 Applet Exercise Refer to Example 7.5. If σ 2 = 1 and n = 10, use the applet Chi-Square

Probabilities and Quantiles to find P(S2 ≥ 3). (Recall that, under the conditions previously
given, 9S2 has a χ 2 distribution with 9 df.)

7.19 Ammeters produced by a manufacturer are marketed under the specification that the standard
deviation of gauge readings is no larger than .2 amp. One of these ammeters was used to make ten
independent readings on a test circuit with constant current. If the sample variance of these ten
measurements is .065 and it is reasonable to assume that the readings are normally distributed,
do the results suggest that the ammeter used does not meet the marketing specifications? [Hint:
Find the approximate probability that the sample variance will exceed .065 if the true population
variance is .04.]
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366 Chapter 7 Sampling Distributions and the Central Limit Theorem

7.20 a If U has a χ 2 distribution with ν df, find E(U ) and V (U ).

b Using the results of Theorem 7.3, find E(S2) and V (S2) when Y1, Y2, . . . , Yn is a random
sample from a normal distribution with mean μ and variance σ 2.

7.21 Refer to Exercise 7.13. Suppose that n = 20 observations are to be taken on ln(LC50) mea-
surements and that σ 2 = 1.4. Let S2 denote the sample variance of the 20 measurements.

a Find a number b such that P(S2 ≤ b) = .975.

b Find a number a such that P(a ≤ S2) = .975.

c If a and b are as in parts (a) and (b), what is P(a ≤ S2 ≤ b)?

7.22 Applet Exercise As we stated in Definition 4.10, a random variable Y has a χ2 distribution
with ν df if and only if Y has a gamma distribution with α = ν/2 and β = 2.

a Use the applet Comparison of Gamma Density Functions to graph χ2 densities with 10,
40, and 80 df.

b What do you notice about the shapes of these density functions? Which of them is most
symmetric?

c In Exercise 7.97, you will show that for large values of ν, a χ 2 random variable has a
distribution that can be approximated by a normal distribution with μ = ν and σ = √

2ν.
How do the mean and standard deviation of the approximating normal distribution compare
to the mean and standard deviation of the χ 2 random variable Y ?

d Refer to the graphs of the χ 2 densities that you obtained in part (a). In part (c), we stated
that, if the number of degrees of freedom is large, the χ 2 distribution can be approximated
with a normal distribution. Does this surprise you? Why?

7.23 Applet Exercise

a Use the applet Chi-Square Probabilities and Quantiles to find P[Y > E(Y )] when Y has
χ 2 distributions with 10, 40, and 80 df.

b What did you notice about P[Y > E(Y )] as the number of degrees of freedom increases
as in part (a)?

c How does what you observed in part (b) relate to the shapes of the χ 2 densities that you
obtained in Exercise 7.22?

7.24 Applet Exercise Refer to Example 7.6. Suppose that T has a t distribution with 5 df.

a Use the applet Student’s t Probabilities and Quantiles to find the exact probability that T
is greater than 2.

b Use the applet Student’s t Probabilities and Quantiles to find the exact probability that T
is less than −2.

c Use the applet Student’s t Probabilities and Quantiles to find the exact probability that T
is between −2 and 2.

d Your answer to part (c) is considerably less than 0.9544 = P(−2 ≤ Z ≤ 2). Refer to
Figure 7.3 and explain why this is as expected.

7.25 Applet Exercise Suppose that T is a t-distributed random variable.

a If T has 5 df, use Table 5, Appendix 3, to find t.10, the value such that P(T > t.10) = .10.

Find t.10 using the applet Student’s t Probabilities and Quantiles.

b Refer to part (a). What quantile does t.10 correspond to? Which percentile?

c Use the applet Student’s t Probabilities and Quantiles to find the value of t.10 for t distri-
butions with 30, 60, and 120 df.
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d When Z has a standard normal distribution, P(Z > 1.282) = .10 and z.10 = 1.282. What
property of the t distribution (when compared to the standard normal distribution) explains
the fact that all of the values obtained in part (c) are larger than z.10 = 1.282?

e What do you observe about the relative sizes of the values of t.10 for t distributions with
30, 60, and 120 df? Guess what t.10 “converges to” as the number of degrees of freedom
gets large. [Hint: Look at the row labeled ∞ in Table 5, Appendix 3.]

7.26 Refer to Exercise 7.11. Suppose that in the forest fertilization problem the population standard
deviation of basal areas is not known and must be estimated from the sample. If a random
sample of n = 9 basal areas is to be measured, find two statistics g1 and g2 such that P[g1 ≤
(Y − μ) ≤ g2] = .90.

7.27 Applet Exercise Refer to Example 7.7. If we take independent samples of sizes n1 = 6 and
n2 = 10 from two normal populations with equal population variances, use the applet F-Ratio
Probabilities and Quantiles to find

a P(S2
1/S2

2 > 2).

b P(S2
1/S2

2 < 0.5).

c the probability that one of the sample variances is at least twice as big as the other.

7.28 Applet Exercise Suppose that Y has an F distribution with ν1 = 4 numerator degrees of
freedom and ν2 = 6 denominator degrees of freedom.

a Use Table 7, Appendix 3, to find F.025. Also find F.025 using the applet F-Ratio Probabilities
and Quantiles.

b Refer to part (a). What quantile of Y does F.025 correspond to? What percentile?

c Refer to parts (a) and (b). Use the applet F-Ratio Probabilities and Quantiles to find F.975,
the .025 quantile (2.5th percentile) of the distribution of Y .

d If U has an F distribution with ν1 = 6 numerator and ν2 = 4 denominator degrees of
freedom, use Table 7, Appendix 3, or the F-Ratio Probabilities and Quantiles applet to
find F.025.

e In Exercise 7.29, you will show that if Y is a random variable that has an F distribution
with ν1 numerator and ν2 denominator degrees of freedom, then U = 1/Y has an F
distribution with ν2 numerator and ν1 denominator degrees of freedom. Does this result
explain the relationship between F.975 from part (c) (4 numerator and 6 denominator degrees
of freedom) and F.025 from part (d) (6 numerator and 4 denominator degrees of freedom)?
What is this relationship?

7.29 If Y is a random variable that has an F distribution with ν1 numerator and ν2 denominator
degrees of freedom, show that U = 1/Y has an F distribution with ν2 numerator and ν1

denominator degrees of freedom.

*7.30 Suppose that Z has a standard normal distribution and that Y is an independent χ2-distributed
random variable with ν df. Then, according to Definition 7.2,

T = Z√
Y/ν

has a t distribution with ν df.1

a If Z has a standard normal distribution, give E(Z) and E(Z 2). [Hint: For any random
variable, E(Z 2) = V (Z) + (E(Z))2.]

1. Exercises preceded by an asterisk are optional.
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368 Chapter 7 Sampling Distributions and the Central Limit Theorem

b According to the result derived in Exercise 4.112(a), if Y has a χ2 distribution with ν df,
then

E (Y a) = " ([ν/2] + a)

" (ν/2)
2a, if ν > −2a.

Use this result, the result from part (a), and the structure of T to show the following.
[Hint: Recall the independence of Z and Y .]

i E(T ) = 0, if ν > 1.
ii V (T ) = ν/(ν − 2), if ν > 2.

7.31 a Use Table 7, Appendix 3, to find F.01 for F-distributed random variables, all with 4 numer-
ator degrees of freedom, but with denominator degrees of freedom of 10, 15, 30, 60, 120,
and ∞.

b Refer to part (a). What do you observe about the values of F.01 as the number of denominator
degrees of freedom increases?

c What is χ 2
.01 for a χ 2-distributed random variable with 4 df?

d Divide the value of χ 2
.01 (4 df) from part (c) by the value of F.01 (numerator df = 4;

denominator df = ∞). Explain why the value that you obtained is a reasonable value
for the ratio. [Hint: Consider the definition of an F-distributed random variable given in
Definition 7.3.]

7.32 Applet Exercise

a Find t.05 for a t-distributed random variable with 5 df.

b Refer to part (a). What is P(T 2 > t2
.05)?

c Find F.10 for an F-distributed random variable with 1 numerator degree of freedom and 5
denominator degrees of freedom.

d Compare the value of F.10 found in part (c) with the value of t2
.05 from parts (a) and (b).

e In Exercise 7.33, you will show that if T has a t distribution with ν df, then U = T 2 has an
F distribution with 1 numerator degree of freedom and ν denominator degrees of freedom.
How does this explain the relationship between the values of F.10 (1 num. df, 5 denom df)
and t2

.05 (5 df) that you observed in part (d)?

7.33 Use the structures of T and F given in Definitions 7.2 and 7.3, respectively, to argue that if T
has a t distribution with ν df, then U = T 2 has an F distribution with 1 numerator degree of
freedom and ν denominator degrees of freedom.

*7.34 Suppose that W1 and W2 are independent χ2-distributed random variables with ν1 and ν2 df,
respectively. According to Definition 7.3,

F = W1/ν1

W2/ν2

has an F distribution with ν1 and ν2 numerator and denominator degrees of freedom, re-
spectively. Use the preceding structure of F , the independence of W1 and W2, and the result
summarized in Exercise 7.30(b) to show

a E(F) = ν2/(ν2 − 2), if ν2 > 2.

b V (F) = [2ν2
2 (ν1 + ν2 − 2)]/[ν1(ν2 − 2)2(ν2 − 4)], if ν2 > 4.

7.35 Refer to Exercise 7.34. Suppose that F has an F distribution with ν1 = 50 numerator degrees
of freedom and ν2 = 70 denominator degrees of freedom. Notice that Table 7, Appendix 3,
does not contain entries for 50 numerator degrees of freedom and 70 denominator degrees of
freedom.
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a What is E(F)?

b Give V (F).

c Is it likely that F will exceed 3? [Hint: Use Tchebysheff’s theorem.]

*7.36 Let S2
1 denote the sample variance for a random sample of ten ln(LC50) values for copper and

let S2
2 denote the sample variance for a random sample of eight ln(LC50) values for lead, both

samples using the same species of fish. The population variance for measurements on copper is
assumed to be twice the corresponding population variance for measurements on lead. Assume
S2

1 to be independent of S2
2 .

a Find a number b such that

P

(
S2

1

S2
2

≤ b

)
= .95.

b Find a number a such that

P

(
a ≤ S2

1

S2
2

)
= .95.

[Hint: Use the result of Exercise 7.29 and notice that P(U1/U2 ≤ k) = P(U2/U1 ≥ 1/k).]

c If a and b are as in parts (a) and (b), find

P

(
a ≤ S2

1

S2
2

≤ b

)
.

7.37 Let Y1, Y2, . . . , Y5 be a random sample of size 5 from a normal population with mean 0 and
variance 1 and let Y = (1/5)

∑5
i=1 Yi . Let Y6 be another independent observation from the

same population. What is the distribution of

a W = ∑5
i=1 Y 2

i ? Why?

b U = ∑5
i=1 (Yi − Y )2? Why?

c
∑5

i=1 (Yi − Y )2 + Y 2
6 ? Why?

7.38 Suppose that Y1, Y2, . . . , Y5, Y6, Y , W , and U are as defined in Exercise 7.37. What is the
distribution of

a
√

5Y6/
√

W ? Why?

b 2Y6/
√

U? Why?

c 2
(

5Y
2 + Y 2

6

)
/U? Why?

*7.39 Suppose that independent samples (of sizes ni ) are taken from each of k populations and that
population i is normally distributed with mean μi and variance σ 2, i = 1, 2, . . . , k. That is,
all populations are normally distributed with the same variance but with (possibly) different
means. Let X i and S2

i , i = 1, 2, . . . , k be the respective sample means and variances. Let
θ = c1μ1 + c2μ2 + · · · + ckμk , where c1, c2, . . . , ck are given constants.

a Give the distribution of θ̂ = c1 X 1 + c2 X 2 + · · · + ck X k . Provide reasons for any claims
that you make.

b Give the distribution of

SSE

σ 2
, where SSE =

k∑
i=1

(ni − 1)S2
i .

Provide reasons for any claims that you make.
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370 Chapter 7 Sampling Distributions and the Central Limit Theorem

c Give the distribution of

θ̂ − θ√(
c2

1

n1
+ c2

2

n2
+ · · · + c2

k

nk

)
MSE

, where MSE = SSE

n1 + n2 + · · · + nk − k
.

Provide reasons for any claims that you make.

7.3 The Central Limit Theorem
In Chapter 5, we showed that if Y1, Y2, . . . , Yn represents a random sample from any
distribution with mean μ and variance σ 2, then E(Y ) = μ and V (Y ) = σ 2/n. In this
section, we will develop an approximation for the sampling distribution of Y that can
be used regardless of the distribution of the population from which the sample is taken.

If we sample from a normal population, Theorem 7.1 tells us that Y has a normal
sampling distribution. But what can we say about the sampling distribution of Y if
the variables Yi are not normally distributed? Fortunately, Y will have a sampling
distribution that is approximately normal if the sample size is large. The formal
statement of this result is called the central limit theorem. Before we state this theorem,
however, we will look at some empirical investigations that demonstrate the sampling
distribution of Y .

A computer was used to generate random samples of size n from an exponential
density function with mean 10—that is, from a population with density

f (y) =
{

(1/10)e−y/10, y > 0,

0, elsewhere.

A graph of this density function is given in Figure 7.5. The sample mean was computed
for each sample, and the relative frequency histogram for the values of the sample
means for 1000 samples each of size n = 5, is shown in Figure 7.6. Notice that
Figure 7.6 portrays a histogram that is roughly mound-shaped, but the histogram is
slightly skewed.

Figure 7.7 is a graph of a similar relative frequency histogram of the values of the
sample mean for 1000 samples, each of size n = 25. In this case, Figure 7.7 shows a
mounded-shaped and nearly symmetric histogram, which can be approximated quite
closely with a normal density function.

f ( y)

y

.1

0

F I G U R E 7.5
An exponential

density function
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Recall from Chapter 5 that E(Y ) = μY = μ and V (Y ) = σ 2
Y

= σ 2/n. For
the exponential density function used in the simulations, μ = E(Yi ) = 10 and
σ 2 = V (Yi ) = (10)2 = 100. Thus, for this example, we see that

μY = E(Y ) = μ = 10 and σ 2
Y

= V (Y ) = σ 2

n
= 100

n
.

For each value of n (5 and 25), we calculated the average of the 1000 sample means
generated in the study. The observed variance of the 1000 sample means was also
calculated for each value of n. The results are shown in Table 7.1. In each empirical
study (n = 5 and n = 25), the average of the observed sample means and the variance
of the observed sample means are quite close to the theoretical values.

We now give a formal statement of the central limit theorem.
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Table 7.1 Calculations for 1000 sample means

Sample Average of 1000 Variance of 1000
Size Sample Means μY = μ Sample Means σ 2

Y
= σ 2/n

n = 5 9.86 10 19.63 20
n = 25 9.95 10 3.93 4

THEOREM 7.4 Central Limit Theorem: Let Y1, Y2, . . . , Yn be independent and identically
distributed random variables with E(Yi ) = μ and V (Yi ) = σ 2 < ∞. Define

Un =
∑n

i=1 Yi − nμ

σ
√

n
= Y − μ

σ/
√

n
where Y = 1

n

n∑
i=1

Yi .

Then the distribution function of Un converges to the standard normal distribu-
tion function as n → ∞. That is,

lim
n→∞ P(Un ≤ u) =

∫ u

−∞

1√
2π

e−t2/2 dt for all u.

The central limit theorem implies that probability statements about Un can be approx-
imated by corresponding probabilities for the standard normal random variable if n
is large. (Usually, a value of n greater than 30 will ensure that the distribution of Un

can be closely approximated by a normal distribution.)
As a matter of convenience, the conclusion of the central limit theorem is often

replaced with the simpler statement that Y is asymptotically normally distributed with
mean μ and variance σ 2/n. The central limit theorem can be applied to a random
sample Y1, Y2, . . . , Yn from any distribution as long as E(Yi ) = μ and V (Yi ) = σ 2

are both finite and the sample size is large.
We will give some examples of the use of the central limit theorem but will defer

the proof until the next section (coverage of which is optional). The proof is not needed
for an understanding of the applications of the central limit theorem that appear in
this text.

EXAMPLE 7.8 Achievement test scores of all high school seniors in a state have mean 60 and variance
64. A random sample of n = 100 students from one large high school had a mean
score of 58. Is there evidence to suggest that this high school is inferior? (Calculate
the probability that the sample mean is at most 58 when n = 100.)

Solution Let Y denote the mean of a random sample of n = 100 scores from a population with
μ = 60 and σ 2 = 64. We want to approximate P(Y ≤ 58). We know from Theorem
7.4 that (Y − μ)/(σ/

√
n) has a distribution that can be approximated by a standard

normal distribution. Hence, using Table 4, Appendix 3, we have

P(Y ≤ 58) = P

(
Y − 60

8/
√

100
≤ 58 − 60

.8

)
≈ P(Z ≤ −2.5) = .0062.
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Because this probability is so small, it is unlikely that the sample from the school
of interest can be regarded as a random sample from a population with μ = 60 and
σ 2 = 64. The evidence suggests that the average score for this high school is lower
than the overall average of μ = 60.

This example illustrates the use of probability in the process of testing hypothe-
ses, a common technique of statistical inference that will be further discussed in
Chapter 10.

EXAMPLE 7.9 The service times for customers coming through a checkout counter in a retail store are
independent random variables with mean 1.5 minutes and variance 1.0. Approximate
the probability that 100 customers can be served in less than 2 hours of total service
time.

Solution If we let Yi denote the service time for the i th customer, then we want

P

(
100∑
i=1

Yi ≤ 120

)
= P

(
Y ≤ 120

100

)
= P(Y ≤ 1.20).

Because the sample size is large, the central limit theorem tells us that Y is approx-
imately normally distributed with mean μY = μ = 1.5 and variance σ 2

Y
= σ 2/n =

1.0/100. Therefore, using Table 4, Appendix 3, we have

P(Y ≤ 1.20) = P

(
Y − 1.50

1/
√

100
≤ 1.20 − 1.50

1/
√

100

)
≈ P[Z ≤ (1.2 − 1.5)10] = P(Z ≤ −3) = .0013.

Thus, the probability that 100 customers can be served in less than 2 hours is
approximately .0013. This small probability indicates that it is virtually impossible
to serve 100 customers in only 2 hours.

Exercises
7.40 Applet Exercise Suppose that the population of interest does not have a normal distribution.

What does the sampling distribution of Y look like, and what is the effect of the sample size on
the sampling distribution of Y ? Use the applet SampleSize to complete the following. Use the
up/down arrow to the left of the histogram of the population distribution to select the “Skewed”
distribution. What is the mean and standard deviation of the population from which samples
will be selected? [These values are labeled M and S, respectively, and are given above the
population histogram.]

a Use the up/down arrows in the left and right “Sample Size” boxes to select samples of size
1 and 3. Click the button “1 Sample” a few times. What is similar about the two histograms
that you generated? What is different about them?
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b Click the button “1000 Samples” a few times and answer the questions in part (b). Do the
generated histograms have the shapes that you expected? Why?

c Are the means and standard deviations of the two sampling distributions close to the values
that you expected? [Hint: V (Y ) = σ 2/n.]

d Click the button “Toggle Normal.” What do you observe about the adequacy of the approx-
imating normal distributions?

e Click on the two generated sampling distributions to pop up windows for each. Use the
up/down arrows in the left and right “Sample Size” boxes to select samples of size 10 and
25. Click the button “Toggle Normal.” You now have graphs of the sampling distributions
of the sample means based on samples of size 1, 3, 10, and 25. What do you observe about
the adequacy of the normal approximation as the sample size increases?

7.41 Applet Exercise Refer to Exercise 7.40. Use the applet SampleSize to complete the following.
Use the up/down arrow to the left of the histogram of the population distribution to select the
“U-shaped” distribution. What is the mean and standard deviation of the population from which
samples will be selected?

a Answer the questions in parts (a) through (e) of Exercise 7.40.

b Refer to part (a). When you examined the sampling distribution of Y for n = 3, the sampling
distribution had a “valley” in the middle. Why did this occur? Use the applet Basic to find
out. Select the “U-shaped” population distribution and click the button “1 Sample.” What
do you observe about the values of individual observations in the sample. Click the button
“1 Sample” several more times. Do the values in the sample tend to be either (relatively)
large or small with few values in the “middle”? Why? What effect does this have on the
value of the sample mean? [Hint: 3 is an odd sample size.]

7.42 The fracture strength of tempered glass averages 14 (measured in thousands of pounds per
square inch) and has standard deviation 2.

a What is the probability that the average fracture strength of 100 randomly selected pieces
of this glass exceeds 14.5?

b Find an interval that includes, with probability 0.95, the average fracture strength of 100
randomly selected pieces of this glass.

7.43 An anthropologist wishes to estimate the average height of men for a certain race of people. If
the population standard deviation is assumed to be 2.5 inches and if she randomly samples 100
men, find the probability that the difference between the sample mean and the true population
mean will not exceed .5 inch.

7.44 Suppose that the anthropologist of Exercise 7.43 wants the difference between the sample mean
and the population mean to be less than .4 inch, with probability .95. How many men should
she sample to achieve this objective?

7.45 Workers employed in a large service industry have an average wage of $7.00 per hour with
a standard deviation of $.50. The industry has 64 workers of a certain ethnic group. These
workers have an average wage of $6.90 per hour. Is it reasonable to assume that the wage rate
of the ethnic group is equivalent to that of a random sample of workers from those employed
in the service industry? [Hint: Calculate the probability of obtaining a sample mean less than
or equal to $6.90 per hour.]

7.46 The acidity of soils is measured by a quantity called the pH, which may range from 0 (high
acidity) to 14 (high alkalinity). A soil scientist wants to estimate the average pH for a large
field by randomly selecting n core samples and measuring the pH in each sample. Although
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the population standard deviation of pH measurements is not known, past experience indicates
that most soils have a pH value of between 5 and 8. If the scientist selects n = 40 samples, find
the approximate probability that the sample mean of the 40 pH measurements will be within
.2 unit of the true average pH for the field. [Hint: See Exercise 1.17.]

7.47 Suppose that the scientist of Exercise 7.46 would like the sample mean to be within .1 of the
true mean with probability .90. How many core samples should the scientist take?

7.48 An important aspect of a federal economic plan was that consumers would save a substantial
portion of the money that they received from an income tax reduction. Suppose that early
estimates of the portion of total tax saved, based on a random sampling of 35 economists, had
mean 26% and standard deviation 12%.

a What is the approximate probability that a sample mean estimate, based on a random
sample of n = 35 economists, will lie within 1% of the mean of the population of the
estimates of all economists?

b Is it necessarily true that the mean of the population of estimates of all economists is equal
to the percent tax saving that will actually be achieved?

7.49 The length of time required for the periodic maintenance of an automobile or another machine
usually has a mound-shaped probability distribution. Because some occasional long service
times will occur, the distribution tends to be skewed to the right. Suppose that the length of time
required to run a 5000-mile check and to service an automobile has mean 1.4 hours and standard
deviation .7 hour. Suppose also that the service department plans to service 50 automobiles per
8-hour day and that, in order to do so, it can spend a maximum average service time of only 1.6
hours per automobile. On what proportion of all workdays will the service department have to
work overtime?

7.50 Shear strength measurements for spot welds have been found to have standard deviation 10
pounds per square inch (psi). If 100 test welds are to be measured, what is the approximate
probability that the sample mean will be within 1 psi of the true population mean?

7.51 Refer to Exercise 7.50. If the standard deviation of shear strength measurements for spot welds
is 10 psi, how many test welds should be sampled if we want the sample mean to be within
1 psi of the true mean with probability approximately .99?

7.52 Resistors to be used in a circuit have average resistance 200 ohms and standard deviation
10 ohms. Suppose 25 of these resistors are randomly selected to be used in a circuit.

a What is the probability that the average resistance for the 25 resistors is between 199 and
202 ohms?

b Find the probability that the total resistance does not exceed 5100 ohms. [Hint: see Example
7.9.]

7.53 One-hour carbon monoxide concentrations in air samples from a large city average 12 ppm
(parts per million) with standard deviation 9 ppm.

a Do you think that carbon monoxide concentrations in air samples from this city are normally
distributed? Why or why not?

b Find the probability that the average concentration in 100 randomly selected samples will
exceed 14 ppm.

7.54 Unaltered bitumens, as commonly found in lead–zinc deposits, have atomic hydrogen/carbon
(H/C) ratios that average 1.4 with standard deviation .05. Find the probability that the average
H/C ratio is less than 1.3 if we randomly select 25 bitumen samples.
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7.55 The downtime per day for a computing facility has mean 4 hours and standard deviation .8 hour.

a Suppose that we want to compute probabilities about the average daily downtime for a
period of 30 days.

i What assumptions must be true to use the result of Theorem 7.4 to obtain a valid
approximation for probabilities about the average daily downtime?

ii Under the assumptions described in part (i), what is the approximate probability that
the average daily downtime for a period of 30 days is between 1 and 5 hours?

b Under the assumptions described in part (a), what is the approximate probability that the
total downtime for a period of 30 days is less than 115 hours?

7.56 Many bulk products—such as iron ore, coal, and raw sugar—are sampled for quality by a
method that requires many small samples to be taken periodically as the material is moving
along a conveyor belt. The small samples are then combined and mixed to form one composite
sample. Let Yi denote the volume of the i th small sample from a particular lot and suppose that
Y1, Y2, . . . , Yn constitute a random sample, with each Yi value having mean μ (in cubic inches)
and variance σ 2. The average volume μ of the samples can be set by adjusting the size of the
sampling device. Suppose that the variance σ 2 of the volumes of the samples is known to be
approximately 4. The total volume of the composite sample must exceed 200 cubic inches with
probability approximately .95 when n = 50 small samples are selected. Determine a setting
for μ that will allow the sampling requirements to be satisfied.

7.57 Twenty-five heat lamps are connected in a greenhouse so that when one lamp fails, another takes
over immediately. (Only one lamp is turned on at any time.) The lamps operate independently,
and each has a mean life of 50 hours and standard deviation of 4 hours. If the greenhouse is
not checked for 1300 hours after the lamp system is turned on, what is the probability that a
lamp will be burning at the end of the 1300-hour period?

7.58 Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are independent random samples from pop-
ulations with means μ1 and μ2 and variances σ 2

1 and σ 2
2 , respectively. Show that the random

variable

Un = (X − Y ) − (μ1 − μ2)√
(σ 2

1 + σ 2
2 )/n

satisfies the conditions of Theorem 7.4 and thus that the distribution function of Un converges
to a standard normal distribution function as n → ∞. [Hint: Consider Wi = X i − Yi , for
i = 1, 2, . . . , n.]

7.59 An experiment is designed to test whether operator A or operator B gets the job of operating
a new machine. Each operator is timed on 50 independent trials involving the performance
of a certain task using the machine. If the sample means for the 50 trials differ by more than
1 second, the operator with the smaller mean time gets the job. Otherwise, the experiment is
considered to end in a tie. If the standard deviations of times for both operators are assumed to
be 2 seconds, what is the probability that operator A will get the job even though both operators
have equal ability?

7.60 The result in Exercise 7.58 holds even if the sample sizes differ. That is, if X1, X2, . . . , Xn1

and Y1, Y2, . . . , Yn2 constitute independent random samples from populations with means μ1

and μ2 and variances σ 2
1 and σ 2

2 , respectively, then X − Y will be approximately normally
distributed, for large n1 and n2, with mean μ1 − μ2 and variance (σ 2

1 /n1) + (σ 2
2 /n2).

The flow of water through soil depends on, among other things, the porosity (volume
proportion of voids) of the soil. To compare two types of sandy soil, n1 = 50 measurements
are to be taken on the porosity of soil A and n2 = 100 measurements are to be taken on soil B.
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Assume that σ 2
1 = .01 and σ 2

2 = .02. Find the probability that the difference between the
sample means will be within .05 unit of the difference between the population means μ1 −μ2.

7.61 Refer to Exercise 7.60. Suppose that n1 = n2 = n, and find the value of n that allows the
difference between the sample means to be within .04 unit of μ1 − μ2 with probability .90.

7.62 The times that a cashier spends processing individual customer’s order are independent random
variables with mean 2.5 minutes and standard deviation 2 minutes. What is the approximate
probability that it will take more than 4 hours to process the orders of 100 people?

7.63 Refer to Exercise 7.62. Find the number of customers n such that the probability that the orders
of all n customers can be processed in less than 2 hours is approximately .1.

7.4 A Proof of the Central Limit
Theorem (Optional)
We will sketch a proof of the central limit theorem for the case in which the moment-
generating functions exist for the random variables in the sample. The proof depends
upon a fundamental result of probability theory, which cannot be proved here but that
is stated in Theorem 7.5.

THEOREM 7.5 Let Y and Y1, Y2, Y3, . . . be random variables with moment-generating func-
tions m(t) and m1(t), m2(t), m3(t), . . . , respectively. If

lim
n→∞ mn(t) = m(t) for all real t,

then the distribution function of Yn converges to the distribution function of Y
as n → ∞.

We now give the proof of the central limit theorem, Theorem 7.4.

Proof Write

Un = √
n

(
Y − μ

σ

)

= 1√
n

(∑n
i=1 Yi − nμ

σ

)
= 1√

n

n∑
i=1

Z i , where Z i = Yi − μ

σ
.

Because the random variables Yi ’s are independent and identically distributed,
Z i , i = 1, 2, . . . , n, are independent, and identically distributed with E(Z i ) =
0 and V (Z i ) = 1.

Since the moment-generating function of the sum of independent random
variables is the product of their individual moment-generating functions,

m∑
Zi (t) = m Z1(t) × m Z2(t) × · · · × m Zn (t) = [m Z1(t)]

n
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and

mUn (t) = m∑
Zi

(
t√
n

)
=

[
m Z1

(
t√
n

)]n

.

By Taylor’s theorem, with remainder (see your Calculus II text)

m Z1(t) = m Z1(0) + m ′
Z1

(0)t + m ′′
Z1

(ξ)
t2

2
, where 0 < ξ < t,

and because m Z1(0) = E(e0Z1) = E(1) = 1, and m ′
Z1

(0) = E(Z1) = 0,

m Z1(t) = 1 + m ′′
Z1

(ξ)

2
t2, where 0 < ξ < t.

Therefore,

mUn (t) =
[

1 + m ′′
Z1

(ξn)

2

(
t√
n

)2
]n

=
[

1 + m ′′
Z1

(ξn)t2/2

n

]n

, where 0 < ξn <
t√
n
.

Notice that as n → ∞, ξn → 0 and m ′′
Z1

(ξn)t2/2 → m ′′
Z1

(0)t2/2 =
E(Z2

1)t
2/2 = t2/2 because E(Z2

1) = V (Z1) = 1. Recall that if

lim
n→∞ bn = b then lim

n→∞

(
1 + bn

n

)n

= eb.

Finally,

lim
n→∞ mUn (t) = lim

n→∞

[
1 + m ′′

Z1
(ξn)t2/2

n

]n

= et2/2,

the moment-generating function for a standard normal random variable. Apply-
ing Theorem 7.5, we conclude that Un has a distribution function that converges
to the distribution function of the standard normal random variable.

7.5 The Normal Approximation
to the Binomial Distribution
The central limit theorem also can be used to approximate probabilities for some
discrete random variables when the exact probabilities are tedious to calculate. One
useful example involves the binomial distribution for large values of the number of
trials n.

Suppose that Y has a binomial distribution with n trials and probability of success
on any one trial denoted by p. If we want to find P(Y ≤ b), we can use the binomial
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probability function to compute P(Y = y) for each nonnegative integer y less than
or equal to b and then sum these probabilities. Tables are available for some values
of the sample size n, but direct calculation is cumbersome for large values of n for
which tables may be unavailable.

Alternatively, we can view Y , the number of successes in n trials, as a sum of a
sample consisting of 0s and 1s; that is,

Y =
n∑

i=1

X i ,

where

X i =
{

1, if the i th trial results in success,

0, otherwise.

The random variables X i for i = 1, 2, . . . , n are independent (because the trials are
independent), and it is easy to show that E(X i ) = p and V (X i ) = p(1 − p) for
i = 1, 2, . . . , n. Consequently, when n is large, the sample fraction of successes,

Y

n
= 1

n

n∑
i=1

X i = X ,

possesses an approximately normal sampling distribution with mean E(X i ) = p and
variance V (X i )/n = p(1 − p)/n.

Thus, we have used Theorem 7.4 (the central limit theorem) to establish that if Y
is a binomial random variable with parameters n and p and if n is large, then Y/n
has approximately the same distribution as U , where U is normally distributed with
mean μU = p and variance σ 2

U = p(1 − p)/n. Equivalently, for large n, we can
think of Y as having approximately the same distribution as W , where W is normally
distributed with mean μW = np and variance σ 2

W = np(1 − p).

EXAMPLE 7.10 Candidate A believes that she can win a city election if she can earn at least 55% of
the votes in precinct 1. She also believes that about 50% of the city’s voters favor her.
If n = 100 voters show up to vote at precinct 1, what is the probability that candidate
A will receive at least 55% of their votes?

Solution Let Y denote the number of voters at precinct 1 who vote for candidate A. We must
approximate P(Y/n ≥ .55) when p is the probability that a randomly selected voter
from precinct 1 favors candidate A. If we think of the n = 100 voters at precinct 1 as
a random sample from the city, then Y has a binomial distribution with n = 100 and
p = .5. We have seen that the fraction of voters who favor candidate A is

Y

n
= 1

n

n∑
i=1

X i

where X i = 1 if the i th voter favors candidate A and X i = 0 otherwise.
Because it is reasonable to assume that X i , i = 1, 2, . . . , n are independent, the

central limit theorem implies that X = Y/n is approximately normally distributed
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with mean p = .5 and variance pq/n = (.5)(.5)/100 = .0025. Therefore,

P

(
Y

n
≥ .55

)
= P

(
Y/n − .5√

.0025
≥ .55 − .50

.05

)
≈ P(Z ≥ 1) = .1587

from Table 4, Appendix 3.

The normal approximation to binomial probabilities works well even for moder-
ately large n as long as p is not close to zero or one. A useful rule of thumb is that the
normal approximation to the binomial distribution is appropriate when p ± 3

√
pq/n

lies in the interval (0, 1)—that is, if

0 < p − 3
√

pq/n and p + 3
√

pq/n < 1.

In Exercise 7.70, you will show that a more convenient but equivalent criterion is
that the normal approximation is adequate if

n > 9

(
larger of p and q

smaller of p and q

)
.

As you will see in Exercise 7.71, for some values of p, this criterion is sometimes met
for moderate values of n. Especially for moderate values of n, substantial improvement
in the approximation can be made by a slight adjustment on the boundaries used
in the calculations. If we look at the segment of a binomial distribution graphed in
Figure 7.8, we can see what happens when we try to approximate a discrete distribution
represented by a histogram with a continuous density function.

If we want to find P(Y ≤ 3) by using the binomial distribution, we can find the total
area in the four rectangles (above 0, 1, 2, and 3) illustrated in the binomial histogram
(Figure 7.8). Notice that the total area in the rectangles can be approximated by an
area under the normal curve. The area under the curve includes some areas not in the
histogram and excludes the portion of the histogram that lies above the curve. If we
want to approximate P(Y ≤ 3) by calculating an area under the density function,
the area under the density function to the left of 3.5 provides a better approximation
than does the area to the left of 3.0. The following example illustrates how close the
normal approximation is for a case in which some exact binomial probabilities can
be found.

p ( y)

0 1 2 3 y

F I G U R E 7.8
The normal

approximation to the
binomial distribution:

n = 10 and p = .5
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EXAMPLE 7.11 Suppose that Y has a binomial distribution with n = 25 and p = .4. Find the exact
probabilities that Y ≤ 8 and Y = 8 and compare these to the corresponding values
found by using the normal approximation.

Solution From Table 1, Appendix 3, we find that

P(Y ≤ 8) = .274

and

P(Y = 8) = P(Y ≤ 8) − P(Y ≤ 7) = .274 − .154 = .120.

As previously stated, we can think of Y as having approximately the same distri-
bution as W , where W is normally distributed with μW = np and σ 2

W = np(1 − p).
Because we want P(Y ≤ 8), we look at the normal curve area to the left of 8.5. Thus,

P(Y ≤ 8) ≈ P(W ≤ 8.5) = P

[
W − np√
np(1 − p)

≤ 8.5 − 10√
25(.4)(.6)

]
= P(Z ≤ −.61) = .2709

from Table 4, Appendix 3. This approximate value is close to the exact value for
P(Y ≤ 8) = .274, obtained from the binomial tables.

To find the normal approximation to the binomial probability p(8), we will find
the area under the normal curve between the points 7.5 and 8.5 because this is the
interval included in the histogram bar over y = 8 (see Figure 7.9).

Because Y has approximately the same distribution as W , where W is normally
distributed with μW = np = 25(.4) = 10 and σ 2

W = np(1 − p) = 25(.4)(.6) = 6, it
follows that

P(Y = 8) ≈ P(7.5 ≤ W ≤ 8.5)

= P

(
7.5 − 10√

6
≤ W − 10√

6
≤ 8.5 − 10√

6

)
= P(−1.02 ≤ Z ≤ −.61) = .2709 − .1539 = .1170.

6 7 8 9

p ( y)

y

7.5 8.5

F I G U R E 7.9
P (Y = 8) for

binomial distribution
of Example 7.11
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Again, we see that this approximate value is very close to the actual value,
P(Y = 8) = .120, calculated earlier.

In the above example, we used an area under a normal curve to approximate
P(Y ≤ 8) and P(Y = 8) when Y had a binomial distribution with n = 25 and
p = .4. To improve the approximation, .5 was added to the largest value of interest
(8) when we used the approximation P(Y ≤ 8) ≈ P(W ≤ 8.5) and W had an
appropriate normal distribution. Had we been interested in approximating P(Y ≥ 6),
we would have used P(Y ≥ 6) ≈ P(W ≥ 5.5); that is, we would have subtracted .5
from the smallest value of interest (6). The .5 that we added to the largest value of
interest (making it a little larger) and subtracted from the smallest value of interest
(making it a little smaller) is commonly called the continuity correction associated
with the normal approximation. The only time that this continuity correction is used
in this text is when we approximate a binomial (discrete) distribution with a normal
(continuous) distribution.

Exercises
7.64 Applet Exercise Access the applet Normal Approximation to Binomial Distribution

(at academic.cengage.com/statistics/wackerly). When the applet is started, it displays the
details in Example 7.11 and Figure 7.9. Initially, the display contains only the binomial his-
togram and the exact value (calculated using the binomial probability function) for p(8) =
P(Y = 8). Scroll down a little and click the button “Toggle Normal Approximation” to overlay
the normal density with mean 10 and standard deviation

√
.6 = 2.449, the same mean and

standard deviation as the binomial random variable Y . You will get a graph superior to the one in
Figure 7.9.

a How many probability mass or density functions are displayed?

b Enter 0 in the box labeled “Begin” and press the enter key. What probabilities do you
obtain?

c Refer to part (b). On the line where the approximating normal probability is displayed, you
see the expression

Normal: P(−0.5 <= k <= 8.5) = 0.2701.

Why are the .5s in this expression?

7.65 Applet Exercise Suppose that Y has a binomial distribution with n = 5 and p = .10.

a Use the Normal Approximation to Binomial Distribution applet to find exact and approxi-
mate values for P(Y ≤ 1).

b The normal approximation is not particularly good. Why?

7.66 Applet Exercise Refer to Exercise 7.65. In that case, P(Y ≤ 1) = P(|Y − E(Y )| < 1).

If p = .10, use the applet Normal Approximation to Binomial Distribution to search for the
smallest n so that the exact value and the normal approximation for P(|Y − E(Y )| < 1) differ
by less than .01.
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7.67 Applet Exercise Suppose that Y has a binomial distribution with p = .20.

a Use the applet Normal Approximation to Binomial Distribution to compute the exact and
approximate values of P(Y ≤ μ + 3) for n = 5, 10, 15, and 20. For each sample size, pay
attention to the shapes of the binomial histograms and to how close the approximations are
to the exact binomial probabilities.

b Refer to part (a). What did you notice about the shapes of the binomial histograms as the
sample size increased? What did you notice about the differences between the exact and
approximate values of P(Y ≤ μ + 3) as the sample size increased?

c According to the rule of thumb for the adequacy of the normal approximation, how large
must n be for the approximation to be adequate? Is this consistent with what you observed
in parts (a) and (b)?

7.68 Applet Exercise In 2004 Florida was hit by four major hurricanes. In 2005 a survey indicated
that, in 2004, 48% of the households in Florida had no plans for escaping an approaching
hurricane. Suppose that a recent random sample of 50 households was selected in Gainesville
and that those in 29 of the households indicated that their household had a hurricane escape
plan.

a If the 2004 state percentages still apply to recent Gainesville households, use the Normal
Approximation to Binomial Distribution applet to find the exact and approximate values of
the probability that 29 or more of the households sampled have a hurricane escape plan.

b Refer to part (a). Is the normal approximation close to the exact binomial probability?
Explain why.

7.69 Refer to Exercise 7.68.

a Based on your answer to Exercise 7.68(a), do you think that the 2004 Florida percentages
still apply to recent Gainesville households?

b Let Y be the number of Gainesville households that have a hurricane escape plan in a sample
of size 50. Use the applet Normal Approximation to Binomial Distribution to determine
the value of b so that P(Y ≥ b) is small enough to allow you to conclude that the 2004
Florida percentages do not apply to recent Gainesville households.

7.70 In this section, we provided the rule of thumb that the normal approximation to the binomial
distribution is adequate if p ± 3

√
pq/n lies in the interval (0, 1)—that is, if

0 < p − 3
√

pq/n and p + 3
√

pq/n < 1.

a Show that

p + 3
√

pq/n < 1 if and only if n > 9(p/q) .

b Show that

0 < p − 3
√

pq/n if and only if n > 9(q/p) .

c Combine the results from parts (a) and (b) to obtain that the normal approximation to the
binomial is adequate if

n > 9

(
p

q

)
and n > 9

(
q

p

)
,

or, equivalently,

n > 9

(
larger of p and q

smaller of p and q

)
.
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384 Chapter 7 Sampling Distributions and the Central Limit Theorem

7.71 Refer to Exercise 7.70.

a For what values of n will the normal approximation to the binomial distribution be adequate
if p = .5?

b Answer the question in part (a) if p = .6, .4, .8, .2, .99, and .001.

7.72 A machine is shut down for repairs if a random sample of 100 items selected from the daily
output of the machine reveals at least 15% defectives. (Assume that the daily output is a large
number of items.) If on a given day the machine is producing only 10% defective items, what
is the probability that it will be shut down? [Hint: Use the .5 continuity correction.]

7.73 An airline finds that 5% of the persons who make reservations on a certain flight do not show
up for the flight. If the airline sells 160 tickets for a flight with only 155 seats, what is the
probability that a seat will be available for every person holding a reservation and planning
to fly?

7.74 According to a survey conducted by the American Bar Association, 1 in every 410 Americans
is a lawyer, but 1 in every 64 residents of Washington, D.C., is a lawyer.

a If you select a random sample of 1500 Americans, what is the approximate probability that
the sample contains at least one lawyer?

b If the sample is selected from among the residents of Washington, D.C., what is the ap-
proximate probability that the sample contains more than 30 lawyers?

c If you stand on a Washington, D.C., street corner and interview the first 1000 persons who
walked by and 30 say that they are lawyers, does this suggest that the density of lawyers
passing the corner exceeds the density within the city? Explain.

7.75 A pollster believes that 20% of the voters in a certain area favor a bond issue. If 64 voters are
randomly sampled from the large number of voters in this area, approximate the probability
that the sampled fraction of voters favoring the bond issue will not differ from the true fraction
by more than .06.

7.76 a Show that the variance of Y/n, where Y has a binomial distribution with n trials and a
success probability of p, has a maximum at p = .5, for fixed n.

b A random sample of n items is to be selected from a large lot, and the number of defectives
Y is to be observed. What value of n guarantees that Y/n will be within .1 of the true
fraction of defectives, with probability .95?

7.77 The manager of a supermarket wants to obtain information about the proportion of customers
who dislike a new policy on cashing checks. How many customers should he sample if he
wants the sample fraction to be within .15 of the true fraction, with probability .98?

7.78 If the supermarket manager (Exercise 7.77) samples n = 50 customers and if the true fraction
of customers who dislike the policy is approximately .9, find the probability that the sample
fraction will be within .15 unit of the true fraction.

7.79 Suppose that a random sample of 25 items is selected from the machine of Exercise 7.72. If
the machine produces 10% defectives, find the probability that the sample will contain at least
two defectives, by using the following methods:

a The normal approximation to the binomial

b The exact binomial tables

7.80 The median age of residents of the United States is 31 years. If a survey of 100 randomly
selected U.S. residents is to be taken, what is the approximate probability that at least 60 will
be under 31 years of age?
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7.81 A lot acceptance sampling plan for large lots specifies that 50 items be randomly selected and
that the lot be accepted if no more than 5 of the items selected do not conform to specifications.

a What is the approximate probability that a lot will be accepted if the true proportion of
nonconforming items in the lot is .10?

b Answer the question in part (a) if the true proportion of nonconforming items in the lot is
.20 and .30.

7.82 The quality of computer disks is measured by the number of missing pulses. Brand X is such
that 80% of the disks have no missing pulses. If 100 disks of brand X are inspected, what is
the probability that 15 or more contain missing pulses?

7.83 Applet Exercise Vehicles entering an intersection from the east are equally likely to turn left,
turn right, or proceed straight ahead. If 50 vehicles enter this intersection from the east, use
the applet Normal Approximation to Binomial Distribution to find the exact and approximate
probabilities that

a 15 or fewer turn right.

b at least two-thirds of those in the sample turn.

7.84 Just as the difference between two sample means is normally distributed for large samples, so is
the difference between two sample proportions. That is, if Y1 and Y2 are independent binomial
random variables with parameters (n1, p1) and (n2, p2), respectively, then (Y1/n1) − (Y2/n2)

is approximately normally distributed for large values of n1 and n2.

a Find E

(
Y1

n1
− Y2

n2

)
.

b Find V

(
Y1

n1
− Y2

n2

)
.

7.85 As a check on the relative abundance of certain species of fish in two lakes, n = 50 observations
are taken on results of net trapping in each lake. For each observation, the experimenter merely
records whether the desired species was present in the trap. Past experience has shown that this
species appears in lake A traps approximately 10% of the time and in lake B traps approximately
20% of the time. Use these results to approximate the probability that the difference between
the sample proportions will be within .1 of the difference between the true proportions.

7.86 An auditor samples 100 of a firm’s travel vouchers to ascertain what percentage of the whole
set of vouchers are improperly documented. What is the approximate probability that more
than 30% of the sampled vouchers are improperly documented if, in fact, only 20% of all the
vouchers are improperly documented? If you were the auditor and observed more than 30%
with improper documentation, what would you conclude about the firm’s claim that only 20%
suffered from improper documentation? Why?

7.87 The times to process orders at the service counter of a pharmacy are exponentially distributed
with mean 10 minutes. If 100 customers visit the counter in a 2-day period, what is the
probability that at least half of them need to wait more than 10 minutes?

7.6 Summary
To make inferences about population parameters, we need to know the probabil-
ity distributions for certain statistics, functions of the observable random variables
in the sample (or samples). These probability distributions provide models for the
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386 Chapter 7 Sampling Distributions and the Central Limit Theorem

Table 7.2 R (and S-Plus) procedures giving probabilities and percentiles for normal, χ2, t, and F
distributions.

pth Quantile,
Distribution P(Y ≤ y0) φp Such That P(Y ≤ φp) = p

Normal (μ,σ ) pnorm(y0,μ,σ) qnorm(p,μ,σ)

χ 2 with ν df pchisq(y0, ν) qchisq(p,ν)

t with ν df pt(y0, ν) qt(p,ν)

F with ν1 num. df, pf(y0, ν1, ν2) qf(p,ν1, ν2)
ν2 denom. df

relative frequency behavior of the statistics in repeated sampling; consequently, they
are referred to as sampling distributions. We have seen that the normal, χ2, t , and
F distributions provide models for the sampling distributions of statistics used to
make inferences about the parameters associated with normal distributions. For your
convenience, Table 7.2 contains a summary of the R (or S-Plus) commands that
provide probabilities and quantiles associated with these distributions.

When the sample size is large, the sample mean Y possesses an approximately
normal distribution if the random sample is taken from any distribution with a finite
mean μ and a finite variance σ 2. This result, known as the central limit theorem, also
provides the justification for approximating binomial probabilities with corresponding
probabilities associated with the normal distribution.

The sampling distributions developed in this chapter will be used in the inference-
making procedures presented in subsequent chapters.
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Supplementary Exercises
7.88 The efficiency (in lumens per watt) of light bulbs of a certain type has population mean 9.5 and

standard deviation .5, according to production specifications. The specifications for a room in
which eight of these bulbs are to be installed call for the average efficiency of the eight bulbs
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to exceed 10. Find the probability that this specification for the room will be met, assuming
that efficiency measurements are normally distributed.

7.89 Refer to Exercise 7.88. What should be the mean efficiency per bulb if the specification for
the room is to be met with a probability of approximately .80? (Assume that the variance of
efficiency measurements remains at .5.)

7.90 Briggs and King developed the technique of nuclear transplantation in which the nucleus of
a cell from one of the later stages of an embryo’s development is transplanted into a zygote
(a single-cell, fertilized egg) to see if the nucleus can support normal development. If the
probability that a single transplant from the early gastrula stage will be successful is .65, what
is the probability that more than 70 transplants out of 100 will be successful?

7.91 A retail dealer sells three brands of automobiles. For brand A, her profit per sale, X is normally
distributed with parameters (μ1, σ 2

1 ); for brand B her profit per sale Y is normally distributed
with parameters (μ2, σ 2

2 ); for brand C, her profit per sale W is normally distributed with
parameters (μ3, σ 2

3 ). For the year, two-fifths of the dealer’s sales are of brand A, one-fifth of
brand B, and the remaining two-fifths of brand C. If you are given data on profits for n1, n2,
and n3 sales of brands A, B, and C, respectively, the quantity U = .4X + .2Y + .4W will
approximate to the true average profit per sale for the year. Find the mean, variance, and
probability density function for U . Assume that X, Y , and W are independent.

7.92 From each of two normal populations with identical means and with standard deviations of
6.40 and 7.20, independent random samples of 64 observations are drawn. Find the probability
that the difference between the means of the samples exceeds .6 in absolute value.

7.93 If Y has an exponential distribution with mean θ , show that U = 2Y/θ has a χ 2 distribution
with 2 df.

7.94 A plant supervisor is interested in budgeting weekly repair costs for a certain type of machine.
Records over the past years indicate that these repair costs have an exponential distribution with
mean 20 for each machine studied. Let Y1, Y2, . . . , Y5 denote the repair costs for five of these
machines for the next week. Find a number c such that P

( ∑5
i=1 Yi > c

)
= .05, assuming that

the machines operate independently. [Hint: Use the result given in Exercise 7.93.]

7.95 The coefficient of variation (CV) for a sample of values Y1, Y2, . . . , Yn is defined by

CV = S/Y .

This quantity, which gives the standard deviation as a proportion of the mean, is sometimes
informative. For example, the value S = 10 has little meaning unless we can compare it to
something else. If S is observed to be 10 and Y is observed to be 1000, the amount of variation is
small relative to the size of the mean. However, if S is observed to be 10 and Y is observed to be
5, the variation is quite large relative to the size of the mean. If we were studying the precision
(variation in repeated measurements) of a measuring instrument, the first case (CV = 10/1000)
might provide acceptable precision, but the second case (CV = 2) would be unacceptable.

Let Y1, Y2, . . . , Y10 denote a random sample of size 10 from a normal distribution with
mean 0 and variance σ 2. Use the following steps to find the number c such that

P

(
−c ≤ S

Y
≤ c

)
= .95.

a Use the result of Exercise 7.33 to find the distribution of (10)Y
2
/S2.

b Use the result of Exercise 7.29 to find the distribution of S2/[(10)Y
2
].

c Use the answer to (b) to find the constant c.
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7.96 Suppose that Y1, Y2, . . . , Y40 denote a random sample of measurements on the proportion of
impurities in iron ore samples. Let each variable Yi have a probability density function given by

f (y) =
{

3y2, 0 ≤ y ≤ 1,

0, elsewhere.

The ore is to be rejected by the potential buyer if Y exceeds .7. Find P(Y > .7) for the sample
of size 40.

*7.97 Let X1, X2, . . . , Xn be independent χ2-distributed random variables, each with 1 df. Define
Y as

Y =
n∑

i=1

X i .

It follows from Exercise 6.59 that Y has a χ 2 distribution with n df.

a Use the preceding representation of Y as the sum of the X ’s to show that Z = (Y −n)/
√

2n
has an asymptotic standard normal distribution.

b A machine in a heavy-equipment factory produces steel rods of length Y , where Y is a
normally distributed random variable with mean 6 inches and variance .2. The cost C of
repairing a rod that is not exactly 6 inches in length is proportional to the square of the
error and is given, in dollars, by C = 4(Y − μ)2. If 50 rods with independent lengths are
produced in a given day, approximate the probability that the total cost for repairs for that
day exceeds $48.

*7.98 Suppose that T is defined as in Definition 7.2.

a If W is fixed at w , then T is given by Z/c, where c = √
w/ν. Use this idea to find the

conditional density of T for a fixed W = w .

b Find the joint density of T and W, f (t, w), by using f (t, w) = f (t |w) f (w).

c Integrate over w to show that

f (t) =
{

"[(ν + 1)/2]√
πν"(ν/2)

} (
1 + t2

ν

)−(ν+1)/2

, −∞ < t < ∞.

*7.99 Suppose F is defined as in Definition 7.3.

a If W2 is fixed at w2, then F = W1/c, where c = w2ν1/ν2. Find the conditional density of
F for fixed W2 = w2.

b Find the joint density of F and W2.

c Integrate over w2 to show that the probability density function of F—say, g(y)—is given by

g(y) = "[(ν1 + ν2)/2](ν1/ν2)
ν1/2

"(ν1/2)"(ν2/2)
y(ν1/2)−1

(
1 + ν1 y

ν2

)−(ν1+ν2)/2

, 0 < y < ∞.

*7.100 Let X have a Poisson distribution with parameter λ.

a Show that the moment-generating function of Y = (X − λ)/
√

λ is given by

mY (t) = exp(λet/
√

λ −
√

λt − λ).

b Use the expansion

et/
√

λ =
∞∑

i=0

[t/
√

λ]i

i!
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to show that

lim
λ→∞

mY (t) = et2/2.

c Use Theorem 7.5 to show that the distribution function of Y converges to a standard normal
distribution function as λ → ∞.

*7.101 In the interest of pollution control, an experimenter wants to count the number of bacteria
per small volume of water. Let X denote the bacteria count per cubic centimeter of water and
assume that X has a Poisson probability distribution with mean λ = 100. If the allowable
pollution in a water supply is a count of 110 per cubic centimeter, approximate the probability
that X will be at most 110. [Hint: Use the result in Exercise 7.100(c).]

*7.102 Y , the number of accidents per year at a given intersection, is assumed to have a Poisson
distribution. Over the past few years, an average of 36 accidents per year have occurred at this
intersection. If the number of accidents per year is at least 45, an intersection can qualify to
be redesigned under an emergency program set up by the state. Approximate the probability
that the intersection in question will come under the emergency program at the end of the next
year.

*7.103 An experimenter is comparing two methods for removing bacteria colonies from processed
luncheon meats. After treating some samples by method A and other identical samples by
method B, the experimenter selects a 2-cubic-centimeter subsample from each sample and
makes bacteria colony counts on these subsamples. Let X denote the total count for the sub-
samples treated by method A and let Y denote the total count for the subsamples treated by
method B. Assume that X and Y are independent Poisson random variables with means λ1

and λ2, respectively. If X exceeds Y by more than 10, method B will be judged superior to A.
Suppose that, in fact, λ1 = λ2 = 50. Find the approximate probability that method B will be
judged superior to method A.

*7.104 Let Yn be a binomial random variable with n trials and with success probability p. Suppose
that n tends to infinity and p tends to zero in such a way that np remains fixed at np = λ. Use
the result in Theorem 7.5 to prove that the distribution of Yn converges to a Poisson distribution
with mean λ.

*7.105 If the probability that a person will suffer an adverse reaction from a medication is .001, use
the result of Exercise 7.104 to approximate the probability that 2 or more persons will suffer
an adverse reaction if the medication is administered to 1000 individuals.
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CHAPTER 8

Estimation
8.1 Introduction

8.2 The Bias and Mean Square Error of Point Estimators

8.3 Some Common Unbiased Point Estimators

8.4 Evaluating the Goodness of a Point Estimator

8.5 Confidence Intervals

8.6 Large-Sample Confidence Intervals

8.7 Selecting the Sample Size

8.8 Small-Sample Confidence Intervals for μ and μ1 − μ2

8.9 Confidence Intervals for σ 2

8.10 Summary

References and Further Readings

8.1 Introduction
As stated in Chapter 1, the purpose of statistics is to use the information contained
in a sample to make inferences about the population from which the sample is taken.
Because populations are characterized by numerical descriptive measures called
parameters, the objective of many statistical investigations is to estimate the value of
one or more relevant parameters. As you will see, the sampling distributions derived
in Chapter 7 play an important role in the development of the estimation procedures
that are the focus of this chapter.

Estimation has many practical applications. For example, a manufacturer of wash-
ing machines might be interested in estimating the proportion p of washers that can
be expected to fail prior to the expiration of a 1-year guarantee time. Other important
population parameters are the population mean, variance, and standard deviation. For
example, we might wish to estimate the mean waiting time μ at a supermarket check-
out station or the standard deviation of the error of measurement σ of an electronic
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8.1 Introduction 391

instrument. To simplify our terminology, we will call the parameter of interest in the
experiment the target parameter.

Suppose that we wish to estimate the average amount of mercury μ that a newly
developed process can remove from 1 ounce of ore obtained at a geographic location.
We could give our estimate in two distinct forms. First, we could use a single number—
for instance .13 ounce—that we think is close to the unknown population mean μ.
This type of estimate is called a point estimate because a single value, or point, is given
as the estimate of μ. Second, we might say that μ will fall between two numbers—for
example, between .07 and .19 ounce. In this second type of estimation procedure,
the two values that we give may be used to construct an interval (.07, .19) that is
intended to enclose the parameter of interest; thus, the estimate is called an interval
estimate.

The information in the sample can be used to calculate the value of a point estimate,
an interval estimate, or both. In any case, the actual estimation is accomplished by
using an estimator for the target parameter.

DEFINITION 8.1 An estimator is a rule, often expressed as a formula, that tells how to calculate
the value of an estimate based on the measurements contained in a sample.

For example, the sample mean

Y = 1

n

n∑
i=1

Yi

is one possible point estimator of the population mean μ. Clearly, the expression for
Y is both a rule and a formula. It tells us to sum the sample observations and divide
by the sample size n.

An experimenter who wants an interval estimate of a parameter must use the
sample data to calculate two values, chosen so that the interval formed by the two
values includes the target parameter with a specified probability. Examples of interval
estimators will be given in subsequent sections.

Many different estimators (rules for estimating) may be obtained for the same
population parameter. This should not be surprising. Ten engineers, each assigned to
estimate the cost of a large construction job, could use different methods of estimation
and thereby arrive at different estimates of the total cost. Such engineers, called
estimators in the construction industry, base their estimates on specified fixed guide-
lines and intuition. Each estimator represents a unique human subjective rule for
obtaining a single estimate. This brings us to a most important point: Some estima-
tors are considered good, and others, bad. The management of a construction firm
must define good and bad as they relate to the estimation of the cost of a job. How
can we establish criteria of goodness to compare statistical estimators? The following
sections contain some answers to this question.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



392 Chapter 8 Estimation

8.2 The Bias and Mean Square Error
of Point Estimators
Point estimation is similar, in many respects, to firing a revolver at a target. The
estimator, generating estimates, is analogous to the revolver; a particular estimate is
comparable to one shot; and the parameter of interest corresponds to the bull’s-eye.
Drawing a single sample from the population and using it to compute an estimate for
the value of the parameter corresponds to firing a single shot at the bull’s-eye.

Suppose that a man fires a single shot at a target and that shot pierces the bull’s-
eye. Do we conclude that he is an excellent shot? Would you want to hold the target
while a second shot is fired? Obviously, we would not decide that the man is an expert
marksperson based on such a small amount of evidence. On the other hand, if 100 shots
in succession hit the bull’s-eye, we might acquire sufficient confidence in the marks-
person and consider holding the target for the next shot if the compensation was
adequate. The point is that we cannot evaluate the goodness of a point estimation
procedure on the basis of the value of a single estimate; rather, we must observe
the results when the estimation procedure is used many, many times. Because the
estimates are numbers, we evaluate the goodness of the point estimator by constructing
a frequency distribution of the values of the estimates obtained in repeated sampling
and note how closely this distribution clusters about the target parameter.

Suppose that we wish to specify a point estimate for a population parameter that
we will call θ . The estimator of θ will be indicated by the symbol θ̂ , read as “θ hat.”
The “hat” indicates that we are estimating the parameter immediately beneath it.
With the revolver-firing example in mind, we can say that it is highly desirable for
the distribution of estimates—or, more properly, the sampling distribution of the
estimator—to cluster about the target parameter as shown in Figure 8.1. In other
words, we would like the mean or expected value of the distribution of estimates to
equal the parameter estimated; that is, E(θ̂) = θ . Point estimators that satisfy this
property are said to be unbiased. The sampling distribution for a positively biased
point estimator, one for which E(θ̂) > θ , is shown in Figure 8.2.

% %̂

F I G U R E 8.1
A distribution

of estimates

%̂f ( )

%̂E( ) %̂%

F I G U R E 8.2
Sampling distribution

for a positively
biased estimator
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8.2 The Bias and Mean Square Error of Point Estimators 393

DEFINITION 8.2 Let θ̂ be a point estimator for a parameter θ . Then θ̂ is an unbiased estimator
if E(θ̂) = θ . If E(θ̂) 7= θ , θ̂ is said to be biased.

DEFINITION 8.3 The bias of a point estimator θ̂ is given by B(θ̂) = E(θ̂) − θ .

Figure 8.3 shows two possible sampling distributions for unbiased point estima-
tors for a target parameter θ . We would prefer that our estimator have the type of
distribution indicated in Figure 8.3(b) because the smaller variance guarantees that
in repeated sampling a higher fraction of values of θ̂2 will be “close” to θ . Thus,
in addition to preferring unbiasedness, we want the variance of the distribution of
the estimator V (θ̂) to be as small as possible. Given two unbiased estimators of a
parameter θ , and all other things being equal, we would select the estimator with the
smaller variance.

Rather than using the bias and variance of a point estimator to characterize its
goodness, we might employ E[(θ̂ − θ)2], the average of the square of the distance
between the estimator and its target parameter.

DEFINITION 8.4 The mean square error of a point estimator θ̂ is

MSE(θ̂) = E[(θ̂ − θ)2].

The mean square error of an estimator θ̂ , MSE(θ̂), is a function of both its variance
and its bias. If B(θ̂) denotes the bias of the estimator θ̂ , it can be shown that

MSE(θ̂) = V(θ̂) + [B(θ̂)]2.

We will leave the proof of this result as Exercise 8.1.
In this section, we have defined properties of point estimators that are some-

times desirable. In particular, we often seek unbiased estimators with relatively small
variances. In the next section, we consider some common and useful unbiased point
estimators.

%̂f ( 1) %̂f ( 2)

%̂1 %̂2% %

(a) (b)
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Sampling

distributions for two
unbiased estimators:
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large variation;

(b) estimator with
small variation
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394 Chapter 8 Estimation

Exercises
8.1 Using the identity

(θ̂ − θ) = [θ̂ − E(θ̂)] + [E(θ̂) − θ ] = [θ̂ − E(θ̂)] + B(θ̂),

show that

MSE(θ̂) = E[(θ̂ − θ)2] = V (θ̂) + (B(θ̂))2.

8.2 a If θ̂ is an unbiased estimator for θ , what is B(θ̂)?

b If B(θ̂) = 5, what is E(θ̂)?

8.3 Suppose that θ̂ is an estimator for a parameter θ and E(θ̂) = aθ +b for some nonzero constants
a and b.

a In terms of a, b, and θ , what is B(θ̂)?

b Find a function of θ̂—say, θ̂ =—that is an unbiased estimator for θ .

8.4 Refer to Exercise 8.1.

a If θ̂ is an unbiased estimator for θ , how does MSE(θ̂) compare to V (θ̂)?

b If θ̂ is an biased estimator for θ , how does MSE(θ̂) compare to V (θ̂)?

8.5 Refer to Exercises 8.1 and consider the unbiased estimator θ̂ = that you proposed in
Exercise 8.3.

a Express MSE(θ̂ =) as a function of V (θ̂).

b Give an example of a value of a for which MSE(θ̂ =) < MSE(θ̂).

c Give an example of values for a and b for which MSE(θ̂ =) > MSE(θ̂).

8.6 Suppose that E(θ̂ 1) = E(θ̂2) = θ, V (θ̂1) = σ 2
1 , and V (θ̂ 2) = σ 2

2 . Consider the estimator
θ̂3 = aθ̂1 + (1 − a)θ̂2.

a Show that θ̂3 is an unbiased estimator for θ .

b If θ̂ 1 and θ̂ 2 are independent, how should the constant a be chosen in order to minimize
the variance of θ̂3?

8.7 Consider the situation described in Exercise 8.6. How should the constant a be chosen to
minimize the variance of θ̂3 if θ̂1 and θ̂2 are not independent but are such that Cov(θ̂1, θ̂ 2) =
c 7= 0?

8.8 Suppose that Y1, Y2, Y3 denote a random sample from an exponential distribution with density
function

f (y) =
⎧⎨⎩

(
1

θ

)
e−y/θ , y > 0,

0, elsewhere.

Consider the following five estimators of θ :

θ̂1 = Y1, θ̂2 = Y1 + Y2

2
, θ̂3 = Y1 + 2Y2

3
, θ̂4 = min(Y1, Y2, Y3), θ̂5 = Y .

a Which of these estimators are unbiased?

b Among the unbiased estimators, which has the smallest variance?
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8.9 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a population with probability
density function

f (y) =
⎧⎨⎩

(
1

θ + 1

)
e−y/(θ+1), y > 0, θ > −1,

0, elsewhere.

Suggest a suitable statistic to use as an unbiased estimator for θ . [Hint: Consider Y .]

8.10 The number of breakdowns per week for a type of minicomputer is a random variable Y with
a Poisson distribution and mean λ. A random sample Y1, Y2, . . . , Yn of observations on the
weekly number of breakdowns is available.

a Suggest an unbiased estimator for λ.

b The weekly cost of repairing these breakdowns is C = 3Y +Y 2. Show that E(C) = 4λ + λ2.

c Find a function of Y1, Y2, . . . , Yn that is an unbiased estimator of E(C). [Hint: Use what
you know about Y and (Y )2.]

8.11 Let Y1, Y2, . . . , Yn denote a random sample of size n from a population with mean 3. Assume
that θ̂ 2 is an unbiased estimator of E(Y 2) and that θ̂3 is an unbiased estimator of E(Y 3). Give
an unbiased estimator for the third central moment of the underlying distribution.

8.12 The reading on a voltage meter connected to a test circuit is uniformly distributed over the
interval (θ, θ + 1), where θ is the true but unknown voltage of the circuit. Suppose that
Y1, Y2, . . . , Yn denote a random sample of such readings.

a Show that Y is a biased estimator of θ and compute the bias.

b Find a function of Y that is an unbiased estimator of θ .

c Find MSE(Y ) when Y is used as an estimator of θ .

8.13 We have seen that if Y has a binomial distribution with parameters n and p, then Y/n is an
unbiased estimator of p. To estimate the variance of Y , we generally use n(Y/n)(1 − Y/n).

a Show that the suggested estimator is a biased estimator of V (Y ).

b Modify n(Y/n)(1 − Y/n) slightly to form an unbiased estimator of V (Y ).

8.14 Let Y1, Y2, . . . , Yn denote a random sample of size n from a population whose density is given by

f (y) =
{

αyα−1/θα, 0 ≤ y ≤ θ,

0, elsewhere,

where α > 0 is a known, fixed value, but θ is unknown. (This is the power family distribution
introduced in Exercise 6.17.) Consider the estimator θ̂ = max(Y1, Y2, . . . , Yn).

a Show that θ̂ is a biased estimator for θ .

b Find a multiple of θ̂ that is an unbiased estimator of θ .

c Derive MSE(θ̂ ).

8.15 Let Y1, Y2, . . . , Yn denote a random sample of size n from a population whose density is given by

f (y) =
{

3β3 y−4, β ≤ y,

0, elsewhere,

where β > 0 is unknown. (This is one of the Pareto distributions introduced in Exercise 6.18.)
Consider the estimator β̂ = min(Y1, Y2, . . . , Yn).

a Derive the bias of the estimator β̂.

b Derive MSE(β̂).
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396 Chapter 8 Estimation

*8.16 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a normal distribution with
parameters μ and σ 2.1

a Show that S = √
S2 is a biased estimator of σ . [Hint: Recall the distribution of (n−1)S2/σ 2

and the result given in Exercise 4.112.]

b Adjust S to form an unbiased estimator of σ .

c Find an unbiased estimator of μ − zασ , the point that cuts off a lower-tail area of α under
this normal curve.

8.17 If Y has a binomial distribution with parameters n and p, then p̂1 = Y/n is an unbiased
estimator of p. Another estimator of p is p̂2 = (Y + 1)/(n + 2).

a Derive the bias of p̂2.

b Derive MSE( p̂1) and MSE( p̂2).

c For what values of p is MSE( p̂1) < MSE( p̂2)?

8.18 Let Y1, Y2, . . . , Yn denote a random sample of size n from a population with a uniform distri-
bution on the interval (0, θ ). Consider Y(1) = min(Y1, Y2, . . . , Yn), the smallest-order statistic.
Use the methods of Section 6.7 to derive E(Y(1)). Find a multiple of Y(1) that is an unbiased
estimator for θ .

8.19 Suppose that Y1, Y2, . . . , Yn denote a random sample of size n from a population with an
exponential distribution whose density is given by

f (y) =
{

(1/θ)e−y/θ , y > 0,

0, elsewhere.

If Y(1) = min(Y1, Y2, . . . , Yn) denotes the smallest-order statistic, show that θ̂ = nY(1) is an
unbiased estimator for θ and find MSE(θ̂). [Hint: Recall the results of Exercise 6.81.]

*8.20 Suppose that Y1, Y2, Y3, Y4 denote a random sample of size 4 from a population with an
exponential distribution whose density is given by

f (y)

{
(1/θ)e−y/θ , y > 0,

0, elsewhere.

a Let X = √
Y1Y2. Find a multiple of X that is an unbiased estimator for θ . [Hint: Use your

knowledge of the gamma distribution and the fact that "(1/2) = √
π to find E(

√
Y1).

Recall that the variables Yi are independent.]

b Let W = √
Y1Y2Y3Y4. Find a multiple of W that is an unbiased estimator for θ 2. [Recall

the hint for part (a).]

8.3 Some Common Unbiased Point Estimators
Some formal methods for deriving point estimators for target parameters are presented
in Chapter 9. In this section, we focus on some estimators that merit consideration
on the basis of intuition. For example, it seems natural to use the sample mean

1. Exercises preceded by an asterisk are optional.
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8.3 Some Common Unbiased Point Estimators 397

Y to estimate the population mean μ and to use the sample proportion p̂ = Y/n
to estimate a binomial parameter p. If an inference is to be based on independent
random samples of n1 and n2 observations selected from two different populations,
how would we estimate the difference between means (μ1 − μ2) or the difference in
two binomial parameters, (p1 − p2)? Again, our intuition suggests using the point
estimators (Y 1 − Y 2), the difference in the sample means, to estimate (μ1 − μ2) and
using ( p̂1 − p̂2), the difference in the sample proportions, to estimate (p1 − p2).

Because the four estimators Y , p̂, (Y 1 − Y 2), and ( p̂1 − p̂2) are functions of
the random variables observed in samples, we can find their expected values and
variances by using the expectation theorems of Sections 5.6–5.8. The standard devi-
ation of each of the estimators is simply the square root of the respective variance.
Such an effort would show that, when random sampling has been employed, all four
point estimators are unbiased and that they possess the standard deviations shown in
Table 8.1. To facilitate communication, we use the notation σ 2

θ̂
to denote the variance

of the sampling distribution of the estimator θ̂ . The standard deviation of the sampling

distribution of the estimator θ̂ , σθ̂ =
√

σ 2
θ̂

, is usually called the standard error of the
estimator θ̂ .

In Chapter 5, we did much of the derivation required for Table 8.1. In particular, we
found the means and variances of Y and p̂ in Examples 5.27 and 5.28, respectively.
If the random samples are independent, these results and Theorem 5.12 imply that

E(Y 1 − Y 2) = E(Y 1) − E(Y 2) = μ1 − μ2,

V(Y 1 − Y 2) = V(Y 1) + V(Y 2) = σ 2
1

n1
+ σ 2

2

n2
.

The expected value and standard error of ( p̂1 − p̂2), shown in Table 8.1, can be
acquired similarly.

Table 8.1 Expected values and standard errors of some common point estimators

Target Point Standard
Parameter Sample Estimator Error

θ Size(s) θ̂ E(θ̂) σθ̂

μ n Y μ
σ√
n

p n p̂ = Y

n
p

√
pq

n

μ1 − μ2 n1 and n2 Y 1 − Y 2 μ1 − μ2

√
σ 2

1

n1
+ σ 2

2

n2

∗†

p1 − p2 n1 and n2 p̂1 − p̂2 p1 − p2

√
p1q1

n1
+ p2q2

n2

†

∗σ 2
1 and σ 2

2 are the variances of populations 1 and 2, respectively.
†The two samples are assumed to be independent.
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398 Chapter 8 Estimation

Although unbiasedness is often a desirable property for a point estimator, not all
estimators are unbiased. In Chapter 1, we defined the sample variance

S2 =
∑n

i=1(Yi − Y )2

n − 1
.

It probably seemed more natural to divide by n than by n − 1 in the preceding
expression and to calculate

S′2 =
∑n

i=1(Yi − Y )2

n
.

Example 8.1 establishes that S′2 and S2 are, respectively, biased and unbiased estima-
tors of the population variance σ 2. We initially identified S2 as the sample variance
because it is an unbiased estimator.

EXAMPLE 8.1 Let Y1, Y2, . . . , Yn be a random sample with E(Yi ) = μ and V (Yi ) = σ 2. Show that

S′2 = 1

n

n∑
i=1

(Yi − Y )2

is a biased estimator for σ 2 and that

S2 = 1

n − 1

n∑
i=1

(Yi − Y )2

is an unbiased estimator for σ 2.

Solution It can be shown (see Exercise 1.9) that

n∑
i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − 1

n

(
n∑

i=1

Yi

)2

=
n∑

i=1

Y 2
i − nY

2
.

Hence,

E

[
n∑

i=1

(Yi − Y )2

]
= E

(
n∑

i=1

Y 2
i

)
− nE(Y

2
) =

n∑
i=1

E(Y 2
i ) − nE(Y

2
).

Notice that E(Y 2
i ) is the same for i = 1, 2, . . . , n. We use this and the fact that the

variance of a random variable is given by V (Y ) = E(Y 2)− [E(Y )]2 to conclude that
E(Y 2

i ) = V (Yi ) + [E(Yi )]2 = σ 2 + μ2, E(Y
2
) = V (Y ) + [E(Y )]2 = σ 2/n + μ2,

and that

E

[
n∑

i=1

(Yi − Y )2

]
=

n∑
i=1

(σ 2 + μ2) − n

(
σ 2

n
+ μ2

)

= n(σ 2 + μ2) − n

(
σ 2

n
+ μ2

)
= nσ 2 − σ 2 = (n − 1)σ 2.
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8.4 Evaluating the Goodness of a Point Estimator 399

It follows that

E(S′2) = 1

n
E

[
n∑

i=1

(Yi − Y )2

]
= 1

n
(n − 1)σ 2 =

(
n − 1

n

)
σ 2

and that S′2 is biased because E(S′2) 7= σ 2. However,

E(S2) = 1

n − 1
E

[
n∑

i=1

(Yi − Y )2

]
= 1

n − 1
(n − 1)σ 2 = σ 2,

so we see that S2 is an unbiased estimator for σ 2.

Two final comments can be made concerning the point estimators of Table 8.1.
First, the expected values and standard errors for Y and Y 1 − Y 2 given in the table
are valid regardless of the distribution of the population(s) from which the sample(s)
is (are) taken. Second, all four estimators possess probability distributions that are
approximately normal for large samples. The central limit theorem justifies this state-
ment for Y and p̂, and similar theorems for functions of sample means justify the
assertion for (Y 1 − Y 2) and ( p̂1 − p̂2). How large is “large”? For most populations,
the probability distribution of Y is mound-shaped even for relatively small samples
(as low as n = 5), and will tend rapidly to normality as the sample size approaches
n = 30 or larger. However, you sometimes will need to select larger samples from
binomial populations because the required sample size depends on p. The binomial
probability distribution is perfectly symmetric about its mean when p = 1/2 and
becomes more and more asymmetric as p tends to 0 or 1. As a rough rule, you can
assume that the distribution of p̂ will be mound-shaped and approaching normality for
sample sizes such that p±3

√
pq/n lies in the interval (0, 1), or, as you demonstrated

in Exercise 7.70, if n > 9 (larger of p and q)/(smaller of p and q).
We know that Y , p̂, (Y 1−Y 2), and ( p̂1− p̂2) are unbiased with near-normal (at least

mound-shaped) sampling distributions for moderate-sized samples; now let us use
this information to answer some practical questions. If we use an estimator once and
acquire a single estimate, how good will this estimate be? How much faith can we
place in the validity of our inference? The answers to these questions are provided in
the next section.

8.4 Evaluating the Goodness
of a Point Estimator
One way to measure the goodness of any point estimation procedure is in terms of
the distances between the estimates that it generates and the target parameter. This
quantity, which varies randomly in repeated sampling, is called the error of estimation.
Naturally we would like the error of estimation to be as small as possible.
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400 Chapter 8 Estimation

DEFINITION 8.5 The error of estimation ε is the distance between an estimator and its target
parameter. That is, ε = |θ̂ − θ |.

Because θ̂ is a random variable, the error of estimation is also a random quantity,
and we cannot say how large or small it will be for a particular estimate. However, we
can make probability statements about it. For example, suppose that θ̂ is an unbiased
estimator of θ and has a sampling distribution as shown in Figure 8.4. If we select
two points, (θ − b) and (θ + b), located near the tails of the probability density, the
probability that the error of estimation ε is less than b is represented by the shaded
area in Figure 8.4. That is,

P(|θ̂ − θ | < b) = P[−b < (θ̂ − θ) < b] = P(θ − b < θ̂ < θ + b).

We can think of b as a probabilistic bound on the error of estimation. Although
we are not certain that a given error is less than b, Figure 8.4 indicates that P(ε < b)

is high. If b can be regarded from a practical point of view as small, then P(ε < b)

provides a measure of the goodness of a single estimate. This probability identifies
the fraction of times, in repeated sampling, that the estimator θ̂ falls within b units of
θ , the target parameter.

Suppose that we want to find the value of b so that P(ε < b) = .90. This is easy
if we know the probability density function of θ̂ . Then we seek a value b such that∫ θ+b

θ−b
f (θ̂) d θ̂ = .90.

But whether we know the probability distribution of θ̂ or not, if θ̂ is unbiased we can
find an approximate bound on ε by expressing b as a multiple of the standard error
of θ̂ (recall that the standard error of an estimator is simply a convenient alternative
name for the standard deviation of the estimator). For example, for k ≥ 1, if we let
b = kσθ̂ , we know from Tchebysheff’s theorem that ε will be less than kσθ̂ with
probability at least 1−1/k2. A convenient and often-used value of k is k = 2. Hence,
we know that ε will be less than b = 2σθ̂ with probability at least .75.

You will find that, with a probability in the vicinity of .95, many random variables
observed in nature lie within 2 standard deviations of their mean. The probability

%̂

b b

( – b)% ( + b)%%

%̂f ( )

P( < b ))

F I G U R E 8.4
Sampling distribution
of a point estimator θ̂
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8.4 Evaluating the Goodness of a Point Estimator 401

Table 8.2 Probability that (μ−2σ) < Y < (μ+2σ)

Distribution Probability

Normal .9544
Uniform 1.0000
Exponential .9502

that Y lies in the interval (μ ± 2σ) is shown in Table 8.2 for the normal, uniform,
and exponential probability distributions. The point is that b = 2σθ̂ is a good ap-
proximate bound on the error of estimation in most practical situations. According to
Tchebysheff’s theorem, the probability that the error of estimation will be less than
this bound is at least .75. As we have previously observed, the bounds for proba-
bilities provided by Tchebysheff’s theorem are usually very conservative; the actual
probabilities usually exceed the Tchebysheff bounds by a considerable amount.

EXAMPLE 8.2 A sample of n = 1000 voters, randomly selected from a city, showed y = 560 in
favor of candidate Jones. Estimate p, the fraction of voters in the population favoring
Jones, and place a 2-standard-error bound on the error of estimation.

Solution We will use the estimator p̂ = Y/n to estimate p. Hence, the estimate of p, the
fraction of voters favoring candidate Jones, is

p̂ = y

n
= 560

1000
= .56.

How much faith can we place in this value? The probability distribution of p̂ is
very accurately approximated by a normal probability distribution for large samples.
Since n = 1000, when b = 2σ p̂, the probability that ε will be less than b is approx-
imately .95.

From Table 8.1, the standard error of the estimator for p is given by σ p̂ = √
pq/n.

Therefore,

b = 2σ p̂ = 2

√
pq

n
.

Unfortunately, to calculate b, we need to know p, and estimating p was the objective
of our sampling. This apparent stalemate is not a handicap, however, because σ p̂ varies
little for small changes in p. Hence, substitution of the estimate p̂ for p produces
little error in calculating the exact value of b = 2σ p̂. Then, for our example, we have

b = 2σ p̂ = 2

√
pq

n
≈ 2

√
(.56)(.44)

1000
= .03.

What is the significance of our calculations? The probability that the error of
estimation is less than .03 is approximately .95. Consequently, we can be reasonably
confident that our estimate, .56, is within .03 of the true value of p, the proportion of
voters in the population who favor Jones.
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402 Chapter 8 Estimation

EXAMPLE 8.3 A comparison of the durability of two types of automobile tires was obtained by road
testing samples of n1 = n2 = 100 tires of each type. The number of miles until
wear-out was recorded, where wear-out was defined as the number of miles until the
amount of remaining tread reached a prespecified small value. The measurements
for the two types of tires were obtained independently, and the following means and
variances were computed:

y1 = 26,400 miles, y2 = 25,100 miles,

s2
1 = 1,440,000, s2

2 = 1,960,000.

Estimate the difference in mean miles to wear-out and place a 2-standard-error bound
on the error of estimation.

Solution The point estimate of (μ1 − μ2) is

(y1 − y2) = 26,400 − 25,100 = 1300 miles,

and the standard error of the estimator (see Table 8.1) is

σ(Y 1−Y 2)
=

√
σ 2

1

n1
+ σ 2

2

n2
.

We must know σ 2
1 and σ 2

2 , or have good approximate values for them, to calculate
σ(Y 1−Y 2)

. Fairly accurate values of σ 2
1 and σ 2

2 often can be calculated from similar
experimental data collected at some prior time, or they can be obtained from the
current sample data by using the unbiased estimators

σ̂ 2
i = S2

i = 1

ni − 1

ni∑
j=1

(Yi j − Y i )
2, i = 1, 2.

These estimates will be adequate if the sample sizes are reasonably large—say,
ni ≥ 30—for i = 1, 2. The calculated values of S2

1 and S2
2 , based on the two wear

tests, are s2
1 = 1,440,000 and s2

2 = 1,960,000. Substituting these values for σ 2
1 and

σ 2
2 in the formula for σ(Y 1−Y 2)

, we have

σ(Y 1−Y 2)
=

√
σ 2

1

n1
+ σ 2

2

n2
≈

√
s2

1

n1
+ s2

2

n2
=

√
1,440,000

100
+ 1,960,000

100

=
√

34,000 = 184.4 miles.

Consequently, we estimate the difference in mean wear to be 1300 miles, and we
expect the error of estimation to be less than 2σ(Y 1−Y 2)

, or 368.8 miles, with a proba-
bility of approximately .95.

Exercises
8.21 An investigator is interested in the possibility of merging the capabilities of television and the

Internet. A random sample of n = 50 Internet users yielded that the mean amount of time spent
watching television per week was 11.5 hours and that the standard deviation was 3.5 hours.
Estimate the population mean time that Internet users spend watching television and place a
bound on the error of estimation.
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8.22 An increase in the rate of consumer savings frequently is tied to a lack of confidence in the
economy and is said to be an indicator of a recessional tendency in the economy. A random
sampling of n = 200 savings accounts in a local community showed the mean increase in
savings account values to be 7.2% over the past 12 months, with standard deviation 5.6%.
Estimate the mean percentage increase in savings account values over the past 12 months for
depositors in the community. Place a bound on your error of estimation.

8.23 The Environmental Protection Agency and the University of Florida recently cooperated in a
large study of the possible effects of trace elements in drinking water on kidney-stone disease.
The accompanying table presents data on age, amount of calcium in home drinking water
(measured in parts per million), and smoking activity. These data were obtained from individ-
uals with recurrent kidney-stone problems, all of whom lived in the Carolinas and the Rocky
Mountain states.

Carolinas Rockies

Sample size 467 191
Mean age 45.1 46.4
Standard deviation of age 10.2 9.8
Mean calcium component (ppm) 11.3 40.1
Standard deviation of calcium 16.6 28.4
Proportion now smoking .78 .61

a Estimate the average calcium concentration in drinking water for kidney-stone patients in
the Carolinas. Place a bound on the error of estimation.

b Estimate the difference in mean ages for kidney-stone patients in the Carolinas and in the
Rockies. Place a bound on the error of estimation.

c Estimate and place a 2-standard-deviation bound on the difference in proportions of
kidney-stone patients from the Carolinas and Rockies who were smokers at the time of
the study.

8.25 A study was conducted to compare the mean number of police emergency calls per 8-hour shift
in two districts of a large city. Samples of 100 8-hour shifts were randomly selected from the
police records for each of the two regions, and the number of emergency calls was recorded
for each shift. The sample statistics are given in the following table.

Region

1 2

Sample size 100 100
Sample mean 2.4 3.1
Sample variance 1.44 2.64
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a Estimate the difference in the mean number of police emergency calls per 8-hour shift
between the two districts in the city.

b Find a bound for the error of estimation.

8.26 The Mars twin rovers, Spirit and Opportunity, which roamed the surface of Mars in the winter
of 2004, found evidence that there was once water on Mars, raising the possibility that there
was once life on the plant. Do you think that the United States should pursue a program to send
humans to Mars? An opinion poll3 indicated that 49% of the 1093 adults surveyed think that
we should pursue such a program.

a Estimate the proportion of all Americans who think that the United States should pursue a
program to send humans to Mars. Find a bound on the error of estimation.

b The poll actually asked several questions. If we wanted to report an error of estimation that
would be valid for all of the questions on the poll, what value should we use? [Hint: What
is the maximum possible value for p × q?]

8.27 A random sample of 985 “likely voters”—those who are judged to be likely to vote in an
upcoming election—were polled during a phone-athon conducted by the Republican Party. Of
those contacted, 592 indicated that they intended to vote for the Republican running in the
election.

a According to this study, the estimate for p, the proportion of all “likely voters” who will
vote for the Republican candidate, is p = .601. Find a bound for the error of estimation.

b If the “likely voters” are representative of those who will actually vote, do you think that
the Republican candidate will be elected? Why? How confident are you in your decision?

c Can you think of reasons that those polled might not be representative of those who actually
vote in the election?

8.28 In a study of the relationship between birth order and college success, an investigator found
that 126 in a sample of 180 college graduates were firstborn or only children; in a sample of
100 nongraduates of comparable age and socioeconomic background, the number of firstborn
or only children was 54. Estimate the difference in the proportions of firstborn or only children
for the two populations from which these samples were drawn. Give a bound for the error of
estimation.

8.29 Sometimes surveys provide interesting information about issues that did not seem to be the
focus of survey initially. Results from two CNN/USA Today/Gallup polls, one conducted in
March 2003 and one in November 2003, were recently presented online.4 Both polls involved
samples of 1001 adults, aged 18 years and older. In the March sample, 45% of those sampled
claimed to be fans of professional baseball whereas 51% of those polled in November claimed
to be fans.

a Give a point estimate for the difference in the proportions of Americans who claim to be
baseball fans in March (at the beginning of the season) and November (after the World
Series). Provide a bound for the error of estimation.

b Is there sufficient evidence to conclude that fan support is greater at the end of the season?
Explain.

3. Source: “Space Exploration,” Associated Press Poll, http:www.pollingreport.com/science.htm#Space,
5 April 2004.

4. Source: Mark Gillespie,“Baseball Fans Overwhelmingly Want Mandatory Steroid Testing,” http:www.
gallup.com/content/print/.aspx?ci=11245, 14 February 2004.
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8.30 Refer to Exercise 8.29. Give the point estimate and a bound on the error of estimation for the
proportion of adults who would have claimed to be baseball fans in March 2003. Is it likely
that the value of your estimate is off by as much as 10%? Why?

8.31 In a study to compare the perceived effects of two pain relievers, 200 randomly selected
adults were given the first pain reliever, and 93% indicated appreciable pain relief. Of the 450
individuals given the other pain reliever, 96% indicated experiencing appreciable relief.

a Give an estimate for the difference in the proportions of all adults who would indicate
perceived pain relief after taking the two pain relievers. Provide a bound on the error of
estimation.

b Based on your answer to part (a), is there evidence that proportions experiencing relief
differ for those who take the two pain relievers? Why?

8.32 An auditor randomly samples 20 accounts receivable from among the 500 such accounts of a
client’s firm. The auditor lists the amount of each account and checks to see if the underlying
documents comply with stated procedures. The data are recorded in the accompanying table
(amounts are in dollars, Y = yes, and N = no).

Account Amount Compliance Account Amount Compliance

1 278 Y 11 188 N
2 192 Y 12 212 N
3 310 Y 13 92 Y
4 94 N 14 56 Y
5 86 Y 15 142 Y
6 335 Y 16 37 Y
7 310 N 17 186 N
8 290 Y 18 221 Y
9 221 Y 19 219 N

10 168 Y 20 305 Y

Estimate the total accounts receivable for the 500 accounts of the firm and place a bound on
the error of estimation. Do you think that the average account receivable for the firm exceeds
$250? Why?

8.33 Refer to Exercise 8.32. From the data given on the compliance checks, estimate the proportion
of the firm’s accounts that fail to comply with stated procedures. Place a bound on the error of
estimation. Do you think that the proportion of accounts that comply with stated procedures
exceeds 80%? Why?

8.34 We can place a 2-standard-deviation bound on the error of estimation with any estimator for
which we can find a reasonable estimate of the standard error. Suppose that Y1, Y2, . . . , Yn

represent a random sample from a Poisson distribution with mean λ. We know that V (Yi ) = λ,
and hence E(Y ) = λ and V (Y ) = λ/n. How would you employ Y1, Y2, . . . , Yn to estimate λ?
How would you estimate the standard error of your estimator?

8.35 Refer to Exercise 8.34. In polycrystalline aluminum, the number of grain nucleation sites
per unit volume is modeled as having a Poisson distribution with mean λ. Fifty unit-volume
test specimens subjected to annealing under regime A produced an average of 20 sites per
unit volume. Fifty independently selected unit-volume test specimens subjected to annealing
regime B produced an average of 23 sites per unit volume.
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a Estimate the mean number λA of nucleation sites for regime A and place a 2-standard-error
bound on the error of estimation.

b Estimate the difference in the mean numbers of nucleation sites λA − λB for regimes A
and B. Place a 2-standard-error bound on the error of estimation. Would you say that regime
B tends to produce a larger mean number of nucleation sites? Why?

8.36 If Y1, Y2, . . . , Yn denote a random sample from an exponential distribution with mean θ , then
E(Yi ) = θ and V (Yi ) = θ 2. Thus, E(Y ) = θ and V (Y ) = θ 2/n, or σY = θ/

√
n. Suggest an

unbiased estimator for θ and provide an estimate for the standard error of your estimator.

8.37 Refer to Exercise 8.36. An engineer observes n = 10 independent length-of-life measurements
on a type of electronic component. The average of these 10 measurements is 1020 hours. If
these lengths of life come from an exponential distribution with mean θ , estimate θ and place
a 2-standard-error bound on the error of estimation.

8.38 The number of persons coming through a blood bank until the first person with type A blood
is found is a random variable Y with a geometric distribution. If p denotes the probability
that any one randomly selected person will possess type A blood, then E(Y ) = 1/p and
V (Y ) = (1 − p)/p2.

a Find a function of Y that is an unbiased estimator of V (Y ).

b Suggest how to form a 2-standard-error bound on the error of estimation when Y is used
to estimate 1/p.

8.5 Confidence Intervals
An interval estimator is a rule specifying the method for using the sample measure-
ments to calculate two numbers that form the endpoints of the interval. Ideally, the
resulting interval will have two properties: First, it will contain the target parameter θ ;
second, it will be relatively narrow. One or both of the endpoints of the interval, being
functions of the sample measurements, will vary randomly from sample to sample.
Thus, the length and location of the interval are random quantities, and we cannot
be certain that the (fixed) target parameter θ will fall between the endpoints of any
single interval calculated from a single sample. This being the case, our objective is
to find an interval estimator capable of generating narrow intervals that have a high
probability of enclosing θ .

Interval estimators are commonly called confidence intervals. The upper and lower
endpoints of a confidence interval are called the upper and lower confidence lim-
its, respectively. The probability that a (random) confidence interval will enclose θ

(a fixed quantity) is called the confidence coefficient. From a practical point of view,
the confidence coefficient identifies the fraction of the time, in repeated sampling,
that the intervals constructed will contain the target parameter θ . If we know that
the confidence coefficient associated with our estimator is high, we can be highly
confident that any confidence interval, constructed by using the results from a single
sample, will enclose θ .

Suppose that θ̂ L and θ̂U are the (random) lower and upper confidence limits,
respectively, for a parameter θ . Then, if

P
(
θ̂L ≤ θ ≤ θ̂U

) = 1 − α,
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the probability (1 − α) is the confidence coefficient. The resulting random interval
defined by

[
θ̂ L , θ̂U

]
is called a two-sided confidence interval.

It is also possible to form a one-sided confidence interval such that

P
(
θ̂L ≤ θ

) = 1 − α.

Although only θ̂L is random in this case, the confidence interval is [θ̂ L , ∞). Similarly,
we could have an upper one-sided confidence interval such that

P(θ ≤ θ̂U ) = 1 − α.

The implied confidence interval here is (−∞, θ̂U ].
One very useful method for finding confidence intervals is called the pivotal

method. This method depends on finding a pivotal quantity that possesses two char-
acteristics:

1. It is a function of the sample measurements and the unknown parameter θ ,
where θ is the only unknown quantity.

2. Its probability distribution does not depend on the parameter θ .

If the probability distribution of the pivotal quantity is known, the following logic can
be used to form the desired interval estimate. If Y is any random variable, c > 0 is a
constant, and P(a ≤ Y ≤ b) = .7; then certainly P(ca ≤ cY ≤ cb) = .7. Similarly,
for any constant d, P(a + d ≤ Y + d ≤ b + d) = .7. That is, the probability of the
event (a ≤ Y ≤ b) is unaffected by a change of scale or a translation of Y . Thus,
if we know the probability distribution of a pivotal quantity, we may be able to use
operations like these to form the desired interval estimator. We illustrate this method
in the following examples.

EXAMPLE 8.4 Suppose that we are to obtain a single observation Y from an exponential distribution
with mean θ . Use Y to form a confidence interval for θ with confidence coefficient .90.

Solution The probability density function for Y is given by

f (y) =
⎧⎨⎩

(
1

θ

)
e−y/θ , y ≥ 0,

0, elsewhere.

By the transformation method of Chapter 6 we can see that U = Y/θ has the expo-
nential density function given by

fU (u) =
{

e−u, u > 0,

0, elsewhere.

The density function for U is graphed in Figure 8.5. U = Y/θ is a function of Y
(the sample measurement) and θ , and the distribution of U does not depend on θ . Thus,
we can use U = Y/θ as a pivotal quantity. Because we want an interval estimator
with confidence coefficient equal to .90, we find two numbers a and b such that

P(a ≤ U ≤ b) = .90.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



408 Chapter 8 Estimation

f (u)

.90

.05

.05

ua b

F I G U R E 8.5
Density function for

U, Example 8.4

One way to do this is to choose a and b to satisfy

P(U < a) =
∫ a

0
e−u du = .05 and P(U > b) =

∫ ∞

b
e−udu = .05.

These equations yield

1 − e−a = .05 and e−b = .05 or, equivalently, a = .051, b = 2.996.

It follows that

.90 = P(.051 ≤ U ≤ 2.996) = P

(
.051 ≤ Y

θ
≤ 2.996

)
.

Because we seek an interval estimator for θ , let us manipulate the inequalities
describing the event to isolate θ in the middle. Y has an exponential distribution, so
P(Y > 0) = 1, and we maintain the direction of the inequalities if we divide through
by Y . That is,

.90 = P

(
.051 ≤ Y

θ
≤ 2.996

)
= P

(
.051

Y
≤ 1

θ
≤ 2.996

Y

)
.

Taking reciprocals (and hence reversing the direction of the inequalities), we obtain

.90 = P

(
Y

.051
≥ θ ≥ Y

2.996

)
= P

(
Y

2.996
≤ θ ≤ Y

.051

)
.

Thus, we see that Y/2.996 and Y/.051 form the desired lower and upper confidence
limits, respectively. To obtain numerical values for these limits, we must observe an
actual value for Y and substitute that value into the given formulas for the confidence
limits. We know that limits of the form (Y/2.996, Y/.051) will include the true
(unknown) values of θ for 90% of the values of Y we would obtain by repeatedly
sampling from this exponential distribution.

EXAMPLE 8.5 Suppose that we take a sample of size n = 1 from a uniform distribution defined on
the interval [0, θ ], where θ is unknown. Find a 95% lower confidence bound for θ .

Solution Because Y is uniform on [0, θ ], the methods of Chapter 6 can be used to show that
U = Y/θ is uniformly distributed over [0, 1]. That is,

fU (u) =
{

1, 0 ≤ u ≤ 1,

0, elsewhere.
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f (u)

a u1

.95

.05

1

F I G U R E 8.6
Density function for

U, Example 8.5

Figure 8.6 contains a graph of the density function for U . Again, we see that U satisfies
the requirements of a pivotal quantity. Because we seek a 95% lower confidence limit
for θ , let us determine the value for a so that P(U ≤ a) = .95. That is,∫ a

0
(1) du = .95,

or a = .95. Thus,

P(U ≤ .95) = P

(
Y

θ
≤ .95

)
= P(Y ≤ .95θ) = P

(
Y

.95
≤ θ

)
= .95.

We see that Y/.95 is a lower confidence limit for θ , with confidence coefficient
.95. Because any observed Y must be less than θ , it is intuitively reasonable to have
the lower confidence limit for θ slightly larger than the observed value of Y .

The two preceding examples illustrate the use of the pivotal method for finding
confidence limits for unknown parameters. In each instance, the interval estimates
were developed on the basis of a single observation from the distribution. These ex-
amples were introduced primarily to illustrate the pivotal method. In the remaining
sections of this chapter, we use this method in conjunction with the sampling distri-
butions presented in Chapter 7 to develop some interval estimates of greater practical
importance.

Exercises
8.39 Suppose that the random variable Y has a gamma distribution with parameters α = 2 and an

unknown β. In Exercise 6.46, you used the method of moment-generating functions to prove a
general result implying that 2Y/β has a χ2 distribution with 4 degrees of freedom (df). Using
2Y/β as a pivotal quantity, derive a 90% confidence interval for β.

8.40 Suppose that the random variable Y is an observation from a normal distribution with unknown
mean μ and variance 1. Find a

a 95% confidence interval for μ.

b 95% upper confidence limit for μ.

c 95% lower confidence limit for μ.

8.41 Suppose that Y is normally distributed with mean 0 and unknown variance σ 2. Then Y 2/σ 2

has a χ2 distribution with 1 df. Use the pivotal quantity Y 2/σ 2 to find a
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a 95% confidence interval for σ 2.

b 95% upper confidence limit for σ 2.

c 95% lower confidence limit for σ 2.

8.42 Use the answers from Exercise 8.41 to find a

a 95% confidence interval for σ .

b 95% upper confidence limit for σ .

c 95% lower confidence limit for σ .

8.43 Let Y1, Y2, . . . , Yn denote a random sample of size n from a population with a uniform distri-
bution on the interval (0, θ ). Let Y(n) = max(Y1, Y2, . . . , Yn) and U = (1/θ)Y(n).

a Show that U has distribution function

FU (u) =
⎧⎨⎩

0, u < 0,

un, 0 ≤ u ≤ 1,

1, u > 1.

b Because the distribution of U does not depend on θ , U is a pivotal quantity. Find a 95%
lower confidence bound for θ .

8.44 Let Y have probability density function

fY (y) =
{ 2(θ − y)

θ 2
, 0 < y < θ,

0, elsewhere.

a Show that Y has distribution function

FY (y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, y ≤ 0,

2y

θ
− y2

θ 2
, 0 < y < θ,

1, y ≥ θ.

b Show that Y/θ is a pivotal quantity.

c Use the pivotal quantity from part (b) to find a 90% lower confidence limit for θ .

8.45 Refer to Exercise 8.44.

a Use the pivotal quantity from Exercise 8.44(b) to find a 90% upper confidence limit for θ .

b If θ̂ L is the lower confidence bound for θ obtained in Exercise 8.44(c) and θ̂U is the upper
bound found in part (a), what is the confidence coefficient of the interval (θ̂ L , θ̂U )?

8.46 Refer to Example 8.4 and suppose that Y is a single observation from an exponential distribution
with mean θ .

a Use the method of moment-generating functions to show that 2Y/θ is a pivotal quantity
and has a χ 2 distribution with 2 df.

b Use the pivotal quantity 2Y/θ to derive a 90% confidence interval for θ .

c Compare the interval you obtained in part (b) with the interval obtained in Example 8.4.

8.47 Refer to Exercise 8.46. Assume that Y1, Y2, . . . , Yn is a sample of size n from an exponential
distribution with mean θ .

a Use the method of moment-generating functions to show that 2
∑n

i=1 Yi/θ is a pivotal
quantity and has a χ 2 distribution with 2n df.

b Use the pivotal quantity 2
∑n

i=1 Yi/θ to derive a 95% confidence interval for θ .
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c If a sample of size n = 7 yields y = 4.77, use the result from part (b) to give a 95%
confidence interval for θ .

8.48 Refer to Exercises 8.39 and 8.47. Assume that Y1, Y2, . . . , Yn is a sample of size n from a
gamma-distributed population with α = 2 and unknown β.

a Use the method of moment-generating functions to show that 2
∑n

1 Yi/β is a pivotal quantity
and has a χ 2 distribution with 4n df.

b Use the pivotal quantity 2
∑n

1 Yi/β to derive a 95% confidence interval for β.

c If a sample of size n = 5 yields y = 5.39, use the result from part (b) to give a 95%
confidence interval for β.

8.49 Refer to Exercise 8.48. Suppose that Y1, Y2, . . . , Yn is a sample of size n from a gamma-
distributed population with parameters α and β.

a If α = m, where m is a known integer and β is unknown, find a pivotal quantity that has a
χ 2 distribution with m ×n df. Use this pivotal quantity to derive a 100(1−α)% confidence
interval for β.

b If α = c, where c is a known constant but not an integer and β is unknown, find a pivotal
quantity that has a gamma distribution with parameters α= = cn and β= = 1. Give a formula
for a 100(1 − α)% confidence interval for β.

c Applet Exercise Refer to part (b). If α = c = 2.57 and a sample of size n = 10 yields y =
11.36, give a 95% confidence interval forβ. [Use the applet Gamma Probabilities and Quan-
tiles to obtain appropriate quantiles for the pivotal quantity that you obtained in part (b).]

8.6 Large-Sample Confidence Intervals
In Section 8.3, we presented some unbiased point estimators for the parameters μ, p,
μ1 −μ2, and p1 − p2. As we indicated in that section, for large samples all these point
estimators have approximately normal sampling distributions with standard errors as
given in Table 8.1. That is, under the conditions of Section 8.3, if the target parameter
θ is μ, p, μ1 − μ2, or p1 − p2, then for large samples,

Z = θ̂ − θ

σθ̂

possesses approximately a standard normal distribution. Consequently, Z =
(θ̂ − θ)/σθ̂ forms (at least approximately) a pivotal quantity, and the pivotal method
can be employed to develop confidence intervals for the target parameter θ .

EXAMPLE 8.6 Let θ̂ be a statistic that is normally distributed with mean θ and standard error σθ̂ . Find
a confidence interval for θ that possesses a confidence coefficient equal to (1 − α).

Solution The quantity

Z = θ̂ − θ

σθ̂

has a standard normal distribution. Now select two values in the tails of this distribu-
tion, zα/2 and −zα/2, such that (see Figure 8.7)

P(−zα/2 ≤ Z ≤ zα/2) = 1 − α.
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and −zα/2

Substituting for Z in the probability statement, we have

P

(
−zα/2 ≤ θ̂ − θ

σθ̂

≤ zα/2

)
= 1 − α.

Multiplying by σθ̂ , we obtain

P(−zα/2σθ̂ ≤ θ̂ − θ ≤ zα/2σθ̂ ) = 1 − α

and subtracting θ̂ from each term of the inequality, we get

P(−θ̂ − zα/2σθ̂ ≤ −θ ≤ −θ̂ + zα/2σθ̂ ) = 1 − α.

Finally, multiplying each term by −1 and, consequently, changing the direction of
the inequalities, we have

P(θ̂ − zα/2σθ̂ ≤ θ ≤ θ̂ + zα/2σθ̂ ) = 1 − α.

Thus, the endpoints for a 100(1 − α)% confidence interval for θ are given by

θ̂ L = θ̂ − zα/2σθ̂ and θ̂U = θ̂ + zα/2σθ̂ .

By analogous arguments, we can determine that 100(1−α)% one-sided confidence
limits, often called upper and lower bounds, respectively, are given by

100(1 − α)% lower bound for θ = θ̂ − zασθ̂,

100(1 − α)% upper bound for θ = θ̂ + zασθ̂ .

Suppose that we compute both a 100(1−α)% lower bound and a 100(1−α)% upper
bound for θ . We then decide to use both of these bounds to form a confidence interval
for θ . What will be the confidence coefficient of this interval? A quick look at the
preceding confirms that combining lower and upper bounds, each with confidence
coefficient 1 − α, yields a two-sided interval with confidence coefficient 1 − 2α.

Under the conditions described in Section 8.3, the results given earlier in this
section can be used to find large-sample confidence intervals (one-sided or two-sided)
for μ, p, (μ1 − μ2), and (p1 − p2). The following examples illustrate applications
of the general method developed in Example 8.6.

EXAMPLE 8.7 The shopping times of n = 64 randomly selected customers at a local supermarket
were recorded. The average and variance of the 64 shopping times were 33 minutes and
256 minutes2, respectively. Estimate μ, the true average shopping time per customer,
with a confidence coefficient of 1 − α = .90.
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8.6 Large-Sample Confidence Intervals 413

Solution In this case, we are interested in the parameter θ = μ. Thus, θ̂ = y = 33 and s2 = 256
for a sample of n = 64 shopping times. The population variance σ 2 is unknown, so
(as in Section 8.3), we use s2 as its estimated value. The confidence interval

θ̂ ± zα/2σθ̂

has the form

y ± zα/2

(
σ√
n

)
≈ y ± zα/2

(
s√
n

)
.

From Table 4, Appendix 3, zα/2 = z.05 = 1.645; hence, the confidence limits are
given by

y − zα/2

(
s√
n

)
= 33 − 1.645

(
16

8

)
= 29.71,

y + zα/2

(
s√
n

)
= 33 + 1.645

(
16

8

)
= 36.29.

Thus, our confidence interval for μ is (29.71, 36.29). In repeated sampling, approx-
imately 90% of all intervals of the form Y ± 1.645(S/

√
n) include μ, the true mean

shopping time per customer. Although we do not know whether the particular interval
(29.71, 36.29) contains μ, the procedure that generated it yields intervals that do
capture the true mean in approximately 95% of all instances where the procedure is
used.

EXAMPLE 8.8 Two brands of refrigerators, denoted A and B, are each guaranteed for 1 year. In a
random sample of 50 refrigerators of brand A, 12 were observed to fail before the
guarantee period ended. An independent random sample of 60 brand B refrigerators
also revealed 12 failures during the guarantee period. Estimate the true difference
(p1− p2) between proportions of failures during the guarantee period, with confidence
coefficient approximately .98.

Solution The confidence interval

θ̂ ± zα/2σθ̂

now has the form

( p̂1 − p̂2) ± zα/2

√
p1q1

n1
+ p2q2

n2
.

Because p1, q1, p2, and q2 are unknown, the exact value of σθ̂ cannot be evaluated. But
as indicated in Section 8.3, we can get a good approximation for σθ̂ by substituting
p̂1, q̂1 = 1 − p̂1, p̂2, and q̂2 = 1 − p̂2 for p1, q1, p2, and q2, respectively.

For this example, p̂1 = .24, q̂1 = .76, p̂2 = .20, q̂2 = .80, and z.01 = 2.33. The
desired 98% confidence interval is

(.24 − .20) ± 2.33

√
(.24)(.76)

50
+ (.20)(.80)

60
.04 ± .1851 or [−.1451, .2251].

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



414 Chapter 8 Estimation

Notice that this confidence interval contains zero. Thus, a zero value for the difference
in proportions (p1 − p2) is “believable” (at approximately the 98% confidence level)
on the basis of the observed data. However, the interval also includes the value .1.
Thus, .1 represents another value of (p1 − p2) that is “believable” on the basis of the
data that we have analyzed.

We close this section with an empirical investigation of the performance of the
large-sample interval estimation procedure for a single population proportion p, based
on Y , the number of successes observed during n trials in a binomial experiment. In
this case, θ = p; θ̂ = p̂ = Y/n and σθ̂ = σ p̂ = √

p(1 − p)/n ≈ √
p̂(1 − p̂)/n.

(As in Section 8.3,
√

p̂(1 − p̂)/n provides a good approximation for σ p̂.) The appro-
priate confidence limits then are

θ̂L = p̂ − zα/2

[√
p̂(1 − p̂)

n

]
and θ̂U = p̂ + zα/2

[√
p̂(1 − p̂)

n

]
.

Figure 8.8 shows the results of 24 independent binomial experiments, each based on
35 trials when the true value of p = 0.5. For each of the experiments, we calculated the
number of successes y, the value of p̂ = y/35, and the corresponding 95% confidence
interval, using the formula p̂ ± 1.96

√
p̂(1 − p̂)/35. (Notice that z.025 = 1.96.) In

the first binomial experiment, we observed y = 18, p̂ = 18/35 = 0.5143, and
σ p̂ ≈ √

p̂(1 − p̂)/n = √
(.5143)(.4857)/35 = 0.0845. So, the interval obtained in

the first experiment is .5143 ± 1.96(0.0845) or (0.3487, 0.6799). The estimate for
p from the first experiment is shown by the lowest large dot in Figure 8.8, and the
resulting confidence interval is given by the horizontal line through that dot. The
vertical line indicates the true value of p, 0.5 in this case. Notice that the interval

0.00 0.25 0.50

0.50

0.75 1.00

Estimated Probability

True ProbabilityF I G U R E 8.8
Twenty-four realized

95% confidence
intervals for a

population
proportion
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obtained in the first trial (of size 35) actually contains the true value of the population
proportion p.

The remaining 23 confidence intervals contained in this small simulation are given
by the rest of the horizontal lines in Figure 8.8. Notice that each individual interval
either contains the the true value of p or it does not. However, the true value of p is
contained in 23 out of the 24 (95.8%) of intervals observed.

If the same procedure was used many times, each individual interval would either
contain or fail to contain the true value of p, but the percentage of all intervals that
capture p would be very close to 95%. You are “95% confident” that the interval
contains the parameter because the interval was obtained by using a procedure that
generates intervals that do contain the parameter approximately 95% of the times the
procedure is used.

The applet ConfidenceIntervalP (accessible at academic.cengage.com/statistics/
wackerly) was used to produce Figure 8.8. What happens if different values of n or
different confidence coefficients are used? Do we obtain similar results if the true
value of p is something other than 0.5? Several of the following exercises will allow
you to use the applet to answer questions like these.

In this section, we have used the pivotal method to derive large-sample confidence
intervals for the parameters μ, p, μ1 − μ2, and p1 − p2 under the conditions of
Section 8.3. The key formula is

θ̂ ± zα/2σθ̂ ,

where the values of θ̂ and σθ̂ are as given in Table 8.1. When θ = μ is the target
parameter, then θ̂ = Y and σ 2

θ̂
= σ 2/n, where σ 2 is the population variance. If the

true value of σ 2 is known, this value should be used in calculating the confidence
interval. If σ 2 is not known and n is large, there is no serious loss of accuracy if s2

is substituted for σ 2 in the formula for the confidence interval. Similarly, if σ 2
1 and

σ 2
2 are unknown and both n1 and n2 are large, s2

1 and s2
2 can be substituted for these

values in the formula for a large-sample confidence interval for θ = μ1 − μ2.
When θ = p is the target parameter, then θ̂ = p̂ and σ p̂ = √

pq/n. Because p is
the unknown target parameter, σ p̂ cannot be evaluated. If n is large and we substitute
p̂ for p (and q̂ = 1− p̂ for q) in the formula for σ p̂, however, the resulting confidence
interval will have approximately the stated confidence coefficient. For large n1 and n2,
similar statements hold when p̂1 and p̂2 are used to estimate p1 and p2, respectively,
in the formula for σ 2

p̂1− p̂2
. The theoretical justification for these substitutions will be

provided in Section 9.3.

Exercises
8.50 Refer to Example 8.8. In this example, p1 and p2 were used to denote the proportions of

refrigerators of brands A and B, respectively, that failed during the guarantee periods.

a At the approximate 98% confidence level, what is the largest “believable value” for the
difference in the proportions of failures for refrigerators of brands A and B?

b At the approximate 98% confidence level, what is the smallest “believable value” for the
difference in the proportions of failures for refrigerators of brands A and B?
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416 Chapter 8 Estimation

c If p1 − p2 actually equals 0.2251, which brand has the larger proportion of failures during
the warranty period? How much larger?

d If p1 − p2 actually equals −0.1451, which brand has the larger proportion of failures during
the warranty period larger? How much larger?

e As observed in Example 8.8, zero is a believable value of the difference. Would you
conclude that there is evidence of a difference in the proportions of failures (within the
warranty period) for the two brands of refrigerators? Why?

8.51 Applet Exercise What happens if we attempt to use the applet ConfidenceIntervalP (accessible
at academic.cengage.com/statistics/wackerly) to reproduce the results presented in Figure 8.8?
Access the applet. Don’t change the value of p from .50 or the confidence coefficient from .95,
but use the “Sample Size” button to change the sample size to n = 35. Click the button “One
Sample” a single time. In the top left portion of the display, the sample values are depicted by
a set of 35 0s and 1s, and the value of the estimate for p and the resulting 95% confidence
interval are given below the sample values.

a What is the value of p̂ that you obtained? Is it the same as the first value obtained, 0.5143,
when Figure 8.8 was generated? Does this surprise you? Why?

b Use the value of the estimate that you obtained and the formula for a 95% confidence
interval to verify that the confidence interval given on the display is correctly calculated.

c Does the interval that you obtained contain the true value of p?

d What is the length of the confidence interval that you obtained? Is it exactly the same
as the length of first interval, (.3487, .6799), obtained when Figure 8.8 was generated?
Why?

e Click the button “One Sample” again. Is this interval different than the one previously
generated? Click the button “One Sample” three more times. How many distinctly dif-
ferent intervals appear among the first 5 intervals generated? How many of the intervals
contain .5?

f Click the button “One Sample” until you have obtained 24 intervals. What percentage of
the intervals contain the true value of p = .5? Is the percentage close to the value that you
expected?

8.52 Applet Exercise Refer to Exercise 8.51. Don’t change the value of p from .50 or the confidence
coefficient from .95, but use the button “Sample Size” to change the sample size to n = 50.
Click the button “One Sample” a single time.

a How long is the resulting confidence interval? How does the length of this interval compare
to the one that you obtained in Exercise 8.51(d)? Why are the lengths of the intervals
different?

b Click the button “25 Samples.” Is the percentage of intervals that contain the true value of
p close to what you expected?

c Click the button “100 Samples.” Is the percentage of intervals that contain the true value
of p close to what you expected?

d If you were to click the button “100 Samples” several times and calculate the percentage
of all of the intervals that contain the true value of p, what percentage of intervals do you
expect to capture p?

8.53 Applet Exercise Refer to Exercises 8.51 and 8.52. Change the value of p to .25 (put the cursor
on the vertical line and drag it to the left until 0.25 appears as the true probability). Change the
sample size to n = 75 and the confidence coefficient to .90.
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a Click the button “One Sample” a single time.

i What is the length of the resulting interval? Is the interval longer or shorter than that
obtained in Exercise 8.51(d)?

ii Give three reasons that the interval you obtained in part (i) is shorter than the interval
obtained in Exercise 8.51(d).

b Click the button “100 Samples” a few times. Each click will produce 100 intervals and
provide you with the number and proportion of those 100 intervals that contain the true
value of p. After each click, write down the number of intervals that captured p = .25.

i How many intervals did you generate? How many of the generated intervals captured
the true value of p?

ii What percentage of all the generated intervals captured p?

8.54 Applet Exercise Refer to Exercises 8.51–8.53. Change the value of p to .90. Change the
sample size to n = 10 and the confidence coefficient to 0.95. Click the button “100 Samples”
a few times. After each click, write down the number of intervals that captured p = .90.

a When the simulation produced ten successes in ten trials, what is the resulting realized 95%
confidence interval for p? What is the length of the interval? Why? How is this depicted
on the display?

b How many intervals did you generate? How many of the generated intervals captured the
true value of p?

c What percentage of all of the generated intervals captured p?

d Does the result of part (c) surprise you?

e Does the result in part (c) invalidate the large-sample confidence interval procedures pre-
sented in this section? Why?

8.55 Applet Exercise Refer to Exercises 8.51–8.54. Change the value of p to .90. Change the
sample size to n = 100 and the confidence coefficient to .95. Click the button “100 Samples”
a few times. After each click, write down the number of intervals that captured p = .90 and
answer the questions posed in Exercise 8.54, parts (b)–(e).

8.56 Is America’s romance with movies on the wane? In a Gallup Poll5 of n = 800 randomly chosen
adults, 45% indicated that movies were getting better whereas 43% indicated that movies were
getting worse.

a Find a 98% confidence interval for p, the overall proportion of adults who say that movies
are getting better.

b Does the interval include the value p = .50? Do you think that a majority of adults say
that movies are getting better?

8.57 Refer to Exercise 8.29. According to the result given there, 51% of the n = 1001 adults polled
in November 2003 claimed to be baseball fans. Construct a 99% confidence interval for the
proportion of adults who professed to be baseball fans in November 2003 (after the World
Series). Interpret this interval.

8.58 The administrators for a hospital wished to estimate the average number of days required for
inpatient treatment of patients between the ages of 25 and 34. A random sample of 500 hospital

5. Source: “Movie Mania Ebbing,” Gallup Poll of 800 adults, http://www.usatoday.com/snapshot/news/
2001-06-14-moviemania.htm., 16–18 March 2001.
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418 Chapter 8 Estimation

patients between these ages produced a mean and standard deviation equal to 5.4 and 3.1 days,
respectively. Construct a 95% confidence interval for the mean length of stay for the population
of patients from which the sample was drawn.

8.59 When it comes to advertising, “’tweens” are not ready for the hard-line messages that advertisers
often use to reach teenagers. The Geppeto Group study6 found that 78% of ’tweens understand
and enjoy ads that are silly in nature. Suppose that the study involved n = 1030 ’tweens.

a Construct a 90% confidence interval for the proportion of ’tweens who understand and
enjoy ads that are silly in nature.

b Do you think that “more than 75%” of all ’tweens enjoy ads that are silly in nature? Why?

8.60 What is the normal body temperature for healthy humans? A random sample of 130 healthy
human body temperatures provided by Allen Shoemaker7 yielded 98.25 degrees and standard
deviation 0.73 degrees.

a Give a 99% confidence interval for the average body temperature of healthy people.

b Does the confidence interval obtained in part (a) contain the value 98.6 degrees, the accepted
average temperature cited by physicians and others? What conclusions can you draw?

8.61 A small amount of the trace element selenium, from 50 to 200 micrograms (μg) per day, is
considered essential to good health. Suppose that independent random samples of n1 = n2 = 30
adults were selected from two regions of the United States, and a day’s intake of selenium, from
both liquids and solids, was recorded for each person. The mean and standard deviation of the
selenium daily intakes for the 30 adults from region 1 were y1 = 167.1 μg and s1 = 24.3 μg,
respectively. The corresponding statistics for the 30 adults from region 2 were y2 = 140.9 μg
and s2 = 17.6 μg. Find a 95% confidence interval for the difference in the mean selenium
intake for the two regions.

8.62 The following statistics are the result of an experiment conducted by P. I. Ward to investigate
a theory concerning the molting behavior of the male Gammarus pulex, a small crustacean.8

If a male needs to molt while paired with a female, he must release her, and so loses her. The
theory is that the male G. pulex is able to postpone molting, thereby reducing the possibility
of losing his mate. Ward randomly assigned 100 pairs of males and females to two groups of
50 each. Pairs in the first group were maintained together (normal); those in the second group
were separated (split). The length of time to molt was recorded for both males and females,
and the means, standard deviations, and sample sizes are shown in the accompanying table.
(The number of crustaceans in each of the four samples is less than 50 because some in each
group did not survive until molting time.)

Time to Molt (days)
Mean s n

Males
Normal 24.8 7.1 34
Split 21.3 8.1 41

Females
Normal 8.6 4.8 45
Split 11.6 5.6 48

6. Source: “Caught in the Middle,” American Demographics, July 2001, pp. 14–15.

7. Source: Allen L. Shoemaker, “What’s Normal? Temperature, Gender and Heart Rate,” Journal of
Statistics Education (1996).

8. Source: “Gammarus pulex Control Their Moult Timing to Secure Mates,” Animal Behaviour 32 (1984).
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a Find a 99% confidence interval for the difference in mean molt time for “normal” males
versus those “split” from their mates.

b Interpret the interval.

8.63 Most Americans love participating in or at least watching sporting events. Some feel that
sports have more than just entertainment value. In a survey of 1000 adults, conducted by KRC
Research & Consulting , 78% felt that spectator sports have a positive effect on society.9

a Find a 95% confidence interval for the percentage of the public that feel that sports have a
positive effect on society.

b The poll reported a margin of error of “plus or minus 3.1%.” Does this agree with your
answer to part (a)? What value of p produces the margin of error given by the poll?

8.64 In a CNN/USA Today/Gallup Poll, 1000 Americans were asked how well the term patriotic de-
scribed themselves.10 Some results from the poll are contained in the following summary table.

Age Group
All 18–34 60+

Very well .53 .35 .77
Somewhat well .31 .41 .17
Not Very well .10 .16 .04
Not well at all .06 .08 .02

a If the 18–34 and 60+ age groups consisted of 340 and 150 individuals, respectively, find a
98% confidence interval for the difference in proportions of those in these age groups who
agreed that patriotic described them very well.

b Based on the interval that you obtained in part (a), do you think that the difference in
proportions of those who view themselves as patriotic is as large as 0.6? Explain.

8.65 For a comparison of the rates of defectives produced by two assembly lines, independent ran-
dom samples of 100 items were selected from each line. Line A yielded 18 defectives in the
sample, and line B yielded 12 defectives.

a Find a 98% confidence interval for the true difference in proportions of defectives for the
two lines.

b Is there evidence here to suggest that one line produces a higher proportion of defectives
than the other?

8.66 Historically, biology has been taught through lectures, and assessment of learning was ac-
complished by testing vocabulary and memorized facts. A teacher-devoloped new curriculum,
Biology: A Community Content (BACC), is standards based, activity oriented, and inquiry
centered. Students taught using the historical and new methods were tested in the traditional
sense on biology concepts that featured biological knowledge and process skills. The results
of a test on biology concepts were published in The American Biology Teacher and are given
in the following table.11

9. Source: Mike Tharp, “Ready, Set, Go. Why We Love Our Games—Sports Crazy,” U.S. News & World
Report, 15 July 1997, p. 31.

10. Source: Adapted from “I’m a Yankee Doodle Dandy,” Knowledge Networks: 2000, American Demo-
graphics, July 2001, p. 9.

11. Source: William Leonard, Barbara Speziale, and John Pernick, “Performance Assessment of a Stand-
ards-Based High School Biology Curriculum,” The American Biology Teacher 63(5) (2001): 310–316.
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Sample Standard
Mean Size Deviation

Pretest: all BACC classes 13.38 372 5.59
Pretest: all traditional 14.06 368 5.45
Posttest: all BACC classes 18.50 365 8.03
Posttest: all traditional 16.50 298 6.96

a Give a 90% confidence interval for the mean posttest score for all BACC students.

b Find a 95% confidence interval for the difference in the mean posttest scores for BACC
and traditionally taught students.

c Does the confidence interval in part (b) provide evidence that there is a difference in the
mean posttest scores for BACC and traditionally taught students? Explain.

8.67 One suggested method for solving the electric-power shortage in a region involves constructing
floating nuclear power plants a few miles offshore in the ocean. Concern about the possibility
of a ship collision with the floating (but anchored) plant has raised the need for an estimate
of the density of ship traffic in the area. The number of ships passing within 10 miles of the
proposed power-plant location per day, recorded for n = 60 days during July and August,
possessed a sample mean and variance of y = 7.2 and s2 = 8.8.

a Find a 95% confidence interval for the mean number of ships passing within 10 miles of
the proposed power-plant location during a 1-day time period.

b The density of ship traffic was expected to decrease during the winter months. A sample
of n = 90 daily recordings of ship sightings for December, January, and February yielded
a mean and variance of y = 4.7 and s2 = 4.9. Find a 90% confidence interval for the
difference in mean density of ship traffic between the summer and winter months.

c What is the population associated with your estimate in part (b)? What could be wrong
with the sampling procedure for parts (a) and (b)?

*8.68 Suppose that Y1, Y2, Y3, and Y4 have a multinomial distribution with n trials and probabilities
p1, p2, p3, and p4 for the four cells. Just as in the binomial case, any linear combination of
Y1, Y2, Y3, and Y4 will be approximately normally distributed for large n.

a Determine the variance of Y1−Y2. [Hint: Recall that the random variables Yi are dependent.]

b A study of attitudes among residents of Florida with regard to policies for handling nuisance
alligators in urban areas showed the following. Among 500 people sampled and presented
with four management choices, 6% said the alligators should be completely protected, 16%
said they should be destroyed by wildlife officers, 52% said they should be relocated live,
and 26% said that a regulated commercial harvest should be allowed. Estimate the differ-
ence between the population proportion favoring complete protection and the population
proportion favoring destruction by wildlife officers. Use a confidence coefficient of .95.

*8.69 The Journal of Communication, Winter 1978, reported on a study of viewing violence on TV.
Samples from populations with low viewing rates (10–19 programs per week) and high view-
ing rates (40–49 programs per week) were divided into two age groups, and Y , the number
of persons watching a high number of violent programs, was recorded. The data for two age
groups are shown in the accompanying table, with ni denoting the sample size for each cell. If
Y1, Y2, Y3, and Y4 have independent binomial distributions with parameters p1, p2, p3, and
p4, respectively, find a 95% confidence interval for (p3 − p1)− (p4 − p2). This function of the
pi values represents a comparison between the change in viewing habits for young adults and
the corresponding change for older adults, as we move from those with low viewing rates to
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those with high viewing rates. (The data suggest that the rate of viewing violence may increase
with young adults but decrease with older adults.)

Age Group
Viewing Rate 16–34 55 and Over

Low y1 = 20 n1 = 31 y2 = 13 n2 = 30
High y3 = 18 n3 = 26 y4 = 7 n4 = 28

8.7 Selecting the Sample Size
The design of an experiment is essentially a plan for purchasing a quantity of infor-
mation. Like any other commodity, information may be acquired at varying prices
depending on the manner in which the data are obtained. Some measurements contain
a large amount of information about the parameter of interest; others may contain lit-
tle or none. Research, scientific or otherwise, is done in order to obtain information.
Obviously, we should seek to obtain information at minimum cost.

The sampling procedure—or experimental design, as it is usually called—affects
the quantity of information per measurement. This, together with the sample size n
controls the total amount of relevant information in a sample. At this point in our
study, we will be concerned with the simplest sampling situation: random sampling
from a relatively large population. We first devote our attention to selection of the
sample size n.

A researcher makes little progress in planning an experiment before encountering
the problem of selecting the sample size. Indeed, one of the most frequent questions
asked of the statistician is, How many measurements should be included in the sample?
Unfortunately, the statistician cannot answer this question without knowing how much
information the experimenter wishes to obtain. Referring specifically to estimation,
we would like to know how accurate the experimenter wishes the estimate to be. The
experimenter can indicate the desired accuracy by specifying a bound on the error of
estimation.

For instance, suppose that we wish to estimate the average daily yield μ of a
chemical and we wish the error of estimation to be less than 5 tons with probability
.95. Because approximately 95% of the sample means will lie within 2σY of μ in
repeated sampling, we are asking that 2σY equal 5 tons (see Figure 8.9). Then

2σ√
n

= 5 and n = 4σ 2

25
.

We cannot obtain an exact numerical value for n unless the population standard
deviation σ is known. This is exactly what we would expect because the variability
associated with the estimator Y depends on the variability exhibited in the population
from which the sample will be drawn.

Lacking an exact value for σ , we use the best approximation available such as
an estimate s obtained from a previous sample or knowledge of the range of the
measurements in the population. Because the range is approximately equal to 4σ

(recall the empirical rule), one-fourth of the range provides an approximate value
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The approximate

distribution of Y for
large samples

of σ . For our example, suppose that the range of the daily yields is known to be
approximately 84 tons. Then σ ≈ 84/4 = 21 and

n = 4σ 2

25
≈ (4)(21)2

25
= 70.56

= 71.

Using a sample size n = 71, we can be reasonably certain (with confidence coefficient
approximately equal to .95) that our estimate will lie within 5 tons of the true average
daily yield.

Actually, we would expect the error of estimation to be much less than 5 tons.
According to the empirical rule, the probability is approximately equal to .68 that the
error of estimation will be less than σY = 2.5 tons. The probabilities .95 and .68 used
in these statements are inexact because σ was approximated. Although this method of
choosing the sample size is only approximate for a specified accuracy of estimation,
it is the best available and is certainly better than selecting the sample size intuitively.

The method of choosing the sample sizes for all the large-sample estimation pro-
cedures outlined in Table 8.1 is analogous to that just described. The experimenter
must specify a desired bound on the error of estimation and an associated confidence
level 1 − α. For example, if the parameter is θ and the desired bound is B, we equate

zα/2σθ̂ = B,

where, as in Section 8.6,

P(Z > zα/2) = α

2
.

We illustrate the use of this method in the following examples.

EXAMPLE 8.9 The reaction of an individual to a stimulus in a psychological experiment may take
one of two forms, A or B. If an experimenter wishes to estimate the probability p that a
person will react in manner A, how many people must be included in the experiment?
Assume that the experimenter will be satisfied if the error of estimation is less than
.04 with probability equal to .90. Assume also that he expects p to lie somewhere in
the neighborhood of .6.

Solution Because we have specified that 1 − α = .90, α must equal .10 and α/2 = .05. The z
value corresponding to an area equal to .05 in the upper tail of the standard normal
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distribution is zα/2 = z.05 = 1.645. We then require that

1.645σ p̂ = .04, or 1.645

√
pq

n
= .04.

Because the standard error of p̂ depends on p, which is unknown, we could use the
guessed value of p = .6 provided by the experimenter as an approximate value for
n. Then

1.645

√
(.6)(.4)

n
= .04

n = 406.

In this example, we assumed that p ≈ .60. How would we proceed if we had no idea
about the true value of p? In Exercise 7.76(a), we established that the maximum value
for the variance of p̂ = Y/n occurs when p = .5. If we did not know that p ≈ .6, we
would use p = .5, which would yield the maximum possible value for n : n = 423.
No matter what the true value for p, n = 423 is large enough to provide an estimate
that is within B = .04 of p with probability .90.

EXAMPLE 8.10 An experimenter wishes to compare the effectiveness of two methods of training in-
dustrial employees to perform an assembly operation. The selected employees are to
be divided into two groups of equal size, the first receiving training method 1 and the
second receiving training method 2. After training, each employee will perform the
assembly operation, and the length of assembly time will be recorded. The experi-
menter expects the measurements for both groups to have a range of approximately
8 minutes. If the estimate of the difference in mean assembly times is to be correct
to within 1 minute with probability .95, how many workers must be included in each
training group?

Solution The manufacturer specified 1 − α = .95. Thus, α = .05 and zα/2 = z.025 = 1.96.
Equating 1.96σ(Y 1−Y 2)

to 1 minute, we obtain

1.96

√
σ 2

1

n1
+ σ 2

2

n2
= 1.

Alternatively, because we desire n1 to equal n2, we may let n1 = n2 = n and obtain
the equation

1.96

√
σ 2

1

n
+ σ 2

2

n
= 1.

As noted earlier, the variability of each method of assembly is approximately the
same; hence, σ 2

1 = σ 2
2 = σ 2. Because the range, 8 minutes, is approximately equal

to 4σ , we have

4σ ≈ 8, or equivalently, σ ≈ 2.
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Substituting this value for σ1 and σ2 in the earlier equation, we obtain

1.96

√
(2)2

n
+ (2)2

n
= 1.

Solving, we obtain n = 30.73. Therefore, each group should contain n = 31 members.

Exercises
8.70 Let Y be a binomial random variable with parameter p. Find the sample size necessary to

estimate p to within .05 with probability .95 in the following situations:

a If p is thought to be approximately .9

b If no information about p is known (use p = .5 in estimating the variance of p̂).

8.71 A state wildlife service wants to estimate the mean number of days that each licensed hunter
actually hunts during a given season, with a bound on the error of estimation equal to 2 hunting
days. If data collected in earlier surveys have shown σ to be approximately equal to 10, how
many hunters must be included in the survey?

8.72 Telephone pollsters often interview between 1000 and 1500 individuals regarding their opinions
on various issues. Does the performance of colleges’ athletic teams have a positive impact on
the public’s perception of the prestige of the institutions? A new survey is to be undertaken to
see if there is a difference between the opinions of men and women on this issue.

a If 1000 men and 1000 women are to be interviewed, how accurately could you estimate the
difference in the proportions who think that the performance of their athletics teams has a
positive impact on the perceived prestige of the institutions? Find a bound on the error of
estimation.

b Suppose that you were designing the survey and wished to estimate the difference in a pair
of proportions, correct to within .02, with probability .9. How many interviewees should
be included in each sample?

8.73 Refer to Exercise 8.59. How many ’tweens should have been interviewed in order to estimate
the proportion of ’tweens who understand and enjoy ads that are silly in nature, correct to within
.02, with probability .99? Use the proportion from the previous sample in approximating the
standard error of the estimate.

8.74 Suppose that you want to estimate the mean pH of rainfalls in an area that suffers from
heavy pollution due to the discharge of smoke from a power plant. Assume that σ is in the
neighborhood of .5 pH and that you want your estimate to lie within .1 of μ with probability
near .95. Approximately how many rainfalls must be included in your sample (one pH reading
per rainfall)? Would it be valid to select all of your water specimens from a single rainfall?
Explain.

8.75 Refer to Exercise 8.74. Suppose that you wish to estimate the difference between the mean
acidity for rainfalls at two different locations, one in a relatively unpolluted area along the
ocean and the other in an area subject to heavy air pollution. If you wish your estimate to
be correct to the nearest .1 pH with probability near .90, approximately how many rainfalls
(pH values) must you include in each sample? (Assume that the variance of the pH measure-
ments is approximately .25 at both locations and that the samples are to be of equal size.)
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8.76 Refer to the comparison of the daily adult intake of selenium in two different regions of the
United States, in Exercise 8.61. Suppose that you wish to estimate the difference in the mean
daily intake between the two regions, correct to within 5 μg, with probability .90. If you plan
to select an equal number of adults from the two regions (that is, if μ1 = μ2), how large should
n1 and n2 be?

8.77 Refer to Exercise 8.28. If the researcher wants to estimate the difference in proportions to
within .05 with 90% confidence, how many graduates and nongraduates must be interviewed?
(Assume that an equal number will be interviewed from each group.)

8.78 Refer to Exercise 8.65. How many items should be sampled from each line if a 95% confidence
interval for the true difference in proportions is to have width .2? Assume that samples of equal
size will be taken from each line.

8.79 Refer to Exercise 8.66.

a Another similar study is to be undertaken to compare the mean posttest scores for BACC
and traditionally taught high school biology students. The objective is to produce a 99%
confidence interval for the true difference in the mean posttest scores. If we need to sample
an equal number of BACC and traditionally taught students and want the width of the
confidence interval to be 1.0, how many observations should be included in each group?

b Repeat the calculations from part (a) if we are interested in comparing mean pretest scores.

c Suppose that the researcher wants to construct 99% confidence intervals to compare both
pretest and posttest scores for BACC and traditionally taught biology students. If her
objective is that both intervals have widths no larger than 1 unit, what sample sizes should
be used?

8.8 Small-Sample Confidence Intervals
for μ and μ1 − μ2

The confidence intervals for a population mean μ that we discuss in this section are
based on the assumption that the experimenter’s sample has been randomly selected
from a normal population. The intervals are appropriate for samples of any size,
and the confidence coefficients of the intervals are close to the specified values even
when the population is not normal, as long as the departure from normality is not
excessive. We rarely know the form of the population frequency distribution before
we sample. Consequently, if an interval estimator is to be of any value, it must work
reasonably well even when the population is not normal. “Working well” means that
the confidence coefficient should not be affected by modest departures from normality.
For most mound-shaped population distributions, experimental studies indicate that
these confidence intervals maintain confidence coefficients close to the nominal values
used in their calculation.

We assume that Y1, Y2, . . . , Yn represent a random sample selected from a normal
population, and we let Y and S2 represent the sample mean and sample variance,
respectively. We would like to construct a confidence interval for the population
mean when V (Yi ) = σ 2 is unknown and the sample size is too small to permit us to
to apply the large-sample techniques of the previous section. Under the assumptions
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0

#"2 #"2

#"2t#"2t–

1 – #

F I G U R E 8.10
Location of tα/2

and −tα/2

just stated, Theorems 7.1 and 7.3 and Definition 7.2 imply that

T = Y − μ

S/
√

n

has a t distribution with (n − 1) df. The quantity T serves as the pivotal quantity that
we will use to form a confidence interval for μ. From Table 5, Appendix 3, we can
find values tα/2 and −tα/2 (see Figure 8.10) so that

P(−tα/2 ≤ T ≤ tα/2) = 1 − α.

The t distribution has a density function very much like the standard normal density
except that the tails are thicker (as illustrated in Figure 7.3). Recall that the values of
tα/2 depend on the degrees of freedom (n −1) as well as on the confidence coefficient
(1 − α).

The confidence interval for μ is developed by manipulating the inequalities in the
probability statement in a manner analogous to that used in the derivation presented
in Example 8.6. In this case, the resulting confidence interval for μ is

Y ± tα/2

(
S√
n

)
.

Under the preceding assumptions, we can also obtain 100(1 − α)% one-sided
confidence limits for μ. Notice that tα , given in Table 5, Appendix 3, is such that

P(T ≤ tα) = 1 − α.

Substituting T into this expression and manipulating the resulting inequality, we
obtain

P[Y − tα(S/
√

n) ≤ μ] = 1 − α.

Thus, Y − tα(S/
√

n) is a 100(1 − α)% lower confidence bound for μ. Analogously,
Y + tα(S/

√
n) is a 100(1−α)% upper confidence bound for μ. As in the large-sample

case, if we determine both 100(1 − α)% lower and upper confidence bounds for μ

and use the respective bounds as endpoints for a confidence interval, the resulting
two-sided interval has confidence coefficient equal to 1 − 2α.

EXAMPLE 8.11 A manufacturer of gunpowder has developed a new powder, which was tested in eight
shells. The resulting muzzle velocities, in feet per second, were as follows:

3005 2925 2935 2965

2995 3005 2937 2905
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Find a 95% confidence interval for the true average velocity μ for shells of this type.
Assume that muzzle velocities are approximately normally distributed.

Solution If we assume that the velocities Yi are normally distributed, the confidence interval
for μ is

Y ± tα/2

(
S√
n

)
,

where tα/2 is determined for n−1 df. For the given data, y = 2959 and s = 39.1. In this
example, we have n − 1 = 7 df and, using Table 5, Appendix 3, tα/2 = t.025 = 2.365.
Thus, we obtain

2959 ± 2.365

(
39.1√

8

)
, or 2959 ± 32.7,

as the observed confidence interval for μ.

Suppose that we are interested in comparing the means of two normal populations,
one with mean μ1 and variance σ 2

1 and the other with mean μ2 and variance σ 2
2 . If the

samples are independent, confidence intervals for μ1 − μ2 based on a t-distributed
random variable can be constructed if we assume that the two populations have a
common but unknown variance, σ 2

1 = σ 2
2 = σ 2 (unknown).

If Y 1 and Y 2 are the respective sample means obtained from independent random
samples from normal populations, the large-sample confidence interval for (μ1 −μ2)

is developed by using

Z = (Y 1 − Y 2) − (μ1 − μ2)√
σ 2

1

n1
+ σ 2

2

n2

as a pivotal quantity. Because we assumed that the sampled populations are both
normally distributed, Z has a standard normal distribution, and using the assumption
σ 2

1 = σ 2
2 = σ 2, the quantity Z may be rewritten as

Z = (Y 1 − Y 2) − (μ1 − μ2)

σ

√
1

n1
+ 1

n2

.

Because σ is unknown, we need to find an estimator of the common variance σ 2 so
that we can construct a quantity with a t distribution.

Let Y11, Y12, . . . , Y1n1 denote the random sample of size n1 from the first pop-
ulation and let Y21, Y22, . . . , Y2n2 denote an independent random sample of size n2

from the second population. Then

Y 1 = 1

n1

n1∑
i=1

Y1i and Y 2 = 1

n2

n2∑
i=1

Y2i .
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The usual unbiased estimator of the common variance σ 2 is obtained by pooling the
sample data to obtain the pooled estimator S2

p:

S2
p =

∑n1
i=1(Y1i − Y 1)

2 + ∑n2
i=1(Y2i − Y 2)

2

n1 + n2 − 2
= (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

where S2
i is the sample variance from the i th sample, i = 1, 2. Notice that if n1 = n2,

S2
p is simply the average of S2

1 and S2
2 . If n1 7= n2, S2

p is the weighted average of S2
1

and S2
2 , with larger weight given to the sample variance associated with the larger

sample size. Further,

W = (n1 + n2 − 2)S2
p

σ 2
=

∑n1
i=1(Y1i − Y 1)

2

σ 2
+

∑n2
i=1(Y2i − Y 2)

2

σ 2

is the sum of two independent χ2-distributed random variables with (n1 − 1) and
(n2−1) df, respectively. Thus, W has a χ2 distribution with ν = (n1−1) + (n2−1) =
(n1 +n2 −2) df. (See Theorems 7.2 and 7.3.) We now use the χ2-distributed variable
W and the independent standard normal quantity Z defined in the previous paragraph
to form a pivotal quantity:

T = Z√
W
ν

=

⎡⎢⎢⎣ (Y 1 − Y 2) − (μ1 − μ2)

σ

√
1

n1
+ 1

n2

⎤⎥⎥⎦
/√

(n1 + n2 − 2)S2
p

σ 2(n1 + n2 − 2)

= (Y 1 − Y 2) − (μ1 − μ2)

Sp

√
1

n1
+ 1

n2

,

a quantity that by construction has a t distribution with (n1 + n2 − 2) df.
Proceeding as we did earlier in this section, we see that the confidence interval for

(μ1 − μ2) has the form

(Y 1 − Y 2) ± tα/2Sp

√
1

n1
+ 1

n2
,

where tα/2 is determined from the t distribution with (n1 + n2 − 2) df.

EXAMPLE 8.12 To reach maximum efficiency in performing an assembly operation in a manufac-
turing plant, new employees require approximately a 1-month training period. A
new method of training was suggested, and a test was conducted to compare the
new method with the standard procedure. Two groups of nine new employees each
were trained for a period of 3 weeks, one group using the new method and the
other following the standard training procedure. The length of time (in minutes)
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Table 8.3 Data for Example 8.12

Procedure Measurements

Standard 32 37 35 28 41 44 35 31 34
New 35 31 29 25 34 40 27 32 31

required for each employee to assemble the device was recorded at the end of the
3-week period. The resulting measurements are as shown in Table 8.3. Estimate
the true mean difference (μ1 − μ2) with confidence coefficient .95. Assume that the
assembly times are approximately normally distributed, that the variances of the as-
sembly times are approximately equal for the two methods, and that the samples are
independent.

Solution For the data in Table 8.3, with sample 1 denoting the standard procedure, we have

y1 = 35.22, y2 = 31.56,
9∑

i=1
(y1i − y1)

2 = 195.56,
9∑

i=1
(y2i − y2)

2 = 160.22,

s2
1 = 24.445, s2

2 = 20.027.

Hence,

s2
p = 8(24.445) + 8(20.027)

9 + 9 − 2
= 195.56 + 160.22

16
= 22.236 and sp = 4.716.

Notice that, because n1 = n2 = 9, s2
p is the simple average of s2

1 and s2
1 . Also,

t.025 = 2.120 for (n1 + n2 − 2) = 16 df. The observed confidence interval is
therefore

(y1 − y2) ± tα/2sp

√
1

n1
+ 1

n2

(35.22 − 31.56) ± (2.120)(4.716)

√
1

9
+ 1

9

3.66 ± 4.71.

This confidence interval can be written in the form [–1.05, 8.37]. The interval is
fairly wide and includes both positive and negative values. If μ1 − μ2 is positive,
μ1 > μ2 and the standard procedure has a larger expected assembly time than the
new procedure. If μ1 − μ2 is really negative, the reverse is true. Because the interval
contains both positive and negative values, neither training method can be said to
produce a mean assembly time that differs from the other.
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Summary of Small-Sample Confidence Intervals for Means of Normal
Distributions with Unknown Variance(s)

Parameter Confidence Interval (ν = df)

μ Y ± tα/2

(
S√
n

)
, ν = n − 1.

μ1 − μ2 (Y 1 − Y 2) ± tα/2Sp

√
1

n1
+ 1

n2
,

where ν = n1 + n2 − 2 and

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

(requires that the samples are independent and
the assumption that σ 2

1 = σ 2
2 ).

As the sample size (or sizes) gets large, the number of degrees of freedom for the
t distribution increases, and the t distribution can be approximated quite closely by
the standard normal distribution. As a result, the small-sample confidence intervals of
this section are nearly indistinguishable from the large-sample confidence intervals
of Section 8.6 for large n (or large n1 and n2). The intervals are nearly equivalent
when the degrees of freedom exceed 30.

The confidence intervals for a single mean and the difference in two means were
developed under the assumptions that the populations of interest are normally dis-
tributed. There is considerable empirical evidence that these intervals maintain their
nominal confidence coefficient as long as the populations sampled have roughly
mound-shaped distributions. If n1 ≈ n2, the intervals for μ1 − μ2 also maintain
their nominal confidence coefficients as long as the population variances are roughly
equal. The independence of the samples is the most crucial assumption in using the
confidence intervals developed in this section to compare two population means.

Exercises
8.80 Although there are many treatments for bulimia nervosa, some subjects fail to benefit from

treatment. In a study to determine which factors predict who will benefit from treatment, Wendy
Baell and E. H. Wertheim12 found that self-esteem was one of the important predictors. The
mean and standard deviation of posttreatment self-esteem scores for n = 21 subjects were
y = 26.6 and s = 7.4, respectively. Find a 95% confidence interval for the true posttreatment
self-esteem scores.

8.81 The carapace lengths of ten lobsters examined in a study of the infestation of the Thenus
orientalis lobster by two types of barnacles, Octolasmis tridens and O. lowei, are given in the

12. Source: Wendy K. Baell and E. H. Wertheim, “Predictors of Outcome in the Treatment of Bulimia
Nervosa,” British Journal of Clinical Psychology 31 (1992).
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following table. Find a 95% confidence interval for the mean carapace length (in millime-
ters, mm) of T. orientalis lobsters caught in the seas in the vicinity of Singapore.13

Lobster Field Number A061 A062 A066 A070 A067 A069 A064 A068 A065 A063

Carapace Length (mm) 78 66 65 63 60 60 58 56 52 50

8.82 Scholastic Assessment Test (SAT) scores, which have fallen slowly since the inception of the
test, have now begun to rise. Originally, a score of 500 was intended to be average. The mean
scores for 2005 were approximately 508 for the verbal test and 520 for the mathematics test.
A random sample of the test scores of 20 seniors from a large urban high school produced the
means and standard deviations listed in the accompanying table:

Verbal Mathematics

Sample mean 505 495
Sample standard deviation 57 69

a Find a 90% confidence interval for the mean verbal SAT scores for high school seniors
from the urban high school.

b Does the interval that you found in part (a) include the value 508, the true mean verbal SAT
score for 2005? What can you conclude?

c Construct a 90% confidence interval for the mean mathematics SAT score for the urban
high school seniors. Does the interval include 520, the true mean mathematics score for
2005? What can you conclude?

8.83 Chronic anterior compartment syndrome is a condition characterized by exercise-induced pain
in the lower leg. Swelling and impaired nerve and muscle function also accompany the pain,
which is relieved by rest. Susan Beckham and her colleagues14 conducted an experiment involv-
ing ten healthy runners and ten healthy cyclists to determine if pressure measurements within
the anterior muscle compartment differ between runners and cyclists. The data—compartment
pressure, in millimeters of mercury—are summarized in the following table:

Runners Cyclists
Condition Mean s Mean s

Rest 14.5 3.92 11.1 3.98
80% maximal O2 consumption 12.2 3.49 11.5 4.95

a Construct a 95% confidence interval for the difference in mean compartment pressures
between runners and cyclists under the resting condition.

b Construct a 90% confidence interval for the difference in mean compartment pressures
between runners and cyclists who exercise at 80% of maximal oxygen (O2) consumption.

c Consider the intervals constructed in parts (a) and (b). How would you interpret the results
that you obtained?

13. Source: W. B. Jeffries, H. K. Voris, and C. M. Yang, “Diversity and Distribution of the Pedunculate
Barnacle Octolasmis Gray, 1825 Epizoic on the Scyllarid Lobster, Thenus orientalis (Lund 1793),” Crus-
taceana 46(3) (1984).

14. Source: S. J. Beckham, W. A. Grana, P. Buckley, J. E. Breasile, and P. L. Claypool, “A Comparison
of Anterior Compartment Pressures in Competitive Runners and Cyclists,” American Journal of Sports
Medicine 21(1) (1993).
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8.84 Organic chemists often purify organic compounds by a method known as fractional crystalliza-
tion. An experimenter wanted to prepare and purify 4.85 g of aniline. Ten 4.85-gram specimens
of aniline were prepared and purified to produce acetanilide. The following dry yields were
obtained:

3.85, 3.88, 3.90, 3.62, 3.72, 3.80, 3.85, 3.36, 4.01, 3.82

Construct a 95% confidence interval for the mean number of grams of acetanilide that can be
recovered from 4.85 grams of aniline.

8.85 Two new drugs were given to patients with hypertension. The first drug lowered the blood
pressure of 16 patients an average of 11 points, with a standard deviation of 6 points. The
second drug lowered the blood pressure of 20 other patients an average of 12 points, with a
standard deviation of 8 points. Determine a 95% confidence interval for the difference in the
mean reductions in blood pressure, assuming that the measurements are normally distributed
with equal variances.

8.87 Refer to Exercise 8.86.

a Construct a 90% confidence interval for the difference in the mean price for light tuna
packed in water and light tuna packed in oil.

b Based on the interval obtained in part (a), do you think that the mean prices differ for light
tuna packed in water and oil? Why?

8.88 The Environmental Protection Agency (EPA) has collected data on LC50 measurements
(concentrations that kill 50% of test animals) for certain chemicals likely to be found in
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freshwater rivers and lakes. (See Exercise 7.13 for additional details.) For certain species of
fish, the LC50 measurements (in parts per million) for DDT in 12 experiments were as follows:

16, 5, 21, 19, 10, 5, 8, 2, 7, 2, 4, 9

Estimate the true mean LC50 for DDT with confidence coefficient .90. Assume that the LC50
measurements have an approximately normal distribution.

8.89 Refer to Exercise 8.88. Another common insecticide, diazinon, yielded LC50 measurements
in three experiments of 7.8, 1.6, and 1.3.

a Estimate the mean LC50 for diazinon, with a 90% confidence interval.

b Estimate the difference between the mean LC50 for DDT and that for diazinon, with a 90%
confidence interval. What assumptions are necessary for the method that you used to be
valid?

8.90 Do SAT scores for high school students differ depending on the students’ intended field of
study? Fifteen students who intended to major in engineering were compared with 15 students
who intended to major in language and literature. Given in the accompanying table are the
means and standard deviations of the scores on the verbal and mathematics portion of the SAT
for the two groups of students:16

Verbal Math

Engineering y = 446 s = 42 y = 548 s = 57

Language/literature y = 534 s = 45 y = 517 s = 52

a Construct a 95% confidence interval for the difference in average verbal scores of students
majoring in engineering and of those majoring in language/literature.

b Construct a 95% confidence interval for the difference in average math scores of students
majoring in engineering and of those majoring in language/literature.

c Interpret the results obtained in parts (a) and (b).

d What assumptions are necessary for the methods used previously to be valid?

8.91 Seasonal ranges (in hectares) for alligators were monitored on a lake outside Gainesville,
Florida, by biologists from the Florida Game and Fish Commission. Five alligators monitored
in the spring showed ranges of 8.0, 12.1, 8.1, 18.2, and 31.7. Four different alligators monitored
in the summer showed ranges of 102.0, 81.7, 54.7, and 50.7. Estimate the difference between
mean spring and summer ranges, with a 95% confidence interval. What assumptions did you
make?

8.92 Solid copper produced by sintering (heating without melting) a powder under specified en-
vironmental conditions is then measured for porosity (the volume fraction due to voids) in a
laboratory. A sample of n1 = 4 independent porosity measurements have mean y1 = .22 and
variance s2

1 = .0010. A second laboratory repeats the same process on solid copper formed
from an identical powder and gets n2 = 5 independent porosity measurements with y2 = .17
and s2

2 = .0020. Estimate the true difference between the population means (μ1 −μ2) for these
two laboratories, with confidence coefficient .95.

*8.93 A factory operates with two machines of type A and one machine of type B. The weekly repair
costs X for type A machines are normally distributed with mean μ1 and variance σ 2. The
weekly repair costs Y for machines of type B are also normally distributed but with mean μ2

16. Source: “SAT Scores by Intended Field of Study,” Riverside (Calif.) Press Enterprise, April 8, 1993.
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and variance 3σ 2. The expected repair cost per week for the factory is thus 2μ1 + μ2. If you
are given a random sample X1, X2, . . . , Xn on costs of type A machines and an independent
random sample Y1, Y2, . . . , Ym on costs for type B machines, show how you would construct
a 95% confidence interval for 2μ1 + μ2

a if σ 2 is known.

b if σ 2 is not known.

8.94 Suppose that we obtain independent samples of sizes n1 and n2 from two normal popula-
tions with equal variances. Use the appropriate pivotal quantity from Section 8.8 to derive a
100(1 − α)% upper confidence bound for μ1 − μ2.

8.9 Confidence Intervals for σ 2

The population variance σ 2 quantifies the amount of variability in the population.
Many times, the actual value of σ 2 is unknown to an experimenter, and he or she must
estimate σ 2. In Section 8.3, we proved that S2 = [1/(n − 1)]

∑n
i=1 (Yi − Y )2 is an

unbiased estimator for σ 2. Throughout our construction of confidence intervals for
μ, we used S2 to estimate σ 2 when σ 2 was unknown.

In addition to needing information about σ 2 to calculate confidence intervals for
μ and μ1 − μ2, we may be interested in forming a confidence interval for σ 2. For
example, if we performed a careful chemical analysis of tablets of a particular med-
ication, we would be interested in the mean amount of active ingredient per tablet
and the amount of tablet-to-tablet variability, as quantified by σ 2. Obviously, for a
medication, we desire a small amount of tablet-to-tablet variation and hence a small
value for σ 2.

To proceed with our interval estimation procedure, we require the existence of a
pivotal quantity. Again, assume that we have a random sample Y1, Y2, . . . , Yn from
a normal distribution with mean μ and variance σ 2, both unknown. We know from
Theorem 7.3 that ∑n

i=1(Yi − Y )2

σ 2
= (n − 1)S2

σ 2

has a χ2 distribution with (n − 1) df. We can then proceed by the pivotal method to
find two numbers χ2

L and χ2
U such that

P

[
χ2

L ≤ (n − 1)S2

σ 2
≤ χ2

U

]
= 1 − α

for any confidence coefficient (1 − α). (The subscripts L and U stand for lower and
upper, respectively.) The χ2 density function is not symmetric, so we have some
freedom in choosing χ2

L and χ2
U . We would like to find the shortest interval that

includes σ 2 with probability (1 − α). Generally, this is difficult and requires a trial-
and-error search for the appropriate values of χ2

L and χ2
U . We compromise by choosing

points that cut off equal tail areas, as indicated in Figure 8.11. As a result, we obtain

P
[
χ2

1−(α/2) ≤ (n − 1)S2

σ 2
≤ χ2

(α/2)

]
= 1 − α,
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"2#
"2#

0 ( (2
L

2
U

F I G U R E 8.11
Location of χ2

1 − (α/2)

and χ2
α/2

and a reordering of the inequality in the probability statement gives

P

[
(n − 1)S2

χ2
(α/2)

≤ σ 2 ≤ (n − 1)S2

χ2
1−(α/2)

]
= 1 − α.

The confidence interval for σ 2 is as follows.

A 100(1 −α)% Confidence Interval for σ2

(
(n − 1)S2

χ2
α/2

,
(n − 1)S2

χ2
1−(α/2)

)

EXAMPLE 8.13 An experimenter wanted to check the variability of measurements obtained by using
equipment designed to measure the volume of an audio source. Three independent
measurements recorded by this equipment for the same sound were 4.1, 5.2, and 10.2.
Estimate σ 2 with confidence coefficient .90.

Solution If normality of the measurements recorded by this equipment can be assumed, the
confidence interval just developed applies. For the data given, s2 = 10.57. With
α/2 = .05 and (n − 1) = 2 df, Table 6, Appendix 3, gives χ2

.95 = .103 and χ2
.05 =

5.991. Thus, the 90% confidence interval for σ 2 is(
(n − 1)s2

χ2
.05

,
(n − 1)s2

χ2
.95

)
or

(
(2)(10.57)

5.991
,

(2)(10.57)

.103

)
,

and finally, (3.53, 205.24).
Notice that this interval for σ 2 is very wide, primarily because n is quite small.

We have previously indicated that the confidence intervals developed in Section
8.8 for μ and μ1 − μ2 had confidence coefficients near the nominal level even if the
underlying populations were not normally distributed. In contrast, the intervals for σ 2

presented in this section can have confidence coefficients that differ markedly from
the nominal level if the sampled population is not normally distributed.
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Exercises
8.95 The EPA has set a maximum noise level for heavy trucks at 83 decibels (dB). The manner in

which this limit is applied will greatly affect the trucking industry and the public. One way to
apply the limit is to require all trucks to conform to the noise limit. A second but less satisfactory
method is to require the truck fleet’s mean noise level to be less than the limit. If the latter rule
is adopted, variation in the noise level from truck to truck becomes important because a large
value of σ 2 would imply that many trucks exceed the limit, even if the mean fleet level were
83 dB. A random sample of six heavy trucks produced the following noise levels (in decibels):

85.4 86.8 86.1 85.3 84.8 86.0.

Use these data to construct a 90% confidence interval for σ 2, the variance of the truck noise-
emission readings. Interpret your results.

8.96 In Exercise 8.81, we gave the carapace lengths of ten mature Thenus orientalis lobsters caught
in the seas in the vicinity of Singapore. For your convenience, the data are reproduced here.
Suppose that you wished to describe the variability of the carapace lengths of this population
of lobsters. Find a 90% confidence interval for the population variance σ 2.

Lobster Field Number A061 A062 A066 A070 A067 A069 A064 A068 A065 A063

Carapace Length (mm) 78 66 65 63 60 60 58 56 52 50

8.97 Suppose that S2 is the sample variance based on a sample of size n from a normal population
with unknown mean and variance. Derive a 100(1 − α)%

a upper confidence bound for σ 2.

b lower confidence bound for σ 2.

8.98 Given a random sample of size n from a normal population with unknown mean and variance,
we developed a confidence interval for the population variance σ 2 in this section. What is the
formula for a confidence interval for the population standard deviation σ?

8.99 In Exercise 8.97, you derived upper and lower confidence bounds, each with confidence coef-
ficient 1 − α, for σ 2. How would you construct a 100(1 − α)%

a upper confidence bound for σ?

b lower confidence bound for σ?

8.100 Industrial light bulbs should have a mean life length acceptable to potential users and a relatively
small variation in life length. If some bulbs fail too early in their life, users become annoyed
and are likely to switch to bulbs produced by a different manufacturer. Large variations above
the mean reduce replacement sales; in general, variation in life lengths disrupts the user’s
replacement schedules. A random sample of 20 bulbs produced by a particular manufacturer
produced the following lengths of life (in hours):

2100 2302 1951 2067 2415 1883 2101 2146 2278 2019
1924 2183 2077 2392 2286 2501 1946 2161 2253 1827

Set up a 99% upper confidence bound for the standard deviation of the lengths of life for
the bulbs produced by this manufacturer. Is the true population standard deviation less than
150 hours? Why or why not?

8.101 In laboratory work, it is desirable to run careful checks on the variability of readings produced
on standard samples. In a study of the amount of calcium in drinking water undertaken as part
of a water quality assessment, the same standard sample was run through the laboratory six
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times at random intervals. The six readings, in parts per million, were 9.54, 9.61, 9.32, 9.48,
9.70, and 9.26. Estimate the population variance σ 2 for readings on this standard, using a 90%
confidence interval.

8.102 The ages of a random sample of five university professors are 39, 54, 61, 72, and 59. Using this
information, find a 99% confidence interval for the population standard deviation of the ages
of all professors at the university, assuming that the ages of university professors are normally
distributed.

8.103 A precision instrument is guaranteed to read accurately to within 2 units. A sample of four
instrument readings on the same object yielded the measurements 353, 351, 351, and 355. Find
a 90% confidence interval for the population variance. What assumptions are necessary? Does
the guarantee seem reasonable?

8.10 Summary
The objective of many statistical investigations is to make inferences about population
parameters based on sample data. Often these inferences take the form of estimates—
either point estimates or interval estimates. We prefer unbiased estimators with small
variance. The goodness of an unbiased estimator θ̂ can be measured by σθ̂ because
the error of estimation is generally smaller than 2σθ̂ with high probability. The mean
square error of an estimator, MSE(θ̂) = V (θ̂) + [B(θ̂)]2, is small only if the estimator
has small variance and small bias.

Interval estimates of many parameters, such as μ and p, can be derived from the
normal distribution for large sample sizes because of the central limit theorem. If
sample sizes are small, the normality of the population must be assumed, and the
t distribution is used in deriving confidence intervals. However, the interval for a
single mean is quite robust in relation to moderate departures from normality. That
is, the actual confidence coefficient associated with intervals that have a nominal
confidence coefficient of 100(1 − α)% is very close to the nominal level even if the
population distribution differs moderately from normality. The confidence interval
for a difference in two means is also robust in relation to moderate departures from
normality and to the assumption of equal population variances if n1 ≈ n2. As n1 and
n2 become more dissimilar, the assumption of equal population variances becomes
more crucial.

If sample measurements have been selected from a normal distribution, a con-
fidence interval for σ 2 can be developed through use of the χ2 distribution. These
intervals are very sensitive to the assumption that the underlying population is nor-
mally distributed. Consequently, the actual confidence coefficient associated with
the interval estimation procedure can differ markedly from the nominal value if the
underlying population is not normally distributed.
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Supplementary Exercises
8.104 Multiple Choice A survey was conducted to determine what adults prefer in cell phone

services. The results of the survey showed that 73% of cell phone users wanted e-mail services,
with a margin of error of ±4%. What is meant by the phrase “±4%”?

a They estimate that 4% of the surveyed population may change their minds between the
time that the poll was conducted and the time that the results were published.

b There is a 4% chance that the true percentage of cell phone users who want e-mail service
will not be in the interval (0.69, 0.77).

c Only 4% of the population was surveyed.

d It would be unlikely to get the observed sample proportion of 0.73 unless the actual pro-
portion of cell phone users who want e-mail service is between 0.69 and 0.77.

e The probability is .04 that the sample proportion is in the interval (0.69, 0.77).

8.105 A random sample of size 25 was taken from a normal population with σ 2 = 6. A confidence
interval for the mean was given as (5.37, 7.37). What is the confidence coefficient associate
with this interval?

8.106 In a controlled pollination study involving Phlox drummondii, a spring-flowering annual plant
common along roadsides in sandy fields in central Texas, Karen Pittman and Donald Levin17

found that seed survival rates were not affected by water or nutrition deprivation. In the experi-
ment, flowers on plants were identified as males when they donated pollen and as females when
they were pollinated by donor pollen in three treatment groups: control, low water, and low
nutrient. The data in the following table reflect one aspect of the findings of the experiment: the
number of seeds surviving to maturity for each of the three groups for both male and female
parents.

Male Female

Treament n Number Surviving n Number Surviving

Control 585 543 632 560
Low water 578 522 510 466
Low nutrient 568 510 589 546

a Find a 99% confidence interval for the difference between survival proportions in the
low-water group versus the low-nutrient group for male parents.

b Find a 99% confidence interval for the difference between survival proportions in male and
female parents subjected to low water.

17. Source: Karen Pittman and Donald Levin, “Effects of Parental Identities and Environment on Com-
ponents of Crossing Success on Phlox drummondii,” American Journal of Botany 76(3) (1989).
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8.107 Refer to Exercise 8.106. Suppose that you plan to estimate the difference in the survival rates of
seeds for male parents in low-water and low-nutrient environments to within .03 with probability
.95. If you plan to use an equal number of seeds from male parents in each environment (that
is, n1 = n2), how large should n1 and n2 be?

8.108 A chemist who has prepared a product designed to kill 60% of a particular type of insect wants
to evaluate the kill rate of her preparation. What sample size should she use if she wishes to be
95% confident that her experimental results fall within .02 of the true fraction of insects killed?

8.109 To estimate the proportion of unemployed workers in Panama, an economist selected at random
400 persons from the working class. Of these, 25 were unemployed.

a Estimate the true proportion of unemployed workers and place bounds on the error of
estimation.

b How many persons must be sampled to reduce the bound on the error of estimation to .02?

8.110 Past experience shows that the standard deviation of the yearly income of textile workers in a
certain state is $400. How many textile workers would you need to sample if you wished to
estimate the population mean to within $50.00, with probability .95?

8.111 How many voters must be included in a sample collected to estimate the fraction of the popular
vote favorable to a presidential candidate in a national election if the estimate must be correct
to within .005? Assume that the true fraction lies somewhere in the neighborhood of .5. Use a
confidence coefficient of approximately .95.

8.112 In a poll taken among college students, 300 of 500 fraternity men favored a certain proposition
whereas 64 of 100 nonfraternity men favored it. Estimate the difference in the proportions
favoring the proposition and place a 2-standard-deviation bound on the error of estimation.

8.113 Refer to Exercise 8.112. How many fraternity and nonfraternity men must be included in a
poll if we wish to obtain an estimate, correct to within .05, for the difference in the proportions
favoring the proposition? Assume that the groups will be of equal size and that p = .6 will
suffice as an approximation of both proportions.

8.114 A chemical process has produced, on the average, 800 tons of chemical per day. The daily
yields for the past week are 785, 805, 790, 793, and 802 tons. Estimate the mean daily yield,
with confidence coefficient .90, from the data. What assumptions did you make?

8.115 Refer to Exercise 8.114. Find a 90% confidence interval for σ 2, the variance of the daily yields.

8.116 Do we lose our memory capacity as we get older? In a study of the effect of glucose on memory
in elderly men and women, C. A. Manning and colleagues18 tested 16 volunteers (5 men and
11 women) for long-term memory, recording the number of words recalled from a list read to
each person. Each person was reminded of the words missed and was asked to recall as many
words as possible from the original list. The mean and standard deviation of the long-term
word memory scores were y = 79.47 and s = 25.25. Give a 99% confidence interval for the
true long-term word memory scores for elderly men and women. Interpret this interval.

8.117 The annual main stem growth, measured for a sample of 17 4-year-old red pine trees, produced
a mean of 11.3 inches and a standard deviation of 3.4 inches. Find a 90% confidence interval
for the mean annual main stem growth of a population of 4-year-old red pine trees subjected to
similar environmental conditions. Assume that the growth amounts are normally distributed.

18. Source: C. A. Manning, J. L. Hall, and P. E. Gold, “Glucose Effects on Memory and Other Neuropsy-
chological Tests in Elderly Humans,” Psychological Science 1(5) (1990).
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8.118 Owing to the variability of trade-in allowance, the profit per new car sold by an automobile
dealer varies from car to car. The profits per sale (in hundreds of dollars), tabulated for the past
week, were 2.1, 3.0, 1.2, 6.2, 4.5, and 5.1. Find a 90% confidence interval for the mean profit
per sale. What assumptions must be valid for the technique that you used to be appropriate?

8.119 A mathematics test is given to a class of 50 students randomly selected from high school 1
and also to a class of 45 students randomly selected from high school 2. For the class at high
school 1, the sample mean is 75 points, and the sample standard deviation is 10 points. For
the class at high school 2, the sample mean is 72 points, and the sample standard deviation
is 8 points. Construct a 95% confidence interval for the difference in the mean scores. What
assumptions are necessary?

8.120 Two methods for teaching reading were applied to two randomly selected groups of elementary
schoolchildren and were compared on the basis of a reading comprehension test given at the
end of the learning period. The sample means and variances computed from the test scores
are shown in the accompanying table. Find a 95% confidence interval for (μ1 − μ2). What
assumptions are necessary?

Statistic Method 1 Method 2

Number of children in group 11 14
y 64 69
s2 52 71

8.121 A comparison of reaction times for two different stimuli in a psychological word-association
experiment produced the results (in seconds) shown in the accompanying table when applied
to a random sample of 16 people. Obtain a 90% confidence interval for (μ1 − μ2). What
assumptions are necessary?

Stimulus 1 Stimulus 2

1 2 4 1
3 1 2 2
2 3 3 3
1 2 3 3

8.122 The length of time between billing and receipt of payment was recorded for a random sample
of 100 of a certified public accountant (CPA) firm’s clients. The sample mean and standard
deviation for the 100 accounts were 39.1 days and 17.3 days, respectively. Find a 90% con-
fidence interval for the mean time between billing and receipt of payment for all of the CPA
firm’s accounts. Interpret the interval.

8.123 Television advertisers may mistakenly believe that most viewers understand most of the adver-
tising that they see and hear. A recent research study asked 2300 viewers above age 13 to look
at 30-second television advertising excerpts. Of these, 1914 of the viewers misunderstood all
or part of the excerpt they saw. Find a 95% confidence interval for the proportion of all viewers
(of which the sample is representative) who will misunderstand all or part of the television
excerpts used in this study.

8.124 A survey of 415 corporate, government, and accounting executives of the Financial Accounting
Foundation found that 278 rated cash flow (as opposed to earnings per share, etc.) as the most
important indicator of a company’s financial health. Assume that these 415 executives constitute
a random sample from the population of all executives. Use the data to find a 95% confidence
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interval for the fraction of all corporate executives who consider cash flow the most important
measure of a company’s financial health.

8.125 Suppose that independent samples of sizes n1 and n2 are taken from two normally distributed
populations with variances σ 2

1 and σ 2
2 , respectively. If S2

1 and S2
2 denote the respective sample

variances, Theorem 7.3 implies that (n1 − 1)S2
1/σ

2
1 and (n2 − 1)S2

2/σ
2
2 have χ2 distributions

with n1 − 1 and n2 − 1 df, respectively. Further, these χ2-distributed random variables are
independent because the samples were independently taken.

a Use these quantities to construct a random variable that has an F distribution with n1 − 1
numerator degrees of freedom and n2 − 1 denominator degrees of freedom.

b Use the F-distributed quantity from part (a) as a pivotal quantity, and derive a formula for
a 100(1 − α)% confidence interval for σ 2

2 /σ 2
1 .

8.126 A pharmaceutical manufacturer purchases raw material from two different suppliers. The mean
level of impurities is approximately the same for both suppliers, but the manufacturer is con-
cerned about the variability in the amount of impurities from shipment to shipment. If the level
of impurities tends to vary excessively for one source of supply, this could affect the quality
of the final product. To compare the variation in percentage impurities for the two suppliers,
the manufacturer selects ten shipments from each supplier and measures the percentage of im-
purities in each shipment. The sample variances were s2

1 = .273 and s2
2 = .094, respectively.

Form a 95% confidence interval for the ratio of the true population variances.

*8.127 Let Y denote the mean of a sample of size 100 taken from a gamma distribution with known
α = c0 and unknown β. Show that an approximate 100(1 − α)% confidence interval for β is
given by (

Y

c0 + .1zα/2
√

c0
,

Y

c0 − .1zα/2
√

c0

)
.

*8.128 Suppose that we take a sample of size n1 from a normally distributed population with mean
and variance μ1 and σ 2

1 and an independent of sample size n2 from a normally distributed
population with mean and variance μ2 and σ 2

2 . If it is reasonable to assume that σ 2
1 = σ 2

2 , then
the results given in Section 8.8 apply.

What can be done if we cannot assume that the unknown variances are equal but are fortunate
enough to know that σ 2

2 = kσ 2
1 for some known constant k 7= 1? Suppose, as previously, that

the sample means are given by Y 1 and Y 2 and the sample variances by S2
1 and S2

2 , respectively.

a Show that Z = given below has a standard normal distribution.

Z = = (Y 1 − Y 2) − (μ1 − μ2)

σ1

√
1

n1
+ k

n2

.

b Show that W = given below has a χ 2 distribution with n1 + n2 − 2 df.

W = = (n1 − 1)S2
1 + (n2 − 1)S2

2/k

σ 2
1

.

c Notice that Z = and W = from parts (a) and (b) are independent. Finally, show that

T = = (Y 1 − Y 2) − (μ1 − μ2)

S=
p

√
1

n1
+ k

n2

, where S2=
p = (n1 − 1)S2

1 + (n2 − 1)S2
2/k

n1 + n2 − 2

has a t distribution with n1 + n2 − 2 df.
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442 Chapter 8 Estimation

d Use the result in part (c) to give a 100(1 − α)% confidence interval for μ1 − μ2, assuming
that σ 2

2 = kσ 2
1 .

e What happens if k = 1 in parts (a)–(d)?

*8.129 We noted in Section 8.3 that if

S′2 =
∑n

i=1(Yi − Y )2

n
and S2 =

∑n
i=1(Yi − Y )2

n − 1
,

then S′2 is a biased estimator of σ 2, but S2 is an unbiased estimator of the same parameter. If
we sample from a normal population,

a find V (S′2).
b show that V (S2) > V (S′2).

*8.130 Exercise 8.129 suggests that S2 is superior to S′2 in regard to bias and that S′2 is superior to
S2 because it possesses smaller variance. Which is the better estimator? [Hint: Compare the
mean square errors.]

*8.131 Refer to Exercises 1.129 and 1.130. S2 and S′2 are two estimators for σ 2 that are of the form
c
∑n

i=1(Yi − Y )2. What value for c yields the estimator for σ 2 with the smallest mean square
error among all estimators of the form c

∑n
i=1(Yi − Y )2 ?

8.132 Refer to Exercises 6.17 and 8.14. The distribution function for a power family distribution is
given by

F(y) =

⎧⎪⎨⎪⎩
0, y < 0,( y

θ

)α

, 0 ≤ y ≤ θ,

1, y > θ,

where α, θ > 0. Assume that a sample of size n is taken from a population with a power family
distribution and that α = c where c > 0 is known.

a Show that the distribution function of Y(n) = max{Y1, Y2, . . . , Yn} is given by

FY(n)
(y) =

⎧⎪⎨⎪⎩
0, y < 0,( y

θ

)nc
, 0 ≤ y ≤ θ,

1, y > θ,

where θ > 0.

b Show that Y(n)/θ is a pivotal quantity and that for 0 < k < 1

P

(
k <

Y(n)

θ
≤ 1

)
= 1 − kcn .

c Suppose that n = 5 and α = c = 2.4.

i Use the result from part (b) to find k so that

P

(
k <

Y(5)

θ
≤ 1

)
= 0.95.

ii Give a 95% confidence interval for θ .
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*8.133 Suppose that two independent random samples of n1 and n2 observations are selected from
normal populations. Further, assume that the populations possess a common variance σ 2. Let

S2
i =

∑ni
j=1(Yi j − Y i )

2

ni − 1
, i = 1, 2.

a Show that S2
p , the pooled estimator of σ 2 (which follows), is unbiased:

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

b Find V (S2
p).

*8.134 The small-sample confidence interval for μ, based on Student’s t (Section 8.8), possesses a
random width—in contrast to the large-sample confidence interval (Section 8.6), where the
width is not random if σ 2 is known. Find the expected value of the interval width in the
small-sample case if σ 2 is unknown.

*8.135 A confidence interval is unbiased if the expected value of the interval midpoint is equal to
the estimated parameter. The expected value of the midpoint of the large-sample confidence
interval (Section 8.6) is equal to the estimated parameter, and the same is true for the small-
sample confidence intervals for μ and (μ1 − μ2) (Section 8.8). For example, the midpoint of
the interval y ± ts/

√
n is y, and E(Y ) = μ. Now consider the confidence interval for σ 2. Show

that the expected value of the midpoint of this confidence interval is not equal to σ 2.

*8.136 The sample mean Y is a good point estimator of the population mean μ. It can also be used to
predict a future value of Y independently selected from the population. Assume that you have
a sample mean Y and variance S2 based on a random sample of n measurements from a normal
population. Use Student’s t to form a pivotal quantity to find a prediction interval for some
new value of Y —say, Yp—to be observed in the future. [Hint: Start with the quantity Yp − Y .]
Notice the terminology: Parameters are estimated; values of random variables are predicted.
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CHAPTER 9

Properties of Point
Estimators and Methods
of Estimation
9.1 Introduction

9.2 Relative Efficiency

9.3 Consistency

9.4 Sufficiency

9.5 The Rao–Blackwell Theorem and Minimum-Variance Unbiased Estimation

9.6 The Method of Moments

9.7 The Method of Maximum Likelihood

9.8 Some Large-Sample Properties of Maximum-Likelihood Estimators (Optional)

9.9 Summary

References and Further Readings

9.1 Introduction
In Chapter 8, we presented some intuitive estimators for parameters often of interest
in practical problems. An estimator θ̂ for a target parameter θ is a function of the
random variables observed in a sample and therefore is itself a random variable.
Consequently, an estimator has a probability distribution, the sampling distribution
of the estimator. We noted in Section 8.2 that, if E(θ̂) = θ , then the estimator has the
(sometimes) desirable property of being unbiased.

In this chapter, we undertake a more formal and detailed examination of some of the
mathematical properties of point estimators—particularly the notions of efficiency,
consistency, and sufficiency. We present a result, the Rao–Blackwell theorem, that
provides a link between sufficient statistics and unbiased estimators for parameters.
Generally speaking, an unbiased estimator with small variance is or can be made to be
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9.2 Relative Efficiency 445

a function of a sufficient statistic. We also demonstrate a method that can sometimes
be used to find minimum-variance unbiased estimators for parameters of interest. We
then offer two other useful methods for deriving estimators: the method of moments
and the method of maximum likelihood. Some properties of estimators derived by
these methods are discussed.

9.2 Relative Efficiency
It usually is possible to obtain more than one unbiased estimator for the same target
parameter θ . In Section 8.2 (Figure 8.3), we mentioned that if θ̂1 and θ̂2 denote two
unbiased estimators for the same parameter θ , we prefer to use the estimator with
the smaller variance. That is, if both estimators are unbiased, θ̂1 is relatively more
efficient than θ̂2 if V (θ̂2) > V (θ̂1). In fact, we use the ratio V (θ̂2)/V (θ̂1) to define the
relative efficiency of two unbiased estimators.

DEFINITION 9.1 Given two unbiased estimators θ̂1 and θ̂2 of a parameter θ , with variances
V (θ̂1) and V (θ̂2), respectively, then the efficiency of θ̂1 relative to θ̂2, denoted
eff (θ̂1, θ̂2), is defined to be the ratio

eff (θ̂1, θ̂2) = V (θ̂2)

V (θ̂1)
.

If θ̂1 and θ̂2 are unbiased estimators for θ , the efficiency of θ̂1 relative to θ̂2,
eff (θ̂1, θ̂2), is greater than 1 only if V (θ̂2) > V (θ̂1). In this case, θ̂1 is a better unbiased
estimator than θ̂2. For example, if eff (θ̂1, θ̂2) = 1.8, then V (θ̂2) = (1.8)V (θ̂1), and
θ̂1 is preferred to θ̂2 . Similarly, if eff (θ̂1, θ̂2) is less than 1—say, .73—then V (θ̂2) =
(.73)V (θ̂1), and θ̂2 is preferred to θ̂1. Let us consider an example involving two
different estimators for a population mean. Suppose that we wish to estimate the
mean of a normal population. Let θ̂1 be the sample median, the middle observation
when the sample measurements are ordered according to magnitude (n odd) or the
average of the two middle observations (n even). Let θ̂2 be the sample mean. Although
proof is omitted, it can be shown that the variance of the sample median, for large
n, is V (θ̂1) = (1.2533)2(σ 2/n). Then the efficiency of the sample median relative to
the sample mean is

eff (θ̂1, θ̂2) = V (θ̂2)

V (θ̂1)
= σ 2/n

(1.2533)2σ 2/n
= 1

(1.2533)2
= .6366.

Thus, we see that the variance of the sample mean is approximately 64% of the
variance of the sample median. Therefore, we would prefer to use the sample mean
as the estimator for the population mean.
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446 Chapter 9 Properties of Point Estimators and Methods of Estimation

EXAMPLE 9.1 Let Y1, Y2, . . . , Yn denote a random sample from the uniform distribution on the
interval (0, θ). Two unbiased estimators for θ are

θ̂1 = 2Y and θ̂2 =
(

n + 1

n

)
Y(n),

where Y(n) = max(Y1, Y2, . . . , Yn). Find the efficiency of θ̂1 relative to θ̂2.

Solution Because each Yi has a uniform distribution on the interval (0, θ), μ = E(Yi ) = θ/2
and σ 2 = V (Yi ) = θ2/12. Therefore,

E(θ̂1) = E(2Y ) = 2E(Y ) = 2(μ) = 2

(
θ

2

)
= θ,

and θ̂1 is unbiased, as claimed. Further,

V (θ̂1) = V (2Y ) = 4V (Y ) = 4

[
V (Yi )

n

]
=

(
4

n

) (
θ2

12

)
= θ2

3n
.

To find the mean and variance of θ̂2, recall (see Exercise 6.74) that the density
function of Y(n) is given by

g(n)(y) = n[FY (y)]n−1 fY (y) =
⎧⎨⎩ n

( y

θ

)n−1
(

1

θ

)
, 0 ≤ y ≤ θ,

0, elsewhere.

Thus,

E(Y(n)) = n

θn

∫ θ

0
yn dy =

(
n

n + 1

)
θ,

and it follows that E{[(n + 1)/n]Y(n)} = θ ; that is, θ̂2 is an unbiased estimator for θ .
Because

E(Y 2
(n)) = n

θn

∫ θ

0
yn+1 dy =

(
n

n + 2

)
θ2,

we obtain

V (Y(n)) = E(Y 2
(n)) − [E(Y(n))]

2 =
[

n

n + 2
−

(
n

n + 1

)2
]

θ2

and

V (θ̂2) = V

[(
n + 1

n

)
Y(n)

]
=

(
n + 1

n

)2

V (Y(n))

=
[

(n + 1)2

n(n + 2)
− 1

]
θ2 = θ2

n(n + 2)
.

Therefore, the efficiency of θ̂1 relative to θ̂2 is given by

eff (θ̂1, θ̂2) = V (θ̂2)

V (θ̂1)
= θ2/[n(n + 2)]

θ2/3n
= 3

n + 2
.

This efficiency is less than 1 if n > 1. That is, if n > 1, θ̂2 has a smaller variance than
θ̂1, and therefore θ̂2 is generally preferable to θ̂1 as an estimator of θ .
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We present some methods for finding estimators with small variances later in this
chapter. For now we wish only to point out that relative efficiency is one important
criterion for comparing estimators.

Exercises
9.1 In Exercise 8.8, we considered a random sample of size 3 from an exponential distribution with

density function given by

f (y) =
{

(1/θ)e−y/θ , 0 < y,

0, elsewhere,

and determined that θ̂1 = Y1, θ̂2 = (Y1 +Y2)/2, θ̂3 = (Y1 +2Y2)/3, and θ̂5 = Y are all unbiased
estimators for θ . Find the efficiency of θ̂1 relative to θ̂5, of θ̂2 relative to θ̂5, and of θ̂3 relative
to θ̂5.

9.2 Let Y1, Y2, . . . , Yn denote a random sample from a population with mean μ and variance σ 2.
Consider the following three estimators for μ:

μ̂1 = 1

2
(Y1 + Y2), μ̂2 = 1

4
Y1 + Y2 + · · · + Yn−1

2(n − 2)
+ 1

4
Yn, μ̂3 = Y .

a Show that each of the three estimators is unbiased.

b Find the efficiency of μ̂3 relative to μ̂2 and μ̂1, respectively.

9.3 Let Y1, Y2, . . . , Yn denote a random sample from the uniform distribution on the interval
(θ, θ + 1). Let

θ̂1 = Y − 1

2
and θ̂2 = Y(n) − n

n + 1
.

a Show that both θ̂1 and θ̂2 are unbiased estimators of θ .

b Find the efficiency of θ̂1 relative to θ̂2.

9.4 Let Y1, Y2, . . . , Yn denote a random sample of size n from a uniform distribution on the interval
(0, θ). If Y(1) = min(Y1, Y2, . . . , Yn), the result of Exercise 8.18 is that θ̂1 = (n + 1)Y(1) is an
unbiased estimator for θ . If Y(n) = max(Y1, Y2, . . . , Yn), the results of Example 9.1 imply that
θ̂2 = [(n + 1)/n]Y(n) is another unbiased estimator for θ . Show that the efficiency of θ̂1 to θ̂2

is 1/n2. Notice that this implies that θ̂2 is a markedly superior estimator.

9.5 Suppose that Y1, Y2, . . . , Yn is a random sample from a normal distribution with mean μ and
variance σ 2. Two unbiased estimators of σ 2 are

σ̂ 2
1 = S2 = 1

n − 1

n∑
i=1

(Yi − Y )2 and σ̂ 2
2 = 1

2
(Y1 − Y2)

2.

Find the efficiency of σ̂ 2
1 relative to σ̂ 2

2 .

9.6 Suppose that Y1, Y2, . . . , Yn denote a random sample of size n from a Poisson distribution
with mean λ. Consider λ̂1 = (Y1 + Y2)/2 and λ̂2 = Y . Derive the efficiency of λ̂1 relative
to λ̂2.

9.7 Suppose that Y1, Y2, . . . , Yn denote a random sample of size n from an exponential distribution
with density function given by

f (y) =
{

(1/θ)e−y/θ , 0 < y,

0, elsewhere.
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448 Chapter 9 Properties of Point Estimators and Methods of Estimation

In Exercise 8.19, we determined that θ̂1 = nY(1) is an unbiased estimator of θ with MSE(θ̂1) =
θ 2. Consider the estimator θ̂2 = Y and find the efficiency of θ̂1 relative to θ̂2.

*9.8 Let Y1, Y2, . . . , Yn denote a random sample from a probability density function f (y), which
has unknown parameter θ . If θ̂ is an unbiased estimator of θ , then under very general conditions

V (θ̂) ≥ I (θ), where I (θ) =
[

nE
(

−∂2 ln f (Y )

∂θ 2

)]−1

.

(This is known as the Cramer–Rao inequality.) If V (θ̂) = I (θ), the estimator θ̂ is said to be
efficient.1

a Suppose that f (y) is the normal density with mean μ and variance σ 2. Show that Y is an
efficient estimator of μ.

b This inequality also holds for discrete probability functions p(y). Suppose that p(y) is the
Poisson probability function with mean λ. Show that Y is an efficient estimator of λ.

9.3 Consistency
Suppose that a coin, which has probability p of resulting in heads, is tossed n times.
If the tosses are independent, then Y , the number of heads among the n tosses, has a
binomial distribution. If the true value of p is unknown, the sample proportion Y/n is
an estimator of p. What happens to this sample proportion as the number of tosses n
increases? Our intuition leads us to believe that as n gets larger, Y/n should get closer
to the true value of p. That is, as the amount of information in the sample increases,
our estimator should get closer to the quantity being estimated.

Figure 9.1 illustrates the values of p̂ = Y/n for a single sequence of 1000 Bernoulli
trials when the true value of p is 0.5. Notice that the values of p̂ bounce around 0.5
when the number of trials is small but approach and stay very close to p = 0.5 as the
number of trials increases.

The single sequence of 1000 trials illustrated in Figure 9.1 resulted (for larger n)
in values for the estimate that were very close to the true value, p = 0.5. Would
additional sequences yield similar results? Figure 9.2 shows the combined results of
50 sequences of 1000 trials. Notice that the 50 distinct sequences were not identical.
Rather, Figure 9.2 shows a “convergence” of sorts to the true value p = 0.5. This
is exhibited by a wider spread of the values of the estimates for smaller numbers of
trials but a much narrower spread of values of the estimates when the number of trials
is larger. Will we observe this same phenomenon for different values of p? Some of
the exercises at the end of this section will allow you to use applets (accessible at
academic.cengage.com/statistics/wackerly) to explore more fully for yourself.

How can we technically express the type of “convergence” exhibited in Figure 9.2?
Because Y/n is a random variable, we may express this “closeness” to p in proba-
bilistic terms. In particular, let us examine the probability that the distance between
the estimator and the target parameter, |(Y/n) − p|, will be less than some arbitrary
positive real number ε. Figure 9.2 seems to indicate that this probability might be

1. Exercises preceded by an asterisk are optional.
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increasing as n gets larger. If our intuition is correct and n is large, this probability,

P

(∣∣∣∣Y

n
− p

∣∣∣∣ ≤ ε

)
,

should be close to 1. If this probability in fact does tend to 1 as n → ∞, we then
say that (Y/n) is a consistent estimator of p, or that (Y/n) “converges in probability
to p.”
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DEFINITION 9.2 The estimator θ̂n is said to be a consistent estimator of θ if, for any positive
number ε,

lim
n→∞ P(|θ̂n − θ | ≤ ε) = 1

or, equivalently,

lim
n→∞ P(|θ̂n − θ | > ε) = 0.

The notation θ̂n expresses that the estimator for θ is calculated by using a sample
of size n. For example, Y 2 is the average of two observations whereas Y 100 is the
average of the 100 observations contained in a sample of size n = 100. If θ̂n is an
unbiased estimator, the following theorem can often be used to prove that the estimator
is consistent.

THEOREM 9.1 An unbiased estimator θ̂n for θ is a consistent estimator of θ if

lim
n→∞ V (θ̂n) = 0.

Proof If Y is any random variable with E(Y ) = μ and V (Y ) = σ 2 < ∞ and if k is
any nonnegative constant, Tchebysheff’s theorem (see Theorem 4.13) implies
that

P(|Y − μ| > kσ) ≤ 1

k2
.

Because θ̂n is an unbiased estimator for θ , it follows that E(θ̂n) = θ . Let σθ̂n
=√

V (θ̂n) denote the standard error of the estimator θ̂n . If we apply Tchebysheff’s
theorem for the random variable θ̂n , we obtain

P
(∣∣θ̂n − θ

∣∣ > kσθ̂n

) ≤ 1

k2
.

Let n be any fixed sample size. For any positive number ε,

k = ε

σθ̂n

is a positive number. Application of Tchebysheff’s theorem for this fixed n and
this choice of k shows that

P
(∣∣θ̂n − θ

∣∣ > ε
) = P

(∣∣θ̂n − θ
∣∣ >

[
ε

σθ̂n

]
σθ̂n

)
≤ 1(

ε/σθ̂n

)2 = V (θ̂n)

ε2
.

Thus, for any fixed n,

0 ≤ P
(∣∣θ̂n − θ

∣∣ > ε
) ≤ V (θ̂n)

ε2
.
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9.3 Consistency 451

If limn→∞ V (θ̂n) = 0 and we take the limit as n → ∞ of the preceding
sequence of probabilities,

lim
n→∞(0) ≤ lim

n→∞ P
(∣∣θ̂n − θ

∣∣ > ε
) ≤ lim

n→∞
V (θ̂n)

ε2
= 0.

Thus, θ̂n is a consistent estimator for θ .

The consistency property given in Definition 9.2 and discussed in Theorem 9.1
involves a particular type of convergence of θ̂n to θ . For this reason, the statement
“θ̂n is a consistent estimator for θ” is sometimes replaced by the equivalent statement
“θ̂n converges in probability to θ .”

EXAMPLE 9.2 Let Y1, Y2, . . . , Yn denote a random sample from a distribution with mean μ and
variance σ 2 < ∞. Show that Y n = 1

n

∑n
i=1 Yi is a consistent estimator of μ. (Note:

We use the notation Y n to explicitly indicate that Y is calculated by using a sample
of size n.)

Solution We know from earlier chapters that E(Y n) = μ and V (Y n) = σ 2/n. Because Y n is
unbiased for μ and V (Y n) → 0 as n → ∞, Theorem 9.1 establishes that Y n is a con-
sistent estimator of μ. Equivalently, we may say that Y n converges in probability to μ.

The fact that Y n is consistent for μ, or converges in probability to μ, is some-
times referred to as the law of large numbers. It provides the theoretical justification
for the averaging process employed by many experimenters to obtain precision in
measurements. For example, an experimenter may take the average of the weights of
many animals to obtain a more precise estimate of the average weight of animals of
this species. The experimenter’s feeling, a feeling confirmed by Theorem 9.1, is that
the average of many independently selected weights should be quite close to the true
mean weight with high probability.

In Section 8.3, we considered an intuitive estimator for μ1 − μ2, the difference in
the means of two populations. The estimator discussed at that time was Y 1 − Y 2, the
difference in the means of independent random samples selected from two popula-
tions. The results of Theorem 9.2 will be very useful in establishing the consistency
of such estimators.

THEOREM 9.2 Suppose that θ̂n converges in probability to θ and that θ̂ ′
n converges in probability

to θ ′.

a θ̂n + θ̂ ′
n converges in probability to θ + θ ′.

b θ̂n × θ̂ ′
n converges in probability to θ × θ ′.

c If θ ′ 7= 0, θ̂n/θ̂
′
n converges in probability to θ/θ ′ .

d If g(·) is a real-valued function that is continuous at θ , then g(θ̂n) converges in
probability to g(θ).
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452 Chapter 9 Properties of Point Estimators and Methods of Estimation

The proof of Theorem 9.2 closely resembles the corresponding proof in the case
where {an} and {bn} are sequences of real numbers converging to real limits a and b,
respectively. For example, if an → a and bn → b then

an + bn → a + b.

EXAMPLE 9.3 Suppose that Y1, Y2, . . . , Yn represent a random sample such that E(Yi ) = μ,
E(Y 2

i ) = μ′
2 and E(Y 4

i ) = μ′
4 are all finite. Show that

S2
n = 1

n − 1

n∑
i=1

(Yi − Y n)
2

is a consistent estimator of σ 2 = V (Yi ). (Note: We use subscript n on both S2 and Y
to explicitly convey their dependence on the value of the sample size n.)

Solution We have seen in earlier chapters that S2, now written as S2
n , is

S2
n = 1

n − 1

(
n∑

i=1

Y 2
i − nY

2
n

)
=

(
n

n − 1

) (
1

n

n∑
i=1

Y 2
i − Y

2
n

)
.

The statistic (1/n)
∑n

i=1 Y 2
i is the average of n independent and identically distributed

random variables, with E(Y 2
i ) = μ′

2 and V (Y 2
i ) = μ′

4 − (μ′
2)

2 < ∞. By the law
of large numbers (Example 9.2), we know that (1/n)

∑n
i=1 Y 2

i converges in probabi-
lity to μ′

2.
Example 9.2 also implies that Y n converges in probability to μ. Because the

function g(x) = x2 is continuous for all finite values of x , Theorem 9.2(d) implies
that Y

2
n converges in probability to μ2. It then follows from Theorem 9.2(a) that

1

n

n∑
i=1

Y 2
i − Y

2
n

converges in probability to μ′
2 − μ2 = σ 2. Because n/(n − 1) is a sequence of con-

stants converging to 1 as n → ∞, we can conclude that S2
n converges in probability

to σ 2. Equivalently, S2
n , the sample variance, is a consistent estimator for σ 2, the

population variance.

In Section 8.6, we considered large-sample confidence intervals for some param-
eters of practical interest. In particular, if Y1, Y2, . . . , Yn is a random sample from
any distribution with mean μ and variance σ 2, we established that

Y ± zα/2

(
σ√
n

)
is a valid large-sample confidence interval with confidence coefficient approximately
equal to (1 −α). If σ 2 is known, this interval can and should be calculated. However,
if σ 2 is not known but the sample size is large, we recommended substituting S for σ

in the calculation because this entails no significant loss of accuracy. The following
theorem provides the theoretical justification for these claims.
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THEOREM 9.3 Suppose that Un has a distribution function that converges to a standard normal
distribution function as n → ∞. If Wn converges in probability to 1, then the
distribution function of Un/Wn converges to a standard normal distribution
function.

This result follows from a general result known as Slutsky’s theorem (Serfling,
2002). The proof of this result is beyond the scope of this text. However, the usefulness
of the result is illustrated in the following example.

EXAMPLE 9.4 Suppose that Y1, Y2, . . . , Yn is a random sample of size n from a distribution with
E(Yi ) = μ and V (Yi ) = σ 2. Define S2

n as

S2
n = 1

n − 1

n∑
i=1

(Yi − Y n)
2.

Show that the distribution function of

√
n

(
Y n − μ

Sn

)
converges to a standard normal distribution function.

Solution In Example 9.3, we showed that S2
n converges in probability to σ 2. Notice that g(x) =

+√
x/c is a continuous function of x if both x and c are positive. Hence, it follows

from Theorem 9.2(d) that Sn/σ = +√
S2

n/σ 2 converges in probability to 1. We also
know from the central limit theorem (Theorem 7.4) that the distribution function of

Un = √
n

(
Y n − μ

σ

)
converges to a standard normal distribution function. Therefore, Theorem 9.3 implies
that the distribution function of

√
n

(
Y n − μ

σ

)/
(Sn/σ) = √

n

(
Y n − μ

Sn

)
converges to a standard normal distribution function.

The result of Example 9.4 tells us that, when n is large,
√

n(Y n − μ)/Sn has
approximately a standard normal distribution whatever is the form of the distribution
from which the sample is taken. If the sample is taken from a normal distribution, the
results of Chapter 7 imply that t = √

n(Y n − μ)/Sn has a t distribution with n − 1
degrees of freedom (df). Combining this information, we see that, if a large sample is
taken from a normal distribution, the distribution function of t = √

n(Y n −μ)/Sn can
be approximated by a standard normal distribution function. That is, as n gets large
and hence as the number of degrees of freedom gets large, the t-distribution function
converges to the standard normal distribution function.
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If we obtain a large sample from any distribution, we know from Example 9.4
that

√
n(Y n − μ)/Sn has approximately a standard normal distribution. Therefore, it

follows that

P

[
−zα/2 ≤ √

n

(
Y n − μ

Sn

)
≤ zα/2

]
≈ 1 − α.

If we manipulate the inequalities in the probability statement to isolate μ in the middle,
we obtain

P
[

Y n − zα/2

(
Sn√

n

)
≤ μ ≤ Y n + zα/2

(
Sn√

n

)]
≈ 1 − α.

Thus, Y n ± zα/2(Sn/
√

n) forms a valid large-sample confidence interval for μ, with
confidence coefficient approximately equal to 1 − α. Similarly, Theorem 9.3 can be
applied to show that

p̂n ± zα/2

√
p̂n q̂n

n
is a valid large-sample confidence interval for p with confidence coefficient approx-
imately equal to 1 − α.

In this section, we have seen that the property of consistency tells us something
about the distance between an estimator and the quantity being estimated. We have
seen that, when the sample size is large, Y n is close to μ, and S2

n is close to σ 2, with
high probability. We will see other examples of consistent estimators in the exercises
and later in the chapter.

In this section, we have used the notation Y n , S2
n , p̂n , and, in general, θ̂n to explicitly

convey the dependence of the estimators on the sample size n. We needed to do so
because we were interested in computing

lim
n→∞ P(|θ̂n − θ | ≤ ε).

If this limit is 1, then θ̂n is a “consistent” estimator for θ (more precisely, θ̂n a consistent
sequence of estimators for θ). Unfortunately, this notation makes our estimators look
overly complicated. Henceforth, we will revert to the notation θ̂ as our estimator for θ

and not explicitly display the dependence of the estimator on n. The dependence of θ̂

on the sample size n is always implicit and should be used whenever the consistency
of the estimator is considered.

Exercises
9.9 Applet Exercise How was Figure 9.1 obtained? Access the applet PointSingle at academic.

cengage.com/statistics/wackerly. The top applet will generate a sequence of Bernoulli trials
[X i = 1, 0 with p(1) = p, p(0) = 1 − p] with p = .5, a scenario equivalent to successively
tossing a balanced coin. Let Yn = ∑n

i=1 X i = the number of 1s in the first n trials and
p̂n = Yn/n. For each n, the applet computes p̂n and plots it versus the value of n.

a If p̂5 = 2/5, what value of X6 will result in p̂6 > p̂5?

b Click the button “One Trial” a single time. Your first observation is either 0 or 1. Which
value did you obtain? What was the value of p̂1? Click the button “One Trial” several more
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times. How many trials n have you simulated? What value of p̂n did you observe? Is the
value close to .5, the true value of p? Is the graph a flat horizontal line? Why or why not?

c Click the button “100 Trials” a single time. What do you observe? Click the button
“100 Trials” repeatedly until the total number of trials is 1000. Is the graph that you
obtained identical to the one given in Figure 9.1? In what sense is it similar to the graph in
Figure 9.1?

d Based on the sample of size 1000, what is the value of p̂1000? Is this value what you expected
to observe?

e Click the button “Reset.” Click the button “100 Trials” ten times to generate another
sequence of values for p̂. Comment.

9.10 Applet Exercise Refer to Exercise 9.9. Scroll down to the portion of the screen labeled
“Try different probabilities.” Use the button labeled “p =” in the lower right corner of the
display to change the value of p to a value other than .5.

a Click the button “One Trial” a few times. What do you observe?

b Click the button “100 Trials” a few times. What do you observe about the values of p̂n as
the number of trials gets larger?

9.11 Applet Exercise Refer to Exercises 9.9 and 9.10. How can the results of several sequences of
Bernoulli trials be simultaneously plotted? Access the applet PointbyPoint. Scroll down until
you can view all six buttons under the top graph.

a Do not change the value of p from the preset value p = .5. Click the button “One Trial” a
few times to verify that you are obtaining a result similar to those obtained in Exercise 9.9.
Click the button “5 Trials” until you have generated a total of 50 trials. What is the value
of p̂50 that you obtained at the end of this first sequence of 50 trials?

b Click the button “New Sequence.” The color of your initial graph changes from red to
green. Click the button “5 Trials” a few times. What do you observe? Is the graph the same
as the one you observed in part (a)? In what sense is it similar?

c Click the button “New Sequence.” Generate a new sequence of 50 trials. Repeat until you
have generated five sequences. Are the paths generated by the five sequences identical? In
what sense are they similar?

9.12 Applet Exercise Refer to Exercise 9.11. What happens if each sequence is longer? Scroll
down to the portion of the screen labeled “Longer Sequences of Trials.”

a Repeat the instructions in parts (a)–(c) of Exercise 9.11.

b What do you expect to happen if p is not 0.5? Use the button in the lower right corner to
change to value of p. Generate several sequences of trials. Comment.

9.13 Applet Exercise Refer to Exercises 9.9–9.12. Access the applet Point Estimation.

a Chose a value for p. Click the button “New Sequence” repeatedly. What do you observe?

b Scroll down to the portion of the applet labeled “More Trials.” Choose a value for p and
click the button “New Sequence” repeatedly. You will obtain up to 50 sequences, each
based on 1000 trials. How does the variability among the estimates change as a function of
the sample size? How is this manifested in the display that you obtained?

9.14 Applet Exercise Refer to Exercise 9.13. Scroll down to the portion of the applet labeled
“Mean of Normal Data.” Successive observed values of a standard normal random variable can
be generated and used to compute the value of the sample mean Y n . These successive values
are then plotted versus the respective sample size to obtain one “sample path.”
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a Do you expect the values of Y n to cluster around any particular value? What value?

b If the results of 50 sample paths are plotted, how do you expect the variability of the
estimates to change as a function of sample size?

c Click the button “New Sequence” several times. Did you observe what you expected based
on your answers to parts (a) and (b)?

9.15 Refer to Exercise 9.3. Show that both θ̂1 and θ̂2 are consistent estimators for θ .

9.16 Refer to Exercise 9.5. Is σ̂ 2
2 a consistent estimator of σ 2?

9.17 Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are independent random samples from pop-
ulations with means μ1 and μ2 and variances σ 2

1 and σ 2
2 , respectively. Show that X − Y is a

consistent estimator of μ1 − μ2.

9.18 In Exercise 9.17, suppose that the populations are normally distributed with σ 2
1 = σ 2

2 = σ 2.
Show that ∑n

i=1(X i − X)2 + ∑n
i=1(Yi − Y )2

2n − 2

is a consistent estimator of σ 2.

9.19 Let Y1, Y2, . . . , Yn denote a random sample from the probability density function

f (y) =
{

θyθ−1, 0 < y < 1,

0, elsewhere,

where θ > 0. Show that Y is a consistent estimator of θ/(θ + 1).

9.20 If Y has a binomial distribution with n trials and success probability p, show that Y/n is a
consistent estimator of p.

9.21 Let Y1, Y2, . . . , Yn be a random sample of size n from a normal population with mean μ

and variance σ 2. Assuming that n = 2k for some integer k, one possible estimator for σ 2 is
given by

σ̂ 2 = 1

2k

k∑
i=1

(Y2i − Y2i−1)
2.

a Show that σ̂ 2 is an unbiased estimator for σ 2.

b Show that σ̂ 2 is a consistent estimator for σ 2.

9.22 Refer to Exercise 9.21. Suppose that Y1, Y2, . . . , Yn is a random sample of size n from a
Poisson-distributed population with mean λ. Again, assume that n = 2k for some integer k.
Consider

λ̂ = 1

2k

k∑
i=1

(Y2i − Y2i−1)
2.

a Show that λ̂ is an unbiased estimator for λ.

b Show that λ̂ is a consistent estimator for λ.

9.23 Refer to Exercise 9.21. Suppose that Y1, Y2, . . . , Yn is a random sample of size n from a
population for which the first four moments are finite. That is, m ′

1 = E(Y1) < ∞, m ′
2 =

E(Y 2
1 ) < ∞, m ′

3 = E(Y 3
1 ) < ∞, and m ′

4 = E(Y 4
1 ) < ∞. (Note: This assumption is valid for

the normal and Poisson distributions in Exercises 9.21 and 9.22, respectively.) Again, assume
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that n = 2k for some integer k. Consider

σ̂ 2 = 1

2k

k∑
i=1

(Y2i − Y2i−1)
2.

a Show that σ̂ 2 is an unbiased estimator for σ 2.

b Show that σ̂ 2 is a consistent estimator for σ 2.

c Why did you need the assumption that m ′
4 = E(Y 4

1 ) < ∞?

9.24 Let Y1, Y2, Y3, . . . Yn be independent standard normal random variables.

a What is the distribution of
∑n

i=1 Y 2
i ?

b Let Wn = 1
n

∑n
i=1 Y 2

i . Does Wn converge in probability to some constant? If so, what is the
value of the constant?

9.25 Suppose that Y1, Y2, . . . , Yn denote a random sample of size n from a normal distribution with
mean μ and variance 1. Consider the first observation Y1 as an estimator for μ.

a Show that Y1 is an unbiased estimator for μ.

b Find P(|Y1 − μ| ≤ 1).

c Look at the basic definition of consistency given in Definition 9.2. Based on the result of
part (b), is Y1 a consistent estimator for μ?

*9.26 It is sometimes relatively easy to establish consistency or lack of consistency by appeal-
ing directly to Definition 9.2, evaluating P(|θ̂n − θ | ≤ ε) directly, and then showing that
limn→∞ P(|θ̂n − θ | ≤ ε) = 1. Let Y1, Y2, . . . , Yn denote a random sample of size n from
a uniform distribution on the interval (0, θ). If Y(n) = max(Y1, Y2, . . . , Yn), we showed in
Exercise 6.74 that the probability distribution function of Y(n) is given by

F(n)(y) =
⎧⎨⎩

0, y < 0,

(y/θ)n, 0 ≤ y ≤ θ,

1, y > θ .

a For each n ≥ 1 and every ε > 0, it follows that P(|Y(n) − θ | ≤ ε) = P(θ − ε ≤ Y(n) ≤
θ + ε). If ε > θ , verify that P(θ − ε ≤ Y(n) ≤ θ + ε) = 1 and that, for every positive
ε < θ , we obtain P(θ − ε ≤ Y(n) ≤ θ + ε) = 1 − [(θ − ε)/θ ]n .

b Using the result from part (a), show that Y(n) is a consistent estimator for θ by showing
that, for every ε > 0, limn→∞ P(|Y(n) − θ | ≤ ε) = 1.

*9.27 Use the method described in Exercise 9.26 to show that, if Y(1) = min(Y1, Y2, . . . , Yn) when
Y1, Y2, . . . , Yn are independent uniform random variables on the interval (0, θ), then Y(1) is not
a consistent estimator for θ . [Hint: Based on the methods of Section 6.7, Y(1) has the distribution
function

F(1)(y) =

⎧⎪⎨⎪⎩
0, y < 0,

1 − (1 − y/θ)n, 0 ≤ y ≤ θ,

1, y > θ.]

*9.28 Let Y1, Y2, . . . , Yn denote a random sample of size n from a Pareto distribution (see Exer-
cise 6.18). Then the methods of Section 6.7 imply that Y(1) = min(Y1, Y2, . . . , Yn) has the
distribution function given by

F(1)(y) =
{

0, y ≤ β,

1 − (β/y)αn, y > β.

Use the method described in Exercise 9.26 to show that Y(1) is a consistent estimator of β.
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*9.29 Let Y1, Y2, . . . , Yn denote a random sample of size n from a power family distribution (see
Exercise 6.17). Then the methods of Section 6.7 imply that Y(n) = max(Y1, Y2, . . . , Yn) has
the distribution function given by

F(n)(y) =

⎧⎪⎨⎪⎩
0, y < 0,

(y/θ)αn, 0 ≤ y ≤ θ,

1, y > θ .

Use the method described in Exercise 9.26 to show that Y(n) is a consistent estimator of θ .

9.30 Let Y1, Y2, . . . , Yn be independent random variables, each with probability density function

f (y) =
{

3y2, 0 ≤ y ≤ 1,

0, elsewhere.

Show that Y converges in probability to some constant and find the constant.

9.31 If Y1, Y2, . . . , Yn denote a random sample from a gamma distribution with parameters α and
β, show that Y converges in probability to some constant and find the constant.

9.32 Let Y1, Y2, . . . , Yn denote a random sample from the probability density function

f (y) =
⎧⎨⎩

2

y2
, y ≥ 2,

0, elsewhere.

Does the law of large numbers apply to Y in this case? Why or why not?

9.33 An experimenter wishes to compare the numbers of bacteria of types A and B in samples of
water. A total of n independent water samples are taken, and counts are made for each sample.
Let X i denote the number of type A bacteria and Yi denote the number of type B bacteria for
sample i . Assume that the two bacteria types are sparsely distributed within a water sample so
that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn can be considered independent random samples from
Poisson distributions with means λ1 and λ2, respectively. Suggest an estimator of λ1/(λ1 +λ2).
What properties does your estimator have?

9.34 The Rayleigh density function is given by

f (y) =

⎧⎪⎨⎪⎩
(

2y

θ

)
e−y2/θ , y > 0,

0, elsewhere.

In Exercise 6.34(a), you established that Y 2 has an exponential distribution with mean θ .
If Y1, Y2, . . . , Yn denote a random sample from a Rayleigh distribution, show that Wn =
1
n

∑n
i=1 Y 2

i is a consistent estimator for θ .

9.35 Let Y1, Y2, . . . be a sequence of random variables with E(Yi ) = μ and V (Yi ) = σ 2
i . Notice

that the σ 2
i ’s are not all equal.

a What is E(Y n)?

b What is V (Y n)?

c Under what condition (on the σ 2
i ’s) can Theorem 9.1 be applied to show that Y n is a

consistent estimator for μ?

9.36 Suppose that Y has a binomial distribution based on n trials and success probability p. Then
p̂n = Y/n is an unbiased estimator of p. Use Theorem 9.3 to prove that the distribution of

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.4 Sufficiency 459

( p̂n − p)/
√

p̂n q̂n/n converges to a standard normal distribution. [Hint: Write Y as we did in
Section 7.5.]

9.4 Sufficiency
Up to this point, we have chosen estimators on the basis of intuition. Thus, we chose
Y and S2 as the estimators of the mean and variance, respectively, of the normal
distribution. (It seems like these should be good estimators of the population parame-
ters.) We have seen that it is sometimes desirable to use estimators that are unbiased.
Indeed, Y and S2 have been shown to be unbiased estimators of the population mean
μ and variance σ 2, respectively. Notice that we have used the information in a sample
of size n to calculate the value of two statistics that function as estimators for the pa-
rameters of interest. At this stage, the actual sample values are no longer important;
rather, we summarize the information in the sample that relates to the parameters of
interest by using the statistics Y and S2. Has this process of summarizing or reducing
the data to the two statistics, Y and S2, retained all the information about μ and σ 2

in the original set of n sample observations? Or has some information about these
parameters been lost or obscured through the process of reducing the data? In this
section, we present methods for finding statistics that in a sense summarize all the
information in a sample about a target parameter. Such statistics are said to have the
property of sufficiency; or more simply, they are called sufficient statistics. As we will
see in the next section, “good” estimators are (or can be made to be) functions of any
sufficient statistic. Indeed, sufficient statistics often can be used to develop estimators
that have the minimum variance among all unbiased estimators.

To illustrate the notion of a sufficient statistic, let us consider the outcomes of n
trials of a binomial experiment, X1, X2, . . . , Xn , where

X i =
{

1, if the i th trial is a success,

0, if the i th trial is a failure.

If p is the probability of success on any trial then, for i = 1, 2, . . . , n,

X i =
{

1, with probability p,

0, with probability q = 1 − p.

Suppose that we are given a value of Y = ∑n
i=1 X i , the number of successes among

the n trials. If we know the value of Y , can we gain any further information about p
by looking at other functions of X1, X2, . . . , Xn? One way to answer this question
is to look at the conditional distribution of X1, X2, . . . , Xn , given Y :

P(X1 = x1, . . . , Xn = xn|Y = y) = P(X1 = x1, . . . , Xn = xn, Y = y)

P(Y = y)
.

The numerator on the right side of this expression is 0 if
∑n

i=1 xi 7= y, and it is the
probability of an independent sequence of 0s and 1s with a total of y 1s and (n − y)

0s if
∑n

i=1 xi = y. Also, the denominator is the binomial probability of exactly y
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successes in n trials. Therefore, if y = 0, 1, 2, . . . , n,

P(X1 = x1, . . . , Xn = xn|Y = y) =

⎧⎪⎨⎪⎩
py(1 − p)n−y(n

y

)
py(1 − p)n−y

= 1(n
y

) , if
n∑

i=1

xi = y,

0, otherwise.

It is important to note that the conditional distribution of X1, X2, . . . , Xn, given Y ,
does not depend upon p. That is, once Y is known, no other function of X1, X2, . . . , Xn

will shed additional light on the possible value of p. In this sense, Y contains all the
information about p. Therefore, the statistic Y is said to be sufficient for p. We
generalize this idea in the following definition.

DEFINITION 9.3 Let Y1, Y2, . . . , Yn denote a random sample from a probability distribution with
unknown parameter θ . Then the statistic U = g(Y1, Y2, . . . , Yn) is said to be
sufficient for θ if the conditional distribution of Y1, Y2, . . . , Yn , given U , does
not depend on θ .

In many previous discussions, we have considered the probability function p(y)

associated with a discrete random variable [or the density function f (y) for a contin-
uous random variable] to be functions of the argument y only. Our future discussions
will be simplified if we adopt notation that will permit us to explicitly display the
fact that the distribution associated with a random variable Y often depends on the
value of a parameter θ . If Y is a discrete random variable that has a probability mass
function that depends on the value of a parameter θ , instead of p(y) we use the
notation p(y | θ). Similarly, we will indicate the explicit dependence of the form of
a continuous density function on the value of a parameter θ by writing the density
function as f (y | θ) instead of the previously used f (y).

Definition 9.3 tells us how to check whether a statistic is sufficient, but it does
not tell us how to find a sufficient statistic. Recall that in the discrete case the joint
distribution of discrete random variables Y1, Y2, . . . , Yn is given by a probability
function p(y1, y2, . . . , yn). If this joint probability function depends explicitly on
the value of a parameter θ , we write it as p(y1, y2, . . . , yn | θ). This function gives
the probability or likelihood of observing the event (Y1 = y1, Y2 = y2, . . . , Yn = yn)

when the value of the parameter is θ . In the continuous case when the joint distribution
of Y1, Y2, . . . , Yn depends on a parameter θ , we will write the joint density function as
f (y1, y2, . . . , yn | θ). Henceforth, it will be convenient to have a single name for the
function that defines the joint distribution of the variables Y1, Y2, . . . , Yn observed
in a sample.

DEFINITION 9.4 Let y1, y2, . . . , yn be sample observations taken on corresponding random
variables Y1, Y2, . . . , Yn whose distribution depends on a parameter θ . Then,
if Y1, Y2, . . . , Yn are discrete random variables, the likelihood of the sample,
L(y1, y2, . . . , yn | θ), is defined to be the joint probability of y1, y2, . . . , yn .
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9.4 Sufficiency 461

If Y1, Y2, . . . , Yn are continuous random variables, the likelihood L(y1, y2, . . . ,

yn | θ) is defined to be the joint density evaluated at y1, y2, . . . , yn .

If the set of random variables Y1, Y2, . . . , Yn denotes a random sample from a
discrete distribution with probability function p(y | θ), then

L(y1, y2, . . . , yn | θ) = p(y1, y2, . . . , yn | θ)

= p(y1 | θ) × p(y2 | θ) ×· · ·× p(yn | θ),

whereas if Y1, Y2, . . . , Yn have a continuous distribution with density function
f (y | θ), then

L(y1, y2, . . . , yn | θ) = f (y1, y2, . . . , yn | θ)

= f (y1 | θ) × f (y2 | θ) × · · · × f (yn | θ).

To simplify notation, we will sometimes denote the likelihood by L(θ) instead of by
L(y1, y2, . . . , yn | θ).

The following theorem relates the property of sufficiency to the likelihood L(θ).

THEOREM 9.4 Let U be a statistic based on the random sample Y1, Y2, . . . , Yn . Then U is a
sufficient statistic for the estimation of a parameter θ if and only if the likelihood
L(θ) = L(y1, y2, . . . , yn | θ) can be factored into two nonnegative functions,

L(y1, y2, . . . , yn | θ) = g(u, θ) × h(y1, y2, . . . , yn)

where g(u, θ) is a function only of u and θ and h(y1, y2, . . . , yn) is not a
function of θ .

Although the proof of Theorem 9.4 (also known as the factorization criterion)
is beyond the scope of this book, we illustrate the usefulness of the theorem in the
following example.

EXAMPLE 9.5 Let Y1, Y2, . . . , Yn be a random sample in which Yi possesses the probability density
function

f (yi | θ) =
{

(1/θ)e−yi /θ , 0 ≤ yi < ∞,

0, elsewhere,

where θ > 0, i = 1, 2, . . . , n. Show that Y is a sufficient statistic for the parameter θ .

Solution The likelihood L(θ) of the sample is the joint density

L(y1, y2, . . . , yn | θ) = f (y1, y2, . . . , yn | θ)

= f (y1 | θ) × f (y2 | θ) × · · · × f (yn | θ)

= e−y1/θ

θ
× e−y2/θ

θ
× · · · × e−yn/θ

θ
= e− ∑

yi /θ

θn
= e−ny/θ

θn
.
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Notice that L(θ) is a function only of θ and y and that if

g(y, θ) = e−ny/θ

θn
and h(y1, y2, . . . , yn) = 1,

then

L(y1, y2, . . . , yn | θ) = g(y, θ) × h(y1, y2, . . . , yn).

Hence, Theorem 9.4 implies that Y is a sufficient statistic for the parameter θ .

Theorem 9.4 can be used to show that there are many possible sufficient statistics
for any one population parameter. First of all, according to Definition 9.3 or the
factorization criterion (Theorem 9.4), the random sample itself is a sufficient statistic.
Second, if Y1, Y2, . . . , Yn denote a random sample from a distribution with a density
function with parameter θ , then the set of order statistics Y(1) ≤ Y(2) ≤ · · · ≤ Y(n),
which is a function of Y1, Y2, . . . , Yn , is sufficient for θ . In Example 9.5, we decided
that Y is a sufficient statistic for the estimation of θ . Theorem 9.4 could also have been
used to show that

∑n
i=1 Yi is another sufficient statistic. Indeed, for the exponential

distribution described in Example 9.5, any statistic that is a one–to–one function of
Y is a sufficient statistic.

In our initial example of this section, involving the number of successes in n tri-
als, Y = ∑n

i=1 X i reduces the data X1, X2, . . . , Xn to a single value that remains
sufficient for p. Generally, we would like to find a sufficient statistic that reduces the
data in the sample as much as possible. Although many statistics are sufficient for the
parameter θ associated with a specific distribution, application of the factorization
criterion typically leads to a statistic that provides the “best” summary of the infor-
mation in the data. In Example 9.5, this statistic is Y (or some one-to-one function of
it). In the next section, we show how these sufficient statistics can be used to develop
unbiased estimators with minimum variance.

Exercises
9.37 Let X1, X2, . . . , Xn denote n independent and identically distributed Bernoulli random vari-

ables such that

P(X i = 1) = p and P(X i = 0) = 1 − p,

for each i = 1, 2, . . . , n. Show that
∑n

i=1 X i is sufficient for p by using the factorization
criterion given in Theorem 9.4.

9.38 Let Y1 , Y2, . . . , Yn denote a random sample from a normal distribution with mean μ and
variance σ 2.

a If μ is unknown and σ 2 is known, show that Y is sufficient for μ.

b If μ is known and σ 2 is unknown, show that
∑n

i=1(Yi − μ)2 is sufficient for σ 2.

c If μ and σ 2 are both unknown, show that
∑n

i=1 Yi and
∑n

i=1 Y 2
i are jointly sufficient for μ

and σ 2. [Thus, it follows that Y and
∑n

i=1(Yi − Y )2 or Y and S2 are also jointly sufficient
for μ and σ 2.]
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9.39 Let Y1, Y2, . . . , Yn denote a random sample from a Poisson distribution with parameter λ.
Show by conditioning that

∑n
i=1 Yi is sufficient for λ.

9.40 Let Y1, Y2, . . . , Yn denote a random sample from a Rayleigh distribution with parameter θ .
(Refer to Exercise 9.34.) Show that

∑n
i=1 Y 2

i is sufficient for θ .

9.41 Let Y1, Y2, . . . , Yn denote a random sample from a Weibull distribution with known m and
unknown α. (Refer to Exercise 6.26.) Show that

∑n
i=1 Y m

i is sufficient for α.

9.42 If Y1, Y2, . . . , Yn denote a random sample from a geometric distribution with parameter p,
show that Y is sufficient for p.

9.43 Let Y1, Y2, . . . , Yn denote independent and identically distributed random variables from a
power family distribution with parameters α and θ . Then, by the result in Exercise 6.17, if
α, θ > 0,

f (y | α, θ) =
{

αyα−1/θα, 0 ≤ y ≤ θ,

0, elsewhere.

If θ is known, show that
∏n

i=1 Yi is sufficient for α.

9.44 Let Y1, Y2, . . . , Yn denote independent and identically distributed random variables from a
Pareto distribution with parameters α and β. Then, by the result in Exercise 6.18, if α, β > 0,

f (y | α, β) =
{

αβα y−(α+1), y ≥ β,

0, elsewhere.

If β is known, show that
∏n

i=1 Yi is sufficient for α.

9.45 Suppose that Y1, Y2, . . . , Yn is a random sample from a probability density function in the
(one-parameter) exponential family so that

f (y | θ) =
{

a(θ)b(y)e−[c(θ)d(y)], a ≤ y ≤ b,

0, elsewhere,

where a and b do not depend on θ . Show that
∑n

i=1 d(Yi ) is sufficient for θ .

9.46 If Y1, Y2, . . . , Yn denote a random sample from an exponential distribution with mean β, show
that f (y | β) is in the exponential family and that Y is sufficient for β.

9.47 Refer to Exercise 9.43. If θ is known, show that the power family of distributions is in the
exponential family. What is a sufficient statistic for α? Does this contradict your answer to
Exercise 9.43?

9.48 Refer to Exercise 9.44. If β is known, show that the Pareto distribution is in the exponential
family. What is a sufficient statistic for α? Argue that there is no contradiction between your
answer to this exercise and the answer you found in Exercise 9.44.

*9.49 Let Y1, Y2, . . . , Yn denote a random sample from the uniform distribution over the interval
(0, θ). Show that Y(n) = max(Y1, Y2, . . . , Yn) is sufficient for θ .

*9.50 Let Y1, Y2, . . . , Yn denote a random sample from the uniform distribution over the interval
(θ1, θ2). Show that Y(1) = min(Y1, Y2, . . . , Yn) and Y(n) = max(Y1, Y2, . . . , Yn) are jointly
sufficient for θ1 and θ2.

*9.51 Let Y1, Y2, . . . , Yn denote a random sample from the probability density function

f (y | θ) =
{

e−(y−θ), y ≥ θ,

0, elsewhere.

Show that Y(1) = min(Y1, Y2, . . . , Yn) is sufficient for θ .
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464 Chapter 9 Properties of Point Estimators and Methods of Estimation

*9.52 Let Y1, Y2, . . . , Yn be a random sample from a population with density function

f (y | θ) =
⎧⎨⎩

3y2

θ 3
, 0 ≤ y ≤ θ,

0, elsewhere.
Show that Y(n) = max(Y1, Y2, . . . , Yn) is sufficient for θ .

*9.53 Let Y1, Y2, . . . , Yn be a random sample from a population with density function

f (y | θ) =
⎧⎨⎩

2θ2

y3
, θ < y < ∞,

0, elsewhere.
Show that Y(1) = min(Y1, Y2, . . . , Yn) is sufficient for θ .

*9.54 Let Y1, Y2, . . . , Yn denote independent and identically distributed random variables from a
power family distribution with parameters α and θ . Then, as in Exercise 9.43, if α, θ > 0,

f (y | α, θ) =
{

αyα−1/θα, 0 ≤ y ≤ θ,

0, elsewhere.

Show that max(Y1, Y2, . . . , Yn) and
∏n

i=1 Yi are jointly sufficient for α and θ .

*9.55 Let Y1, Y2, . . . , Yn denote independent and identically distributed random variables from a
Pareto distribution with parameters α and β. Then, as in Exercise 9.44, if α, β > 0,

f (y | α, β) =
{

αβα y−(α+1), y ≥ β,

0, elsewhere.

Show that
∏n

i=1 Yi and min(Y1, Y2, . . . , Yn) are jointly sufficient for α and β.

9.5 The Rao–Blackwell Theorem and
Minimum-Variance Unbiased Estimation
Sufficient statistics play an important role in finding good estimators for parameters. If
θ̂ is an unbiased estimator for θ and if U is a statistic that is sufficient for θ , then there
is a function of U that is also an unbiased estimator for θ and has no larger variance
than θ̂ . If we seek unbiased estimators with small variances, we can restrict our search
to estimators that are functions of sufficient statistics. The theoretical basis for the
preceding remarks is provided in the following result, known as the Rao–Blackwell
theorem.

THEOREM 9.5 The Rao–Blackwell Theorem Let θ̂ be an unbiased estimator for θ such that
V (θ̂) < ∞. If U is a sufficient statistic for θ , define θ̂∗ = E(θ̂ | U ). Then, for
all θ ,

E
(
θ̂∗) = θ and V

(
θ̂∗) ≤ V (θ̂).

Proof Because U is sufficient for θ , the conditional distribution of any statistic
(including θ̂ ), given U , does not depend on θ . Thus, θ̂∗ = E(θ̂ | U ) is not a
function of θ and is therefore a statistic.
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9.5 The Rao–Blackwell Theorem and Minimum-Variance Unbiased Estimation 465

Recall Theorems 5.14 and 5.15 where we considered how to find means
and variances of random variables by using conditional means and variances.
Because θ̂ is an unbiased estimator for θ , Theorem 5.14 implies that

E(θ̂∗) = E[E(θ̂ | U )] = E(θ̂) = θ.

Thus, θ̂∗ is an unbiased estimator for θ.

Theorem 5.15 implies that

V (θ̂) = V [E(θ̂ | U )] + E[V (θ̂ | U )]

= V (θ̂∗) + E[V (θ̂ | U )].

Because V (θ̂ | U = u) ≥ 0 for all u, it follows that E[V (θ̂ | U )] ≥ 0 and
therefore that V (θ̂) ≥ V (θ̂∗), as claimed.

Theorem 9.5 implies that an unbiased estimator for θ with a small variance is or
can be made to be a function of a sufficient statistic. If we have an unbiased estimator
for θ , we might be able to improve it by using the result in Theorem 9.5. It might
initially seem that the Rao–Blackwell theorem could be applied once to get a better
unbiased estimator and then reapplied to the resulting new estimator to get an even
better unbiased estimator. If we apply the Rao–Blackwell theorem using the sufficient
statistic U , then θ̂∗ = E(θ̂ | U ) will be a function of the statistic U , say, θ̂∗ = h(U ).
Suppose that we reapply the Rao–Blackwell theorem to θ̂∗ by using the same sufficient
statistic U . Since, in general, E(h(U ) | U ) = h(U ), we see that by using the Rao–
Blackwell theorem again, our “new” estimator is just h(U ) = θ̂∗. That is, if we use
the same sufficient statistic in successive applications of the Rao–Blackwell theorem,
we gain nothing after the first application. The only way that successive applications
can lead to better unbiased estimators is if we use a different sufficient statistic when
the theorem is reapplied. Thus, it is unnecessary to use the Rao–Blackwell theorem
successively if we use the right sufficient statistic in our initial application.

Because many statistics are sufficient for a parameter θ associated with a distri-
bution, which sufficient statistic should we use when we apply this theorem? For the
distributions that we discuss in this text, the factorization criterion typically identifies
a statistic U that best summarizes the information in the data about the parame-
ter θ . Such statistics are called minimal sufficient statistics. Exercise 9.66 introduces
a method for determining a minimal sufficient statistic that might be of interest to
some readers. In a few of the subsequent exercises, you will see that this method
usually yields the same sufficient statistics as those obtained from the factorization
criterion. In the cases that we consider, these statistics possess another property (com-
pleteness) that guarantees that, if we apply Theorem 9.5 using U , we not only get
an estimator with a smaller variance but also actually obtain an unbiased estimator
for θ with minimum variance. Such an estimator is called a minimum-variance unbi-
ased estimator (MVUE). See Casella and Berger (2002), Hogg, Craig, and McKean
(2005), or Mood, Graybill, and Boes (1974) for additional details.

Thus, if we start with an unbiased estimator for a parameter θ and the sufficient
statistic obtained through the factorization criterion, application of the Rao–Blackwell
theorem typically leads to an MVUE for the parameter. Direct computation of
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conditional expectations can be difficult. However, if U is the sufficient statistic
that best summarizes the data and some function of U—say, h(U )—can be found
such that E[h(U )] = θ , it follows that h(U ) is the MVUE for θ . We illustrate this
approach with several examples.

EXAMPLE 9.6 Let Y1, Y2, . . . , Yn denote a random sample from a distribution where P(Yi = 1) = p
and P(Yi = 0) = 1 − p, with p unknown (such random variables are often called
Bernoulli variables). Use the factorization criterion to find a sufficient statistic that
best summarizes the data. Give an MVUE for p.

Solution Notice that the preceding probability function can be written as

P(Yi = yi ) = pyi (1 − p)1−yi , yi = 0, 1.

Thus, the likelihood L(p) is

L(y1, y2, . . . , yn | p) = p(y1, y2, . . . , yn|p)

= py1(1 − p)1−y1 × py2(1 − p)1−y2 × · · · × pyn (1 − p)1−yn

= p
∑

yi (1 − p)n−∑
yi︸ ︷︷ ︸

g(
∑

yi , p)

× 1︸︷︷︸
h(y1, y2,...,yn)

.

According to the factorization criterion, U = ∑n
i=1 Yi is sufficient for p. This statistic

best summarizes the information about the parameter p. Notice that E(U ) = np, or
equivalently, E(U/n) = p. Thus, U/n = Y is an unbiased estimator for p. Because
this estimator is a function of the sufficient statistic

∑n
i=1 Yi , the estimator p̂ = Y is

the MVUE for p.

EXAMPLE 9.7 Suppose that Y1, Y2, . . . , Yn denote a random sample from the Weibull density func-
tion, given by

f (y | θ) =
⎧⎨⎩
(

2y

θ

)
e−y2/θ , y > 0,

0, elsewhere.

Find an MVUE for θ .

Solution We begin by using the factorization criterion to find the sufficient statistic that best
summarizes the information about θ .

L(y1, y2, . . . , yn | θ) = f (y1, y2, . . . , yn | θ)

=
(

2

θ

)n

(y1 × y2 × · · · × yn) exp

(
−1

θ

n∑
i=1

y2
i

)

=
(

2

θ

)n

exp

(
−1

θ

n∑
i=1

y2
i

)
︸ ︷︷ ︸

g(
∑

y2
i , θ)

× (y1 × y2 × · · · × yn)︸ ︷︷ ︸
h(y1,y2,...,yn)

.
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Thus, U = ∑n
i=1 Y 2

i is the minimal sufficient statistic for θ .
We now must find a function of this statistic that is unbiased for θ . Letting W = Y 2

i ,
we have

fW (w) = f (
√

w)
d(

√
w)

dw
=

(
2

θ

) (√
we−w/θ

) (
1

2
√

w

)
=

(
1

θ

)
e−w/θ , w > 0.

That is, Y 2
i has an exponential distribution with parameter θ . Because

E(Y 2
i ) = E(W ) = θ and E

(
n∑

i=1

Y 2
i

)
= nθ,

it follows that

θ̂ = 1

n

n∑
i=1

Y 2
i

is an unbiased estimator of θ that is a function of the sufficient statistic
∑n

i=1 Y 2
i .

Therefore, θ̂ is an MVUE of the Weibull parameter θ .

The following example illustrates the use of this technique for estimating two
unknown parameters.

EXAMPLE 9.8 Suppose Y1, Y2, . . . , Yn denotes a random sample from a normal distribution with
unknown mean μ and variance σ 2. Find the MVUEs for μ and σ 2.

Solution Again, looking at the likelihood function, we have

L(y1, y2, . . . , yn | μ, σ 2)

= f (y1, y2, . . . , yn|μ, σ 2)

=
(

1

σ
√

2π

)n

exp

(
− 1

2σ 2

n∑
i=1

(yi − μ)2

)

=
(

1

σ
√

2π

)n

exp

[
− 1

2σ 2

(
n∑

i=1

y2
i − 2μ

n∑
i=1

yi + nμ2

)]

=
(

1

σ
√

2π

)n

exp

(−nμ2

2σ 2

)
exp

[
− 1

2σ 2

(
n∑

i=1

y2
i − 2μ

n∑
i=1

yi

)]
.

Thus,
∑n

i=1 Yi and
∑n

i=1 Y 2
i , jointly, are sufficient statistics for μ and σ 2.

We know from past work that Y is unbiased for μ and

S2 = 1

n − 1

n∑
i=1

(Yi − Y )2 = 1

n − 1

[
n∑

i=1

Y 2
i − nY

2

]
is unbiased for σ 2. Because these estimators are functions of the statistics that best
summarize the information about μ and σ 2, they are MVUEs for μ and σ 2.
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The factorization criterion, together with the Rao–Blackwell theorem, can also be
used to find MVUEs for functions of the parameters associated with a distribution.
We illustrate the technique in the following example.

EXAMPLE 9.9 Let Y1, Y2, . . . , Yn denote a random sample from the exponential density function
given by

f (y | θ) =
⎧⎨⎩
(

1

θ

)
e−y/θ , y > 0,

0, elsewhere.

Find an MVUE of V (Yi ).

Solution In Chapter 4, we determined that E(Yi ) = θ and that V (Yi ) = θ2. The factorization
criterion implies that

∑n
i=1 Yi is the best sufficient statistic for θ . In fact, Y is the

MVUE of θ . Therefore, it is tempting to use Y
2

as an estimator of θ2. But

E
(

Y
2
)

= V (Y ) + [E(Y )]2 = θ2

n
+ θ2 =

(
n + 1

n

)
θ2.

It follows that Y
2

is a biased estimate for θ2. However,(
n

n + 1

)
Y

2

is an MVUE of θ2 because it is an unbiased estimator for θ2 and a function of the
sufficient statistic. No other unbiased estimator of θ2 will have a smaller variance
than this one.

A sufficient statistic for a parameter θ often can be used to construct an exact
confidence interval for θ if the probability distribution of the statistic can be found.
The resulting intervals generally are the shortest that can be found with a specified
confidence coefficient. We illustrate the technique with an example involving the
Weibull distribution.

EXAMPLE 9.10 The following data, with measurements in hundreds of hours, represent the lengths
of life of ten identical electronic components operating in a guidance control system
for missiles:

.637 1.531 .733 2.256 2.364

1.601 .152 1.826 1.868 1.126

The length of life of a component of this type is assumed to follow a Weibull distri-
bution with density function given by

f (y | θ) =
⎧⎨⎩

(
2y

θ

)
e−y2/θ , y > 0,

0, elsewhere.

Use the data to construct a 95% confidence interval for θ .
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Solution We saw in Example 9.7 that the sufficient statistic that best summarizes the information
about θ is

∑n
i=1 Y 2

i . We will use this statistic to form a pivotal quantity for constructing
the desired confidence interval.

Recall from Example 9.7 that Wi = Y 2
i has an exponential distribution with mean θ .

Now consider the transformation Ti = 2Wi/θ . Then

fT (t) = fW

(
θ t

2

)
d(θ t/2)

dt
=

(
1

θ

)
e−(θ t/2)/θ

(
θ

2

)
=

(
1

2

)
e−t/2, t > 0.

Thus, for each i = 1, 2, . . . , n, Ti has a χ2 distribution with 2 df. Further, because the
variables Yi are independent, the variables Ti are independent, for i = 1, 2, . . . , n.
The sum of independent χ2 random variables has a χ2 distribution with degrees of
freedom equal to the sum of the degrees of freedom of the variables in the sum.
Therefore, the quantity

10∑
i=1

Ti = 2

θ

10∑
i=1

Wi = 2

θ

10∑
i=1

Y 2
i

has a χ2 distribution with 20 df. Thus,

2

θ

10∑
i=1

Y 2
i

is a pivotal quantity, and we can use the pivotal method (Section 8.5) to construct the
desired confidence interval.

From Table 6, Appendix 3, we can find two numbers a and b such that

P

(
a ≤ 2

θ

10∑
i=1

Y 2
i ≤ b

)
= .95.

Manipulating the inequality to isolate θ in the middle, we have

.95 = P

(
a ≤ 2

θ

10∑
i=1

Y 2
i ≤ b

)
= P

(
1

b
≤ θ

2
∑10

i=1 Y 2
i

≤ 1

a

)

= P

(
2

∑10
i=1 Y 2

i

b
≤ θ ≤ 2

∑10
i=1 Y 2

i

a

)
.

From Table 6, Appendix 3, the value that cuts off an area of .025 in the lower tail
of the χ2 distribution with 20 df is a = 9.591. The value that cuts off an area of
.025 in the upper tail of the same distribution is b = 34.170. For the preceding data,∑10

i=1 Y 2
i = 24.643. Therefore, the 95% confidence interval for the Weibull parameter

θ is (
2(24.643)

34.170
,

2(24.643)

9.591

)
, or (1.442, 5.139).

This is a fairly wide interval for θ , but it is based on only ten observations.

In this section, we have seen that the Rao–Blackwell theorem implies that unbi-
ased estimators with small variances are functions of sufficient statistics. Generally
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470 Chapter 9 Properties of Point Estimators and Methods of Estimation

speaking, the factorization criterion presented in Section 9.4 can be applied to find
sufficient statistics that best summarize the information contained in sample data
about parameters of interest. For the distributions that we consider in this text, an
MVUE for a target parameter θ can be found as follows. First, determine the best
sufficient statistic, U . Then, find a function of U , h(U ), such that E[h(U )] = θ .

This method often works well. However, sometimes a best sufficient statistic is
a fairly complicated function of the observable random variables in the sample. In
cases like these, it may be difficult to find a function of the sufficient statistic that
is an unbiased estimator for the target parameter. For this reason, two additional
methods of finding estimators—the method of moments and the method of maximum
likelihood—are presented in the next two sections. A third important method for
estimation, the method of least squares, is the topic of Chapter 11.

Exercises
9.56 Refer to Exercise 9.38(b). Find an MVUE of σ 2.

9.57 Refer to Exercise 9.18. Is the estimator of σ 2 given there an MVUE of σ 2?

9.58 Refer to Exercise 9.40. Use
∑n

i=1 Y 2
i to find an MVUE of θ .

9.59 The number of breakdowns Y per day for a certain machine is a Poisson random variable with
mean λ. The daily cost of repairing these breakdowns is given by C = 3Y 2. If Y1, Y2, . . . , Yn

denote the observed number of breakdowns for n independently selected days, find an MVUE
for E(C).

9.60 Let Y1, Y2, . . . , Yn denote a random sample from the probability density function

f (y | θ) =
{

θyθ−1, 0 < y < 1, θ > 0,

0, elsewhere.

a Show that this density function is in the (one-parameter) exponential family and that∑n
i=1 − ln(Yi ) is sufficient for θ . (See Exercise 9.45.)

b If Wi = − ln(Yi ), show that Wi has an exponential distribution with mean 1/θ .

c Use methods similar to those in Example 9.10 to show that 2θ
∑n

i=1 Wi has a χ 2 distribution
with 2n df.

d Show that

E

(
1

2θ
∑n

i=1 Wi

)
= 1

2(n − 1)
.

[Hint: Recall Exercise 4.112.]

e What is the MVUE for θ?

9.61 Refer to Exercise 9.49. Use Y(n) to find an MVUE of θ . (See Example 9.1.)

9.62 Refer to Exercise 9.51. Find a function of Y(1) that is an MVUE for θ .

9.63 Let Y1, Y2, . . . , Yn be a random sample from a population with density function

f (y | θ) =
⎧⎨⎩

3y2

θ 3
, 0 ≤ y ≤ θ,

0, elsewhere.
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In Exercise 9.52 you showed that Y(n) = max(Y1, Y2, . . . , Yn) is sufficient for θ .

a Show that Y(n) has probability density function

f(n)(y | θ) =
⎧⎨⎩ 3ny3n−1

θ3n
, 0 ≤ y ≤ θ,

0, elsewhere.

b Find the MVUE of θ .

9.64 Let Y1, Y2, . . . , Yn be a random sample from a normal distribution with mean μ and variance 1.

a Show that the MVUE of μ2 is μ̂2 = Y
2 − 1/n.

b Derive the variance of μ̂2.

*9.65 In this exercise, we illustrate the direct use of the Rao–Blackwell theorem. Let Y1, Y2, . . . , Yn

be independent Bernoulli random variables with

p(yi | p) = pyi (1 − p)1−yi , yi = 0, 1.

That is, P(Yi = 1) = p and P(Yi = 0) = 1 − p. Find the MVUE of p(1 − p), which is a
term in the variance of Yi or W = ∑n

i=1 Yi , by the following steps.

a Let

T =
{

1, if Y1 = 1 and Y2 = 0,

0, otherwise.

Show that E(T ) = p(1 − p).

b Show that

P(T = 1 | W = w) = w(n − w)

n(n − 1)
.

c Show that

E(T | W ) = n

n − 1

[
W

n

(
1 − W

n

)]
= n

n − 1
Y (1 − Y )

and hence that nY (1 − Y )/(n − 1) is the MVUE of p(1 − p).

*9.66 The likelihood function L(y1, y2, . . . , yn | θ) takes on different values depending on the
arguments (y1, y2 , . . . , yn). A method for deriving a minimal sufficient statistic developed by
Lehmann and Scheffé uses the ratio of the likelihoods evaluated at two points, (x1, x2, . . . , xn)

and (y1, y2, . . . , yn):

L(x1, x2, . . . , xn | θ)

L(y1, y2, . . . , yn | θ)
.

Many times it is possible to find a function g(x1, x2, . . . , xn) such that this ratio is free of the
unknown parameter θ if and only if g(x1, x2, . . . , xn) = g(y1, y2, . . . , yn). If such a function
g can be found, then g(Y1, Y2, . . . , Yn) is a minimal sufficient statistic for θ .

a Let Y1, Y2, . . . , Yn be a random sample from a Bernoulli distribution (see Example 9.6
and Exercise 9.65) with p unknown.

i Show that

L(x1, x2, . . . , xn | p)

L(y1, y2, . . . , yn | p)
=

(
p

1 − p

)$xi −$yi

.
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472 Chapter 9 Properties of Point Estimators and Methods of Estimation

ii Argue that for this ratio to be independent of p, we must have
n∑

i=1

xi −
n∑

i=1

yi = 0 or
n∑

i=1

xi =
n∑

i=1

yi .

iii Using the method of Lehmann and Scheffé, what is a minimal sufficient statistic for
p? How does this sufficient statistic compare to the sufficient statistic derived in Ex-
ample 9.6 by using the factorization criterion?

b Consider the Weibull density discussed in Example 9.7.

i Show that

L(x1, x2, . . . , xn | θ)

L(y1, y2, . . . , yn | θ)
=

(
x1x2 · · · xn

y1 y2 · · · yn

)
exp

[
− 1

θ

(
n∑

i=1

x2
i −

n∑
i=1

y2
i

)]
.

ii Argue that
∑n

i=1 Y 2
i is a minimal sufficient statistic for θ .

*9.67 Refer to Exercise 9.66. Suppose that a sample of size n is taken from a normal population
with mean μ and variance σ 2. Show that

∑n
i=1 Yi , and

∑n
i=1 Y 2

i jointly form minimal sufficient
statistics for μ and σ 2.

*9.68 Suppose that a statistic U has a probability density function that is positive over the interval
a ≤ u ≤ b and suppose that the density depends on a parameter θ that can range over the
interval α1 ≤ θ ≤ α2. Suppose also that g(u) is continuous for u in the interval [a, b]. If
E[g(U ) | θ ] = 0 for all θ in the interval [α1, α2] implies that g(u) is identically zero, then the
family of density functions { fU (u | θ), α1 ≤ θ ≤ α2} is said to be complete. (All statistics that
we employed in Section 9.5 have complete families of density functions.) Suppose that U is a
sufficient statistic for θ , and g1(U ) and g2(U ) are both unbiased estimators of θ . Show that, if
the family of density functions for U is complete, g1(U ) must equal g2(U ), and thus there is
a unique function of U that is an unbiased estimator of θ .

Coupled with the Rao–Blackwell theorem, the property of completeness of fU (u | θ),
along with the sufficiency of U , assures us that there is a unique minimum-variance unbiased
estimator (UMVUE) of θ .

9.6 The Method of Moments
In this section, we will discuss one of the oldest methods for deriving point estimators:
the method of moments. A more sophisticated method, the method of maximum
likelihood, is the topic of Section 9.7.

The method of moments is a very simple procedure for finding an estimator for
one or more population parameters. Recall that the kth moment of a random variable,
taken about the origin, is

μ′
k = E(Y k).

The corresponding kth sample moment is the average

m ′
k = 1

n

n∑
i=1

Y k
i .

The method of moments is based on the intuitively appealing idea that sample mo-
ments should provide good estimates of the corresponding population moments.
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9.6 The Method of Moments 473

That is, m ′
k should be a good estimator of μ′

k , for k = 1, 2, . . . . Then because
the population moments μ′

1, μ
′
2, . . . , μ

′
k are functions of the population parameters,

we can equate corresponding population and sample moments and solve for the
desired estimators. Hence, the method of moments can be stated as follows.

Method of Moments
Choose as estimates those values of the parameters that are solutions of the
equations μ′

k = m ′
k , for k = 1, 2, . . . , t , where t is the number of parameters

to be estimated.

EXAMPLE 9.11 A random sample of n observations, Y1, Y2, . . . , Yn , is selected from a population in
which Yi , for i = 1, 2, . . . , n, possesses a uniform probability density function over
the interval (0, θ) where θ is unknown. Use the method of moments to estimate the
parameter θ .

Solution The value of μ′
1 for a uniform random variable is

μ′
1 = μ = θ

2
.

The corresponding first sample moment is

m ′
1 = 1

n

n∑
i=1

Yi = Y .

Equating the corresponding population and sample moment, we obtain

μ′
1 = θ

2
= Y .

The method-of-moments estimator for θ is the solution of the above equation. That
is, θ̂ = 2Y .

For the distributions that we consider in this text, the methods of Section 9.3 can
be used to show that sample moments are consistent estimators of the corresponding
population moments. Because the estimators obtained from the method of moments
obviously are functions of the sample moments, estimators obtained using the method
of moments are usually consistent estimators of their respective parameters.

EXAMPLE 9.12 Show that the estimator θ̂ = 2Y , derived in Example 9.11, is a consistent estimator
for θ .

Solution In Example 9.1, we showed that θ̂ = 2Y is an unbiased estimator for θ and that
V (θ̂) = θ2/3n. Because limn→∞ V (θ̂) = 0, Theorem 9.1 implies that θ̂ = 2Y is a
consistent estimator for θ .
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474 Chapter 9 Properties of Point Estimators and Methods of Estimation

Although the estimator θ̂ derived in Example 9.11 is consistent, it is not nec-
essarily the best estimator for θ . Indeed, the factorization criterion yields Y(n) =
max(Y1, Y2, . . . , Yn) to be the best sufficient statistic for θ . Thus, according to the
Rao–Blackwell theorem, the method-of-moments estimator will have larger variance
than an unbiased estimator based on Y(n). This, in fact, was shown to be the case in
Example 9.1.

EXAMPLE 9.13 A random sample of n observations, Y1, Y2, . . . , Yn , is selected from a population
where Yi , for i = 1, 2, . . . , n, possesses a gamma probability density function with
parameters α and β (see Section 4.6 for the gamma probability density function).
Find method-of-moments estimators for the unknown parameters α and β.

Solution Because we seek estimators for two parameters α and β, we must equate two pairs
of population and sample moments.

The first two moments of the gamma distribution with parameters α and β are (see
the inside of the back cover of the text, if necessary)

μ′
1 = μ = αβ and μ′

2 = σ 2 + μ2 = αβ2 + α2β2.

Now equate these quantities to their corresponding sample moments and solve for α̂

and β̂. Thus,

μ′
1 = αβ = m ′

1 = Y ,

μ′
2 = αβ2 + α2β2 = m ′

2 = 1

n

n∑
i=1

Y 2
i .

From the first equation, we obtain β̂ = Y/α̂. Substituting into the second equation
and solving for α̂, we obtain

α̂ = Y
2( ∑

Y 2
i /n

) − Y
2 = nY

2∑n
i=1(Yi − Y )2

.

Substituting α̂ into the first equation, we obtain

β̂ = Y

α̂
=

∑n
i=1(Yi − Y )2

nY
.

The method-of-moments estimators α̂ and β̂ in Example 9.13 are consistent. Y
converges in probability to E(Yi ) = αβ, and (1/n)

∑n
i=1 Y 2

i converges in probability
to E(Y 2

i ) = αβ2 + α2β2. Thus,

α̂ = Y
2

1
n

∑n
i=1 Y 2

i − Y
2 is a consistent estimator of

(αβ)2

αβ2 + α2β2 − (αβ)2
= α,

and

β̂ = Y

α̂
is a consistent estimator of

αβ

α
= β.
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Using the factorization criterion, we can show
∑n

i=1 Yi and the product
∏n

i=1 Yi to be
sufficient statistics for the gamma density function. Because the method-of-moments
estimators α̂ and β̂ are not functions of these sufficient statistics, we can find more
efficient estimators for the parameters α and β. However, it is considerably more
difficult to apply other methods to find estimators for these parameters.

To summarize, the method of moments finds estimators of unknown parameters
by equating corresponding sample and population moments. The method is easy to
employ and provides consistent estimators. However, the estimators derived by this
method are often not functions of sufficient statistics. As a result, method-of-moments
estimators are sometimes not very efficient. In many cases, the method-of-moments
estimators are biased. The primary virtues of this method are its ease of use and that
it sometimes yields estimators with reasonable properties.

Exercises
9.69 Let Y1, Y2, . . . , Yn denote a random sample from the probability density function

f (y | θ) =
{

(θ + 1)yθ , 0 < y < 1; θ > −1,

0, elsewhere.

Find an estimator for θ by the method of moments. Show that the estimator is consistent. Is
the estimator a function of the sufficient statistic − ∑n

i=1 ln(Yi ) that we can obtain from the
factorization criterion? What implications does this have?

9.70 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a Poisson distribution with
mean λ. Find the method-of-moments estimator of λ.

9.71 If Y1, Y2, . . . , Yn denote a random sample from the normal distribution with known mean
μ = 0 and unknown variance σ 2, find the method-of-moments estimator of σ 2.

9.72 If Y1, Y2, . . . , Yn denote a random sample from the normal distribution with mean μ and
variance σ 2, find the method-of-moments estimators of μ and σ 2.

9.73 An urn contains θ black balls and N − θ white balls. A sample of n balls is to be selected
without replacement. Let Y denote the number of black balls in the sample. Show that (N/n)Y
is the method-of-moments estimator of θ .

9.74 Let Y1, Y2, . . . , Yn constitute a random sample from the probability density function given by

f (y | θ) =
⎧⎨⎩
(

2

θ 2

)
(θ − y), 0 ≤ y ≤ θ,

0, elsewhere.

a Find an estimator for θ by using the method of moments.

b Is this estimator a sufficient statistic for θ?

9.75 Let Y1, Y2, . . . , Yn be a random sample from the probability density function given by

f (y | θ) =
⎧⎨⎩

"(2θ)

["(θ)]2 (yθ−1)(1 − y)θ−1, 0 ≤ y ≤ 1,

0, elsewhere.

Find the method-of-moments estimator for θ .
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9.76 Let X1, X2, X3, . . . be independent Bernoulli random variables such that P(X i = 1) = p and
P(X i = 0) = 1 − p for each i = 1, 2, 3, . . . . Let the random variable Y denote the number of
trials necessary to obtain the first success—that is, the value of i for which X i = 1 first occurs.
Then Y has a geometric distribution with P(Y = y) = (1 − p)y−1 p, for y = 1, 2, 3, . . . . Find
the method-of-moments estimator of p based on this single observation Y .

9.77 Let Y1, Y2, . . . , Yn denote independent and identically distributed uniform random variables
on the interval (0, 3θ). Derive the method-of-moments estimator for θ .

9.78 Let Y1, Y2, . . . , Yn denote independent and identically distributed random variables from a
power family distribution with parameters α and θ = 3. Then, as in Exercise 9.43, if α > 0,

f (y|α) =
{

αyα−1/3α, 0 ≤ y ≤ 3,

0, elsewhere.

Show that E(Y1) = 3α/(α + 1) and derive the method-of-moments estimator for α.

*9.79 Let Y1, Y2, . . . , Yn denote independent and identically distributed random variables from a
Pareto distribution with parameters α and β, where β is known. Then, if α > 0,

f (y|α, β) =
{

αβα y−(α+1), y ≥ β,

0, elsewhere.

Show that E(Yi ) = αβ/(α − 1) if α > 1 and E(Yi ) is undefined if 0 < α < 1. Thus, the
method-of-moments estimator for α is undefined.

9.7 The Method of Maximum Likelihood
In Section 9.5, we presented a method for deriving an MVUE for a target parame-
ter: using the factorization criterion together with the Rao–Blackwell theorem. The
method requires that we find some function of a minimal sufficient statistic that is an
unbiased estimator for the target parameter. Although we have a method for finding a
sufficient statistic, the determination of the function of the minimal sufficient statistic
that gives us an unbiased estimator can be largely a matter of hit or miss. Section
9.6 contained a discussion of the method of moments. The method of moments is
intuitive and easy to apply but does not usually lead to the best estimators. In this
section, we present the method of maximum likelihood that often leads to MVUEs.

We use an example to illustrate the logic upon which the method of maximum
likelihood is based. Suppose that we are confronted with a box that contains three
balls. We know that each of the balls may be red or white, but we do not know the
total number of either color. However, we are allowed to randomly sample two of
the balls without replacement. If our random sample yields two red balls, what would
be a good estimate of the total number of red balls in the box? Obviously, the number
of red balls in the box must be two or three (if there were zero or one red ball in the box,
it would be impossible to obtain two red balls when sampling without replacement).
If there are two red balls and one white ball in the box, the probability of randomly
selecting two red balls is (

2
2

) (
1
0

)
(

3
2

) = 1

3
.
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9.7 The Method of Maximum Likelihood 477

On the other hand, if there are three red balls in the box, the probability of randomly
selecting two red balls is (

3
2

)
(

3
2

) = 1.

It should seem reasonable to choose three as the estimate of the number of red balls
in the box because this estimate maximizes the probability of obtaining the observed
sample. Of course, it is possible for the box to contain only two red balls, but the
observed outcome gives more credence to there being three red balls in the box.

This example illustrates a method for finding an estimator that can be applied to
any situation. The technique, called the method of maximum likelihood, selects as
estimates the values of the parameters that maximize the likelihood (the joint proba-
bility function or joint density function) of the observed sample (see Definition 9.4).
Recall that we referred to this method of estimation in Chapter 3 where in Exam-
ples 3.10 and 3.13 and Exercise 3.101 we found the maximum-likelihood estimates
of the parameter p based on single observations on binomial, geometric, and negative
binomial random variables, respectively.

Method of Maximum Likelihood
Suppose that the likelihood function depends on k parameters θ1, θ2, . . . , θk .
Choose as estimates those values of the parameters that maximize the likelihood
L(y1, y2, . . . , yn | θ1, θ2, . . . , θk).

To emphasize the fact that the likelihood function is a function of the parameters
θ1, θ2, . . . , θk , we sometimes write the likelihood function as L(θ1, θ2, . . . , θk). It
is common to refer to maximum-likelihood estimators as MLEs. We illustrate the
method with an example.

EXAMPLE 9.14 A binomial experiment consisting of n trials resulted in observations y1, y2, . . . , yn ,
where yi = 1 if the i th trial was a success and yi = 0 otherwise. Find the MLE of p,
the probability of a success.

Solution The likelihood of the observed sample is the probability of observing y1, y2, . . . , yn .
Hence,

L(p) = L(y1, y2, . . . , yn | p) = py(1 − p)n−y, where y =
n∑

i=1

yi .

We now wish to find the value of p that maximizes L(p). If y = 0, L(p) = (1−p)n ,
and L(p) is maximized when p = 0. Analogously, if y = n, L(p) = pn and L(p) is
maximized when p = 1. If y = 1, 2, . . . , n − 1, then L(p) = py(1 − p)n−y is zero
when p = 0 and p = 1 and is continuous for values of p between 0 and 1. Thus, for
y = 1, 2, . . . , n − 1, we can find the value of p that maximizes L(p) by setting the
derivative d L(p)/dp equal to 0 and solving for p.

You will notice that ln[L(p)] is a monotonically increasing function of L(p).
Hence, both ln[L(p)] and L(p) are maximized for the same value of p. Because
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L(p) is a product of functions of p and finding the derivative of products is tedious,
it is easier to find the value of p that maximizes ln[L(p)]. We have

ln[L(p)] = ln
[

py(1 − p)n−y
] = y ln p + (n − y) ln(1 − p).

If y = 1, 2, . . . , n − 1, the derivative of ln[L(p)] with respect to p, is

d ln[L(p)]

dp
= y

(
1

p

)
+ (n − y)

( −1

1 − p

)
.

For y = 1, 2, . . . , n − 1, the value of p that maximizes (or minimizes) ln[L(p)] is
the solution of the equation

y

p̂
− n − y

1 − p̂
= 0.

Solving, we obtain the estimate p̂ = y/n. You can easily verify that this solution
occurs when ln[L(p)] [and hence L(p)] achieves a maximum.

Because L(p) is maximized at p = 0 when y = 0, at p = 1 when y = n and
at p = y/n when y = 1, 2, . . . , n − 1, whatever the observed value of y, L(p) is
maximized when p = y/n.

The MLE, p̂ = Y/n, is the fraction of successes in the total number of trials n.
Hence, the MLE of p is actually the intuitive estimator for p that we used throughout
Chapter 8.

EXAMPLE 9.15 Let Y1, Y2, . . . , Yn be a random sample from a normal distribution with mean μ and
variance σ 2. Find the MLEs of μ and σ 2.

Solution Because Y1, Y2, . . . , Yn are continuous random variables, L(μ, σ 2) is the joint den-
sity of the sample. Thus, L(μ, σ 2) = f (y1, y2, . . . , yn | μ, σ 2). In this case,

L(μ, σ 2) = f (y1, y2, . . . , yn | μ, σ 2)

= f (y1 | μ, σ 2) × f (y2|μ, σ 2) ×· · ·× f (yn|μ, σ 2)

=
{

1

σ
√

2π
exp

[−(y1 − μ)2

2σ 2

]}
× · · · ×

{
1

σ
√

2π
exp

[−(yn − μ)2

2σ 2

]}

=
(

1

2πσ 2

)n/2

exp

[
−1

2σ 2

n∑
i=1

(yi − μ)2

]
.

[Recall that exp(w) is just another way of writing ew .] Further,

ln
[
L(μ, σ 2)

] = −n

2
ln σ 2 − n

2
ln 2π − 1

2σ 2

n∑
i=1

(yi − μ)2.

The MLEs of μ and σ 2 are the values that make ln
[
L(μ, σ 2)

]
a maximum. Taking

derivatives with respect to μ and σ 2, we obtain

∂{ln[L(μ, σ 2)]}
∂μ

= 1

σ 2

n∑
i=1

(yi − μ)
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and

∂{ln[L(μ, σ 2)]}
∂σ 2

= −
(n

2

) (
1

σ 2

)
+ 1

2σ 4

n∑
i=1

(yi − μ)2.

Setting these derivatives equal to zero and solving simultaneously, we obtain from
the first equation

1

σ̂ 2

n∑
i=1

(yi − μ̂) = 0, or
n∑

i=1

yi − nμ̂ = 0, and μ̂ = 1

n

n∑
i=1

yi = y.

Substituting y for μ̂ in the second equation and solving for σ̂ 2, we have

−
( n

σ̂ 2

)
+ 1

σ̂ 4

n∑
i=1

(yi − y)2 = 0, or σ̂ 2 = 1

n

n∑
i=1

(yi − y)2.

Thus, Y and σ̂ 2 = 1
n

∑n
i=1(Yi − Y )2 are the MLEs of μ and σ 2, respectively. Notice

that Y is unbiased for μ. Although σ̂ 2 is not unbiased for σ 2, it can easily be adjusted
to the unbiased estimator S2 (see Example 8.1).

EXAMPLE 9.16 Let Y1, Y2, . . . , Yn be a random sample of observations from a uniform distribution
with probability density function f (yi | θ) = 1/θ , for 0 ≤ yi ≤ θ and i = 1, 2, . . . , n.
Find the MLE of θ .

Solution In this case, the likelihood is given by

L(θ) = f (y1, y2, . . . , yn | θ) = f (y1 | θ) × f (y2 | θ) × · · · × f (yn | θ)

=
⎧⎨⎩

1

θ
× 1

θ
× · · · × 1

θ
= 1

θn
, if 0 ≤ yi ≤ θ, i = 1, 2, . . . , n,

0, otherwise.

Obviously, L(θ) is not maximized when L(θ) = 0. You will notice that 1/θn is a
monotonically decreasing function of θ . Hence, nowhere in the interval 0 < θ < ∞
is d[1/θn]/dθ equal to zero. However, 1/θn increases as θ decreases, and 1/θn is
maximized by selecting θ to be as small as possible, subject to the constraint that all
of the yi values are between zero and θ . The smallest value of θ that satisfies this
constraint is the maximum observation in the set y1, y2, . . . , yn . That is, θ̂ = Y(n) =
max(Y1, Y2, . . . , Yn) is the MLE for θ . This MLE for θ is not an unbiased estimator
of θ , but it can be adjusted to be unbiased, as shown in Example 9.1.

We have seen that sufficient statistics that best summarize the data have desirable
properties and often can be used to find an MVUE for parameters of interest. If U
is any sufficient statistic for the estimation of a parameter θ , including the sufficient
statistic obtained from the optimal use of the factorization criterion, the MLE is
always some function of U . That is, the MLE depends on the sample observations
only through the value of a sufficient statistic. To show this, we need only observe
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480 Chapter 9 Properties of Point Estimators and Methods of Estimation

that if U is a sufficient statistic for θ , the factorization criterion (Theorem 9.4) implies
that the likelihood can be factored as

L(θ) = L(y1, y2, . . . , yn | θ) = g(u, θ)h(y1, y2, . . . , yn),

where g(u, θ) is a function of only u and θ and h(y1, y2, . . . , yn) does not depend
on θ . Therefore, it follows that

ln[L(θ)] = ln[g(u, θ)] + ln[h(y1, y2, . . . , yn)].

Notice that ln[h(y1, y2, . . . , yn)] does not depend on θ and therefore maximizing
ln[L(θ)] relative to θ is equivalent to maximizing ln[g(u, θ)] relative to θ . Because
ln[g(u, θ)] depends on the data only through the value of the sufficient statistic U , the
MLE for θ is always some function of U . Consequently, if an MLE for a parameter
can be found and then adjusted to be unbiased, the resulting estimator often is an
MVUE of the parameter in question.

MLEs have some additional properties that make this method of estimation par-
ticularly attractive. In Example 9.9, we considered estimation of θ2, a function of the
parameter θ . Functions of other parameters may also be of interest. For example, the
variance of a binomial random variable is np(1 − p), a function of the parameter p.
If Y has a Poisson distribution with mean λ, it follows that P(Y = 0) = e−λ; we may
wish to estimate this function of λ. Generally, if θ is the parameter associated with
a distribution, we are sometimes interested in estimating some function of θ—say
t (θ)—rather than θ itself. In Exercise 9.94, you will prove that if t (θ) is a one-to-one
function of θ and if θ̂ is the MLE for θ , then the MLE of t (θ) is given by

t̂ (θ) = t (θ̂).

This result, sometimes referred to as the invariance property of MLEs, also holds for
any function of a parameter of interest (not just one-to-one functions). See Casella
and Berger (2002) for details.

EXAMPLE 9.17 In Example 9.14, we found that the MLE of the binomial proportion p is given by
p̂ = Y/n. What is the MLE for the variance of Y ?

Solution The variance of a binomial random variable Y is given by V (Y ) = np(1 − p).
Because V (Y ) is a function of the binomial parameter p—namely, V (Y ) = t (p)

with t (p) = np(1 − p)—it follows that the MLE of V (Y ) is given by

V̂ (Y ) = t̂ (p) = t ( p̂) = n

(
Y

n

) (
1 − Y

n

)
.

This estimator is not unbiased. However, using the result in Exercise 9.65, we can
easily adjust it to make it unbiased. Actually,

n

(
Y

n

) (
1 − Y

n

) (
n

n − 1

)
=

(
n2

n − 1

) (
Y

n

) (
1 − Y

n

)
is the UMVUE for t (p) = np(1 − p).
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In the next section (optional), we summarize some of the convenient and useful
large-sample properties of MLEs.

Exercises
9.80 Suppose that Y1, Y2, . . . , Yn denote a random sample from the Poisson distribution with

mean λ.

a Find the MLE λ̂ for λ.

b Find the expected value and variance of λ̂.

c Show that the estimator of part (a) is consistent for λ.

d What is the MLE for P(Y = 0) = e−λ?

9.81 Suppose that Y1, Y2, . . . , Yn denote a random sample from an exponentially distributed popu-
lation with mean θ . Find the MLE of the population variance θ 2. [Hint: Recall Example 9.9.]

9.82 Let Y1, Y2, . . . , Yn denote a random sample from the density function given by

f (y | θ) =
⎧⎨⎩

(
1

θ

)
r yr−1e−yr/θ , θ > 0, y > 0,

0, elsewhere,

where r is a known positive constant.

a Find a sufficient statistic for θ .

b Find the MLE of θ .

c Is the estimator in part (b) an MVUE for θ?

9.83 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a uniform distribution with
probability density function

f (y | θ) =
⎧⎨⎩

1

2θ + 1
, 0 ≤ y ≤ 2θ + 1,

0, otherwise.

a Obtain the MLE of θ .

b Obtain the MLE for the variance of the underlying distribution.

9.84 A certain type of electronic component has a lifetime Y (in hours) with probability density
function given by

f (y | θ) =
⎧⎨⎩

(
1

θ2

)
ye−y/θ , y > 0,

0, otherwise.

That is, Y has a gamma distribution with parameters α = 2 and θ . Let θ̂ denote the MLE of
θ . Suppose that three such components, tested independently, had lifetimes of 120, 130, and
128 hours.

a Find the MLE of θ .

b Find E(θ̂) and V (θ̂).

c Suppose that θ actually equals 130. Give an approximate bound that you might expect for
the error of estimation.

d What is the MLE for the variance of Y ?
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9.85 Let Y1, Y2, . . . , Yn denote a random sample from the density function given by

f (y | α, θ) =
⎧⎨⎩

(
1

"(α)θα

)
yα−1e−y/θ , y > 0,

0, elsewhere,
where α > 0 is known.

a Find the MLE θ̂ of θ .

b Find the expected value and variance of θ̂ .

c Show that θ̂ is consistent for θ .

d What is the best (minimal) sufficient statistic for θ in this problem?

e Suppose that n = 5 and α = 2. Use the minimal sufficient statistic to construct a 90%
confidence interval for θ . [Hint: Transform to a χ2 distribution.]

9.86 Suppose that X1, X2, . . . , Xm , representing yields per acre for corn variety A, constitute a
random sample from a normal distribution with mean μ1 and variance σ 2. Also, Y1 Y2, . . . , Yn ,
representing yields for corn variety B, constitute a random sample from a normal distribution
with mean μ2 and variance σ 2. If the X ’s and Y ’s are independent, find the MLE for the
common variance σ 2. Assume that μ1 and μ2 are unknown.

9.87 A random sample of 100 voters selected from a large population revealed 30 favoring candidate
A, 38 favoring candidate B, and 32 favoring candidate C. Find MLEs for the proportions of
voters in the population favoring candidates A, B, and C, respectively. Estimate the difference
between the fractions favoring A and B and place a 2-standard-deviation bound on the error of
estimation.

9.88 Let Y1, Y2, . . . , Yn denote a random sample from the probability density function

f (y | θ) =
{

(θ + 1)yθ , 0 < y < 1, θ > −1,

0, elsewhere.
Find the MLE for θ . Compare your answer to the method-of-moments estimator found in
Exercise 9.69.

9.89 It is known that the probability p of tossing heads on an unbalanced coin is either 1/4 or 3/4.
The coin is tossed twice and a value for Y , the number of heads, is observed. For each possible
value of Y , which of the two values for p (1/4 or 3/4) maximizes the probability that Y = y?
Depending on the value of y actually observed, what is the MLE of p?

9.90 A random sample of 100 men produced a total of 25 who favored a controversial local
issue. An independent random sample of 100 women produced a total of 30 who favored
the issue. Assume that pM is the true underlying proportion of men who favor the issue
and that pW is the true underlying proportion of women who favor of the issue. If it actually is
true that pW = pM = p, find the MLE of the common proportion p.

*9.91 Find the MLE of θ based on a random sample of size n from a uniform distribution on the
interval (0, 2θ).

*9.92 Let Y1, Y2, . . . , Yn be a random sample from a population with density function

f (y | θ) =
⎧⎨⎩ 3y2

θ 3
, 0 ≤ y ≤ θ,

0, elsewhere.
In Exercise 9.52, you showed that Y(n) = max(Y1, Y2, . . . , Yn) is sufficient for θ .

a Find the MLE for θ . [Hint: See Example 9.16.]

b Find a function of the MLE in part (a) that is a pivotal quantity. [Hint: see Exercise 9.63.]

c Use the pivotal quantity from part (b) to find a 100(1 − α)% confidence interval for θ .
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*9.93 Let Y1, Y2, . . . , Yn be a random sample from a population with density function

f (y | θ) =
⎧⎨⎩

2θ2

y3
, θ < y < ∞,

0, elsewhere.

In Exercise 9.53, you showed that Y(1) = min(Y1, Y2, . . . , Yn) is sufficient for θ .

a Find the MLE for θ . [Hint: See Example 9.16.]

b Find a function of the MLE in part (a) that is a pivotal quantity.

c Use the pivotal quantity from part (b) to find a 100(1 − α)% confidence interval for θ .

*9.94 Suppose that θ̂ is the MLE for a parameter θ . Let t (θ) be a function of θ that possesses a unique
inverse [that is, if β = t (θ), then θ = t−1(β)]. Show that t (θ̂) is the MLE of t (θ).

*9.95 A random sample of n items is selected from the large number of items produced by a certain
production line in one day. Find the MLE of the ratio R, the proportion of defective items
divided by the proportion of good items.

9.96 Consider a random sample of size n from a normal population with mean μ and variance σ 2,
both unknown. Derive the MLE of σ .

9.97 The geometric probability mass function is given by

p(y | p) = p(1 − p)y−1, y = 1, 2, 3, . . . .

A random sample of size n is taken from a population with a geometric distribution.

a Find the method-of-moments estimator for p.

b Find the MLE for p.

9.8 Some Large-Sample Properties of
Maximum-Likelihood Estimators (Optional)
Maximum-likelihood estimators also have interesting large-sample properties. Sup-
pose that t (θ) is a differentiable function of θ . In Section 9.7, we argued by the
invariance property that if θ̂ is the MLE of θ , then the MLE of t (θ) is given by
t (θ̂). Under some conditions of regularity that hold for the distributions that we will
consider, t (θ̂) is a consistent estimator for t (θ). In addition, for large sample sizes,

Z = t (θ̂) − t (θ)√√√√[
∂t (θ)

∂θ

]2
/

nE

[
−∂2 ln f (Y | θ)

∂θ2

]
has approximately a standard normal distribution. In this expression, the quantity
f (Y | θ) in the denominator is the density function corresponding to the continuous
distribution of interest, evaluated at the random value Y . In the discrete case, the
analogous result holds with the probability function evaluated at the random value Y ,
p(Y | θ) substituted for the density f (Y | θ). If we desire a confidence interval for t(θ),
we can use quantity Z as a pivotal quantity. If we proceed as in Section 8.6, we obtain
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the following approximate large-sample 100(1 − α)% confidence interval for t (θ):

t (θ̂) ± zα/2

√√√√[
∂t (θ)

∂θ

]2
/

nE

[
−∂2 ln f (Y | θ)

∂θ2

]

≈ t (θ̂) ± zα/2

√√√√( [
∂t (θ)

∂θ

]2
/

nE

[
−∂2 ln f (Y | θ)

∂θ2

])∣∣∣∣∣
θ=θ̂

.

We illustrate this with the following example.

EXAMPLE 9.18 For random variable with a Bernoulli distribution, p(y | p) = py(1 − p)1−y , for
y = 0, 1. If Y1, Y2, . . . , Yn denote a random sample of size n from this distribution,
derive a 100(1 − α)% confidence interval for p(1 − p), the variance associated with
this distribution.

Solution As in Example 9.14, the MLE of the parameter p is given by p̂ = W/n where
W = ∑n

i=1 Yi . It follows that the MLE for t (p) = p(1 − p) is t̂ (p) = p̂(1 − p̂).
In this case,

t (p) = p(1 − p) = p − p2 and
∂t (p)

∂p
= 1 − 2p.

Also,

p(y | p) = py(1 − p)1−y

ln [p(y | p)] = y(ln p) + (1 − y) ln(1 − p)

∂ ln [p(y | p)]

∂p
= y

p
− 1 − y

1 − p

∂2 ln [p(y | p)]

∂p2
= − y

p2
− 1 − y

(1 − p)2

E

{
−∂2 ln [p(Y | p)]

∂p2

}
= E

[
Y

p2
+ 1 − Y

(1 − p)2

]
= p

p2
+ 1 − p

(1 − p)2
= 1

p
+ 1

1 − p
= 1

p(1 − p)
.

Substituting into the earlier formula for the confidence interval for t (θ), we obtain

t ( p̂) ± zα/2

√√√√{[
∂t (p)

∂p

]2
/

nE

[
−∂2 ln p(Y | p)

∂p2

]}∣∣∣∣∣
p= p̂

= p̂(1 − p̂) ± zα/2

√{
(1 − 2p)2

/
n

[
1

p(1 − p)

]}∣∣∣∣
p= p̂

= p̂(1 − p̂) ± zα/2

√
p̂(1 − p̂)(1 − 2 p̂)2

n
as the desired confidence interval for p(1 − p).
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Exercises
*9.98 Refer to Exercise 9.97. What is the approximate variance of the MLE?

*9.99 Consider the distribution discussed in Example 9.18. Use the method presented in Section 9.8
to derive a 100(1 − α)% confidence interval for t (p) = p. Is the resulting interval familiar to
you?

*9.100 Suppose that Y1, Y2, . . . , Yn constitute a random sample of size n from an exponential distri-
bution with mean θ . Find a 100(1 − α)% confidence interval for t (θ) = θ2.

*9.101 Let Y1, Y2, . . . , Yn denote a random sample of size n from a Poisson distribution with mean
λ. Find a 100(1 − α)% confidence interval for t (λ) = e−λ = P(Y = 0).

*9.102 Refer to Exercises 9.97 and 9.98. If a sample of size 30 yields y = 4.4, find a 95% confidence
interval for p.

9.9 Summary
In this chapter, we continued and extended the discussion of estimation begun in
Chapter 8. Good estimators are consistent and efficient when compared to other
estimators. The most efficient estimators, those with the smallest variances, are func-
tions of the sufficient statistics that best summarize all of the information about the
parameter of interest.

Two methods of finding estimators—the method of moments and the method of
maximum likelihood—were presented. Moment estimators are consistent but gener-
ally not very efficient. MLEs, on the other hand, are consistent and, if adjusted to be
unbiased, often lead to minimum-variance unbiased estimators. Because they have
many good properties, MLEs are often used in practice.
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Supplementary Exercises
9.103 A random sample of size n is taken from a population with a Rayleigh distribution. As in

Exercise 9.34, the Rayleigh density function is

f (y) =

⎧⎪⎨⎪⎩
(

2y

θ

)
e−y2/θ , y > 0,

0, elsewhere.

a Find the MLE of θ .

*b Find the approximate variance of the MLE obtained in part (a).

9.104 Suppose that Y1, Y2, . . . , Yn constitute a random sample from the density function

f (y | θ) =
{

e−(y−θ), y > θ,

0, elsewhere

where θ is an unknown, positive constant.

a Find an estimator θ̂1 for θ by the method of moments.

b Find an estimator θ̂2 for θ by the method of maximum likelihood.

c Adjust θ̂1 and θ̂2 so that they are unbiased. Find the efficiency of the adjusted θ̂1 relative to
the adjusted θ̂2.

9.105 Refer to Exercise 9.38(b). Under the conditions outlined there, find the MLE of σ 2.

*9.106 Suppose that Y1, Y2, . . . , Yn denote a random sample from a Poisson distribution with mean
λ. Find the MVUE of P(Yi = 0) = e−λ. [Hint: Make use of the Rao–Blackwell theorem.]

9.107 Suppose that a random sample of length-of-life measurements, Y1, Y2, . . . , Yn , is to be taken
of components whose length of life has an exponential distribution with mean θ . It is frequently
of interest to estimate

F(t) = 1 − F(t) = e−t/θ ,

the reliability at time t of such a component. For any fixed value of t , find the MLE of F(t).

*9.108 The MLE obtained in Exercise 9.107 is a function of the minimal sufficient statistic for θ , but
it is not unbiased. Use the Rao–Blackwell theorem to find the MVUE of e−t/θ by the following
steps.

a Let

V =
{

1, Y1 > t,

0, elsewhere.

Show that V is an unbiased estimator of e−t/θ .

b Because U = ∑n
i=1 Yi is the minimal sufficient statistic for θ , show that the conditional

density function for Y1, given U = u, is

fY1|U (y1 | u) =
⎧⎨⎩

(
n − 1

un−1

)
(u − y1)

n−2, 0 < y1 < u,

0, elsewhere.

c Show that

E(V | U ) = P(Y1 > t | U ) =
(

1 − t

U

)n−1

.
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This is the MVUE of e−t/θ by the Rao–Blackwell theorem and by the fact that the density
function for U is complete.

*9.109 Suppose that n integers are drawn at random and with replacement from the integers 1, 2, . . . , N .
That is, each sampled integer has probability 1/N of taking on any of the values 1, 2, . . . , N ,
and the sampled values are independent.

a Find the method-of-moments estimator N̂1 of N .

b Find E(N̂1) and V (N̂1).

*9.110 Refer to Exercise 9.109.

a Find the MLE N̂2 of N .

b Show that E(N̂2) is approximately [n/(n + 1)]N . Adjust N̂2 to form an estimator N̂3 that
is approximately unbiased for N .

c Find an approximate variance for N̂3 by using the fact that for large N the variance of the
largest sampled integer is approximately

nN 2

(n + 1)2(n + 2)
.

d Show that for large N and n > 1, V (N̂3) < V (N̂1).

*9.111 Refer to Exercise 9.110. Suppose that enemy tanks have serial numbers 1, 2, . . . , N . A spy
randomly observed five tanks (with replacement) with serial numbers 97, 64, 118, 210, and
57. Estimate N and place a bound on the error of estimation.

9.112 Let Y1, Y2, . . . , Yn denote a random sample from a Poisson distribution with mean λ and define

Wn = Y − λ√
Y/n

.

a Show that the distribution of Wn converges to a standard normal distribution.

b Use Wn and the result in part (a) to derive the formula for an approximate 95% confidence
interval for λ.
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References and Further Readings

10.1 Introduction
Recall that the objective of statistics often is to make inferences about unknown pop-
ulation parameters based on information contained in sample data. These inferences
are phrased in one of two ways: as estimates of the respective parameters or as tests of
hypotheses about their values. Chapters 8 and 9 dealt with estimation. In this chapter,
we discuss the general topic of hypothesis testing.

In many ways, the formal procedure for hypothesis testing is similar to the scientific
method. The scientist observes nature, formulates a theory, and then tests this theory
against observation. In our context, the scientist poses a hypothesis concerning one or
more population parameters—that they equal specified values. She then samples the
population and compares her observations with the hypothesis. If the observations
disagree with the hypothesis, the scientist rejects it. If not, the scientist concludes
either that the hypothesis is true or that the sample did not detect the difference
between the real and hypothesized values of the population parameters.
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10.2 Elements of a Statistical Test 489

For example, a medical researcher may hypothesize that a new drug is more effec-
tive than another in combating a disease. To test her hypothesis, she randomly selects
patients infected with the disease and randomly divides them into two groups. The
new drug A is given to the patients in the first group, and the old drug B is given to
the patients in the second group. Then, based on the number of patients in each group
who recover from the disease, the researcher must decide whether the new drug is
more effective than the old.

Hypothesis tests are conducted in all fields in which theory can be tested against
observation. A quality control engineer may hypothesize that a new assembly method
produces only 5% defective items. An educator may claim that two methods of teach-
ing reading are equally effective, or a political candidate may claim that a plurality
of voters favor his election. All such hypotheses can be subjected to statistical verifi-
cation by using observed sample data.

What is the role of statistics in testing hypotheses? Putting it more bluntly, of what
value is statistics in this hypothesis testing procedure? Testing a hypothesis requires
making a decision when comparing the observed sample with theory. How do we
decide whether the sample disagrees with the scientist’s hypothesis? When should
we reject the hypothesis, when should we accept it, and when should we withhold
judgment? What is the probability that we will make the wrong decision and conse-
quently be led to a loss? And, particularly, what function of the sample measurements
should be employed to reach a decision? The answers to these questions are contained
in a study of statistical hypothesis testing.

Chapter 8 introduced the general topic of estimation and presented some intuitive
estimation procedures. Chapter 9 presented some properties of estimators and some
formal methods for deriving estimators. We use the same approach in our discussion
of hypothesis testing. That is, we introduce the topic, present some intuitive testing
procedures, and then consider some formal methods for deriving statistical hypothesis
testing procedures.

10.2 Elements of a Statistical Test
Many times, the objective of a statistical test is to test a hypothesis concerning the
values of one or more population parameters. We generally have a theory—a research
hypothesis—about the parameter(s) that we wish to support. For example, suppose
that a political candidate, Jones, claims that he will gain more than 50% of the votes
in a city election and thereby emerge as the winner. If we do not believe Jones’s
claim, we might seek to support the research hypothesis that Jones is not favored by
more than 50% of the electorate. Support for this research hypothesis, also called the
alternative hypothesis, is obtained by showing (using the sample data as evidence) that
the converse of the alternative hypothesis, called the null hypothesis, is false. Thus,
support for one theory is obtained by showing lack of support for its converse—
in a sense, a proof by contradiction. Because we seek support for the alternative
hypothesis that Jones’s claim is false, our alternative hypothesis is that p, the prob-
ability of selecting a voter favoring Jones, is less than .5. If we can show that the
data support rejection of the null hypothesis p = .5 (the minimum value needed for a
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490 Chapter 10 Hypothesis Testing

plurality) in favor of the alternative hypothesis p < .5, we have achieved our research
objective. Although it is common to speak of testing a null hypothesis, the research
objective usually is to show support for the alternative hypothesis, if such support is
warranted.

How do we use that data to decide between the null hypothesis and the alternative
hypothesis? Suppose that n = 15 voters are randomly selected from the city and Y ,
the number favoring Jones, is recorded. If none in the sample favor Jones (Y = 0),
what would you conclude about Jones’s claim? If Jones is actually favored by more
than 50% of the electorate, it is not impossible to observe Y = 0 favoring Jones in
a sample of size n = 15, but it is highly improbable. It is much more likely that we
would observe Y = 0 if the alternative hypothesis were true. Thus, we would reject
the null hypothesis (p = .5) in favor of the alternative hypothesis (p < .5). If we
observed Y = 1 (or any small value of Y ), analogous reasoning would lead us to the
same conclusion.

Any statistical test of hypotheses works in exactly the same way and is composed
of the same essential elements.

The Elements of a Statistical Test

1. Null hypothesis, H0

2. Alternative hypothesis, Ha

3. Test statistic
4. Rejection region

For our example, the hypothesis to be tested, called the null hypothesis and denoted
by H0, is p = .5. The alternative (or research) hypothesis, denoted as Ha , is the
hypothesis to be accepted in case H0 is rejected. The alternative hypothesis usually
is the hypothesis that we seek to support on the basis of the information contained in
the sample; thus, in our example, Ha is p < .5.

The functioning parts of a statistical test are the test statistic and an associated
rejection region. The test statistic (like an estimator) is a function of the sample
measurements (Y in our example) on which the statistical decision will be based.
The rejection region, which will henceforth be denoted by RR, specifies the values of
the test statistic for which the null hypothesis is to be rejected in favor of the alternative
hypothesis. If for a particular sample, the computed value of the test statistic falls in
the rejection region RR, we reject the null hypothesis H0 and accept the alternative
hypothesis Ha . If the value of the test statistic does not fall into the RR, we accept H0.
As previously indicated, for our example small values of Y would lead us to reject
H0. Therefore, one rejection region that we might want to consider is the set of all
values of Y less than or equal to 2. We will use the notation RR = {y : y ≤ 2}—or,
more simply, RR = {y ≤ 2}—to denote this rejection region.

Finding a good rejection region for a statistical test is an interesting problem
that merits further attention. It is clear that small values of Y —say, y ≤ k (see
Figure 10.1)—are contradictory to the hypothesis H0 : p = .5 but favorable to the
alternative Ha : p < .5. So we intuitively choose the rejection region as RR =
{y ≤ k}. But what value should we choose for k? More generally, we seek some
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0 1 2 11 12 13 14 15k (k + 1)

y : Number of Voters Favoring Jones

~ ~ ~ ~

Rejection
Region, RR

F I G U R E 10.1
Rejection region,

RR = {y ≤ k}, for a
test of the hypothesis

H0 : p = .5 against
the alternative

Ha : p < .5

objective criteria for deciding which value of k specifies a good rejection region of the
form {y ≤ k}.

For any fixed rejection region (determined by a particular value of k), two types
of errors can be made in reaching a decision. We can decide in favor of Ha when H0

is true (make a type I error), or we can decide in favor of H0 when Ha is true (make
a type II error).

DEFINITION 10.1 A type I error is made if H0 is rejected when H0 is true. The probability of a
type I error is denoted by α. The value of α is called the level of the test.

A type II error is made if H0 is accepted when Ha is true. The probability
of a type II error is denoted by β.

For Jones’s political poll, making a type I error—rejecting H0 : p = .5 (and thereby
accepting Ha : p < .5) when in fact H0 is true—means concluding that Jones will lose
when, in fact, he is going to win. In contrast, making a type II error means accepting
H0 : p = .5 when p < .5 and concluding that Jones will win when, in fact he will
lose. For most real situations, incorrect decisions cost money, prestige, or time and
imply a loss. Thus, α and β, the probabilities of making these two types of errors,
measure the risks associated with the two possible erroneous decisions that might
result from a statistical test. As such, they provide a very practical way to measure
the goodness of a test.

EXAMPLE 10.1 For Jones’s political poll, n = 15 voters were sampled. We wish to test H0 : p = .5
against the alternative, Ha : p < .5. The test statistic is Y , the number of sampled
voters favoring Jones. Calculate α if we select RR = {y ≤ 2} as the rejection region.

Solution By definition,

α = P(type I error) = P(rejecting H0 when H0 is true)

= P(value of test statistic is in RR when H0 is true)

= P(Y ≤ 2 when p = .5).

Observe that Y is a binomial random variable with n = 15. If H0 is true, p = .5 and
we obtain

α =
2∑

y=0

(
15

y

)
(.5)y(.5)15−y =

(
15

0

)
(.5)15 +

(
15

1

)
(.5)15 +

(
15

2

)
(.5)15.
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492 Chapter 10 Hypothesis Testing

Using Table 1, Appendix 3, to circumvent this computation, we find α = .004. Thus,
if we decide to use the rejection region RR = {y ≤ 2}, we subject ourselves to a very
small risk (α = .004) of concluding that Jones will lose if in fact he is a winner.

EXAMPLE 10.2 Refer to Example 10.1. Is our test equally good in protecting us from concluding
that Jones is a winner if in fact he will lose? Suppose that he will receive 30% of the
votes (p = .3). What is the probability β that the sample will erroneously lead us to
conclude that H0 is true and that Jones is going to win?

Solution By definition,

β = P(type II error) = P(accepting H0 when Ha is true)

= P(value of the test statistic is not in RR when Ha is true).

Because we want to calculate β when p = .3 (a particular value of p that is in Ha),

β = P(Y > 2 when p = .3) =
15∑

y=3

(
15

y

)
(.3)y(.7)15−y .

Again consulting Table 1, Appendix 3, we find that β = .873. If we use RR = {y ≤ 2},
our test will usually lead us to conclude that Jones is a winner (with probability
β = .873), even if p is as low as p = .3.

The value of β depends on the true value of the parameter p. The larger the
difference is between p and the (null) hypothesized value of p = .5, the smaller is
the likelihood that we will fail to reject the null hypothesis.

EXAMPLE 10.3 Refer to Examples 10.1 and 10.2. Calculate the value of β if Jones will receive only
10% of the votes (p = .1).

Solution In this case, we want to calculate β when p = .1 (another particular value of p in Ha).

β = P(type II error) = P(accepting H0 when p = .1)

= P(value of test statistic is not in RR when p = .1)

= P(Y > 2 when p = .1) =
15∑

y=3

(
15

y

)
(.1)y(.9)15−y = .184.

Consequently, if we use {y ≤ 2} as the rejection region, the value of β when p = .10
is smaller than the value for β that we obtained in Example 10.2 with p = .30
(.184 versus .873). Nonetheless, when using this rejection region, we still have a
fairly large probability of claiming that Jones is a winner if in fact he will receive
only 10% of the votes.
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10.2 Elements of a Statistical Test 493

Examples 10.1 through 10.3 show that the test using RR = {y ≤ 2} guarantees a
low risk of making a type I error (α = .004), but it does not offer adequate protection
against a type II error. How can we improve our test? One way is to balance α and β

by changing the rejection region. If we enlarge RR into a new rejection region RR∗

(that is, RR ⊂ RR∗), the test using RR∗ will lead us to reject H0 more often. If α∗ and
α denote the probabilities of type I errors (levels of the tests) when we use RR∗ and
RR as the rejection regions, respectively, then, because RR ⊂ RR∗,

α∗ = P(test statistic is in RR∗ when H0 is true)

≥ P(test statistic is in RR when H0 is true) = α.

Likewise, if we use the enlarged rejection region RR∗, the test procedure will lead
us to accept H0 less often. If β∗ and β denote the probabilities of type II errors for
the tests using RR∗ and RR, respectively, then

β∗ = P(test statistic is not in RR∗ when Ha is true)

≤ P(test statistic is not in RR when Ha is true) = β.

Hence, if we change the rejection region to increase α, then β will decrease. Similarly,
if the change in rejection region results in a decrease in α, then β will increase. Thus,
α and β are inversely related.

EXAMPLE 10.4 Refer to the test discussed in Example 10.1. Now assume that RR= {y ≤ 5}. Calculate
the level α of the test and calculate β if p = .3. Compare the results with the values
obtained in Examples 10.1 and 10.2 (where we used RR = {y ≤ 2}).

Solution In this case,

α = P(test statistic is in RR when H0 is true)

= P(Y ≤ 5 when p = .5) =
5∑

y=0

(
15

y

)
(.5)15 = .151.

When p = .3,

β = P(test statistic is not in RR when Ha is true and p = .3)

= P(Y > 5 when p = .3) =
15∑

y=6

(
15

y

)
(.3)y(.7)15−y = .278.

A comparison of the α and β calculated here with the results of Examples 10.1 and
10.2 shows that enlarging the rejection region from RR = {y ≤ 2} to RR∗ = {y ≤ 5}
increased α and decreased β (see Table 10.1). Hence, we have achieved a better

Table 10.1 Comparison of α and β for two different rejection regions

RR

Probabilities of Error {y ≤ 2} {y ≤ 5}
α .004 .151
β when p = .3 .873 .278
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494 Chapter 10 Hypothesis Testing

balance between the risks of type I and type II errors, but both α and β remain
disconcertingly large. How can we reduce both α and β? The answer is intuitively
clear: Shed more light on the true nature of the population by increasing the sample
size. For almost all statistical tests, if α is fixed at some acceptably small value, β

decreases as the sample size increases.

In this section, we have defined the essential elements of any statistical test. We
have seen that two possible types of error can be made when testing hypotheses: type I
and type II errors. The probabilities of these errors serve as criteria for evaluating a
testing procedure. In the next few sections, we will use the sampling distributions
derived in Chapter 7 to develop methods for testing hypotheses about parameters of
frequent practical interest.

Exercises
10.1 Define α and β for a statistical test of hypotheses.

10.2 An experimenter has prepared a drug dosage level that she claims will induce sleep for 80% of
people suffering from insomnia. After examining the dosage, we feel that her claims regarding
the effectiveness of the dosage are inflated. In an attempt to disprove her claim, we administer
her prescribed dosage to 20 insomniacs and we observe Y , the number for whom the drug dose
induces sleep. We wish to test the hypothesis H0 : p = .8 versus the alternative, Ha : p < .8.
Assume that the rejection region {y ≤ 12} is used.

a In terms of this problem, what is a type I error?

b Find α.

c In terms of this problem, what is a type II error?

d Find β when p = .6.

e Find β when p = .4.

10.3 Refer to Exercise 10.2.

a Find the rejection region of the form {y ≤ c} so that α ≈ .01.

b For the rejection region in part (a), find β when p = .6.

c For the rejection region in part (a), find β when p = .4.

10.4 Suppose that we wish to test the null hypothesis H0 that the proportion p of ledger sheets with
errors is equal to .05 versus the alternative Ha , that the proportion is larger than .05, by using
the following scheme. Two ledger sheets are selected at random. If both are error free, we reject
H0. If one or more contains an error, we look at a third sheet. If the third sheet is error free, we
reject H0. In all other cases, we accept H0.

a In terms of this problem, what is a type I error?

b What is the value of α associated with this test?

c In terms of this problem, what is a type II error?

d Calculate β = P(type II error) as a function of p.
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10.5 Let Y1 and Y2 be independent and identically distributed with a uniform distribution over the
interval (θ, θ + 1). For testing H0 : θ = 0 versus Ha : θ > 0, we have two competing tests:

Test 1: Reject H0 if Y1 > .95.
Test 2: Reject H0 if Y1 + Y2 > c.

Find the value of c so that test 2 has the same value for α as test 1. [Hint: In Example 6.3, we
derived the density and distribution function of the sum of two independent random variables
that are uniformly distributed on the interval (0, 1).]

10.6 We are interested in testing whether or not a coin is balanced based on the number of heads
Y on 36 tosses of the coin. (H0 : p = .5 versus Ha : p 7= .5). If we use the rejection region
|y − 18| ≥ 4, what is

a the value of α?

b the value of β if p = .7?

10.7 True or False Refer to Exercise 10.6.

a The level of the test computed in Exercise 10.6(a) is the probability that H0 is true.

b The value of β computed in Exercise 10.6(b) is the probability that Ha is true.

c In Exercise 10.6(b), β was computed assuming that the null hypothesis was false.

d If β was computed when p = 0.55, the value would be larger than the value of β obtained
in Exercise 10.6(b).

e The probability that the test mistakenly rejects H0 is β.

f Suppose that RR was changed to |y − 18| ≥ 2.

i This RR would lead to rejecting the null hypothesis more often than the RR used in
Exercise 10.6.

ii If α was computed using this new RR, the value would be larger than the value obtained
in Exercise 10.6(a).

iii If β was computed when p = .7 and using this new RR, the value would be larger than
the value obtained in Exercise 10.6(b).

*10.8 A two-stage clinical trial is planned for testing H0 : p = .10 versus Ha : p > .10, where p
is the proportion of responders among patients who were treated by the protocol treatment. At
the first stage, 15 patients are accrued and treated. If 4 or more responders are observed among
the (first) 15 patients, H0 is rejected, the study is terminated, and no more patients are accrued.
Otherwise, another 15 patients will be accrued and treated in the second stage. If a total of 6
or more responders are observed among the 30 patients accrued in the two stages (15 in the
first stage and 15 more in the second stage), then H0 is rejected. For example, if 5 responders
are found among the first-stage patients, H0 is rejected and the study is over. However, if 2
responders are found among the first-stage patients, 15 second-stage patients are accrued, and
an additional 4 or more responders (for a total of 6 or more among the 30) are identified, H0 is
rejected and the study is over.1

a Use the binomial table to find the numerical value of α for this testing procedure.

b Use the binomial table to find the probability of rejecting the null hypothesis when using
this rejection region if p = .30.

c For the rejection region defined above, find β if p = .30.

1. Exercises preceded by an asterisk are optional.
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496 Chapter 10 Hypothesis Testing

10.3 Common Large-Sample Tests
Suppose that we want to test a set of hypotheses concerning a parameter θ based on
a random sample Y1, Y2, . . . , Yn . In this section, we will develop hypothesis-testing
procedures that are based on an estimator θ̂ that has an (approximately) normal
sampling distribution with mean θ and standard error σθ̂ . The large-sample estimators
of Chapter 8 (Table 8.1), such as Y and p̂, satisfy these requirements. So do the
estimators used to compare of two population means (μ1−μ2) and for the comparison
of two binomial parameters (p1 − p2).

If θ0 is a specific value of θ , we may wish to test H0 : θ = θ0 versus Ha : θ > θ0.
Figure 10.2 contains a graph illustrating the sampling distributions of θ̂ for various
values of θ . If θ̂ is close to θ0, it seems reasonable to accept H0. If in reality θ >

θ0, however, θ̂ is more likely to be large. Consequently, large values of θ̂ (values
larger than θ0 by a suitable amount) favor rejection of H0 : θ = θ0 and acceptance
of Ha : θ > θ0. That is, the null and alternative hypotheses, the test statistic, and the
rejection region are as follows:

H0 : θ = θ0.
Ha : θ > θ0.
Test statistic: θ̂ .
Rejection region: RR = {θ̂ > k} for some choice of k.

The actual value of k in the rejection region RR is determined by fixing the type I
error probability α (the level of the test) and choosing k accordingly (see Figure 10.3).
If H0 is true, θ̂ has an approximately normal distribution with mean θ0 and standard

%̂f ( )

%̂%0

F I G U R E 10.2
Sampling

distributions of
the estimator θ̂ for
various values of θ

%̂f ( )

%̂%0 k

#

Reject H0

F I G U R E 10.3
Large-sample

rejection region for
H0 : θ = θ0 versus

Ha : θ > θ0
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error σθ̂ . Therefore, if we desire an α-level test,

k = θ0 + zασθ̂

is the appropriate choice for k [if Z has a standard normal distribution, then zα is such
that P(Z > zα) = α]. Because

RR = {θ̂ : θ̂ > θ0 + zασθ̂ } =
{

θ̂ :
θ̂ − θ0

σθ̂

> zα

}
if Z = (θ̂ − θ0)/σθ̂ is used as the test statistic, the rejection region may also be written
as RR = {z > zα}. Notice that Z measures the number of standard errors between
the estimator for θ and θ0, the value of θ specified in H0. Thus, an equivalent form of
the test of hypothesis, with level α, is as follows:

H0 : θ = θ0.
Ha : θ > θ0.

Test statistic: Z = θ̂ − θ0

σθ̂

.

Rejection region: {z > zα}.
H0 is rejected if Z falls far enough into the upper tail of the standard normal dis-
tribution. The alternative hypothesis Ha : θ > θ0 is called an upper-tail alternative,
and RR = {z > zα} is referred to as an upper-tail rejection region. Notice that the
preceding formula for Z is simply

Z = estimator for the parameter − value for the parameter given by H0

standard error of the estimator
.

EXAMPLE 10.5 A vice president in charge of sales for a large corporation claims that salespeople are
averaging no more than 15 sales contacts per week. (He would like to increase this
figure.) As a check on his claim, n = 36 salespeople are selected at random, and the
number of contacts made by each is recorded for a single randomly selected week.
The mean and variance of the 36 measurements were 17 and 9, respectively. Does the
evidence contradict the vice president’s claim? Use a test with level α = .05.

Solution We are interested in the research hypothesis that the vice president’s claim is incorrect.
This can be formally written as Ha : μ > 15, where μ is the mean number of sales
contacts per week. Thus, we are interested in testing

H0 : μ = 15 against Ha : μ > 15.

We know that for large enough n, the sample mean Y is a point estimator of μ that is
approximately normally distributed with μY = μ and σY = σ/

√
n. Hence, our test

statistic is

Z = Y − μ0

σY

= Y − μ0

σ/
√

n
.

The rejection region, with α = .05, is given by {z > z.05 = 1.645} (see Table 4,
Appendix 3). The population variance σ 2 is not known, but it can be estimated very
accurately (because n = 36 is sufficiently large) by the sample variance s2 = 9.
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Thus, the observed value of the test statistic is approximately

z = y − μ

s/
√

n
= 17 − 15

3/
√

36
= 4.

Because the observed value of Z lies in the rejection region (because z = 4 exceeds
z.05 = 1.645), we reject H0 : μ = 15. Thus, at the α = .05 level of significance, the
evidence is sufficient to indicate that the vice president’s claim is incorrect and that
the average number of sales contacts per week exceeds 15.

EXAMPLE 10.6 A machine in a factory must be repaired if it produces more than 10% defectives
among the large lot of items that it produces in a day. A random sample of 100 items
from the day’s production contains 15 defectives, and the supervisor says that the
machine must be repaired. Does the sample evidence support his decision? Use a test
with level .01.

Solution If Y denotes the number of observed defectives, then Y is a binomial random variable,
with p denoting the probability that a randomly selected item is defective. Hence, we
want to test the null hypothesis

H0 : p = .10 against the alternative Ha : p > .10.

The test statistic, which is based on p̂ = Y/n (the unbiased point estimator of p), is
given by

Z = p̂ − p0

σ p̂
= p̂ − p0√

p0(1 − p0)/n
.

We could have used
√

p̂(1 − p̂)/n to approximate the standard error of p̂, but because
we are considering the distribution of Z under H0, it is more appropriate to use√

p0(1 − p0)/n, the true value of the standard error of p̂ when H0 is true.
From Table 4, Appendix 3, we see that P(Z > 2.33) = .01. Hence, we take

{z > 2.33} as the rejection region. The observed value of the test statistic is given by

z = p̂ − p0√
p0(1 − p0)/n

= .15 − .10√
(.1)(.9)/100

= 5

3
= 1.667.

Because the observed value of Z is not in the rejection region, we cannot reject
H0 : p = .10 in favor of Ha : p > .10. In terms of this application, we conclude that,
at the α = .01 level of significance, the evidence does not support the supervisor’s
decision.

Is the supervisor wrong? We can not make a statistical judgment about this until
we have evaluated the probability of accepting H0 when Ha is true—that is, until we
have calculated β. The method for calculating β is presented in Section 10.4.
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10.3 Common Large-Sample Tests 499

Testing H0 : θ = θ0 against Ha : θ < θ0 is done in an analogous manner, except
that we now reject H0 for values of θ̂ that are much smaller than θ0. The test statistic
remains

Z = θ̂ − θ0

σθ̂

,

but for a fixed level α we reject the null hypothesis when z < −zα . Because we
reject H0 in favor of Ha when z falls far enough into the lower tail of the standard
normal distribution, we call Ha : θ < θ0 a lower-tail alternative and RR: {z < −zα}
a lower-tail rejection region.

In testing H0 : θ = θ0 against Ha : θ 7= θ0, we reject H0 if θ̂ is either much smal-
ler or much larger than θ0. The test statistic is still Z , as before, but the rejection
region is located symmetrically in the two tails of the probability distribution for Z .
Thus, we reject H0 if either z < −zα/2 or z > zα/2. Equivalently, we reject H0 if
|z| > zα/2. This test is called a two-tailed test, as opposed to the one-tailed tests
used for the alternatives θ < θ0 and θ > θ0. The rejection regions for the lower-tail
alternative, Ha : θ < θ0, and the two-sided alternative, Ha : θ 7= θ0, are displayed in
Figure 10.4.

A summary of the large-sample α-level hypothesis tests developed so far is given
next.

Reject H0

0

–z #"2 Reject H0

"2# "2#

Z

Reject H0

#

0

–z #

Z

(a)

(b)

z #"2

F I G U R E 10.4
Rejection regions for

testing H0 : θ = θ0

versus (a) Ha : θ < θ0

and (b) Ha : θ 7= θ0,

based on Z = θ̂ − θ0

σ
θ̂
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Large-Sample α-Level Hypothesis Tests

H0 : θ = θ0.

Ha :

⎧⎨⎩
θ > θ0 (upper-tail alternative).

θ < θ0 (lower-tail alternative).

θ 7= θ0 (two-tailed alternative).

Test statistic: Z = θ̂ − θ0

σθ̂

.

Rejection region:

⎧⎨⎩
{z > zα} (upper-tail RR).

{z < −zα} (lower-tail RR).

{|z| > zα/2} (two-tailed RR).

In any particular test, only one of the listed alternatives Ha is appropriate. Whatever
alternative hypothesis that we choose, we must be sure to use the corresponding
rejection region.

How do we decide which alternative to use for a test? The answer depends on the
hypothesis that we seek to support. If we are interested only in detecting an increase
in the percentage of defectives (Example 10.6), we should locate the rejection region
in the upper tail of the standard normal distribution. On the other hand, if we wish to
detect a change in p either above or below p = .10, we should locate the rejection
region in both tails of the standard normal distribution and employ a two-tailed test.
The following example illustrates a situation in which a two-tailed test is appropriate.

EXAMPLE 10.7 A psychological study was conducted to compare the reaction times of men and
women to a stimulus. Independent random samples of 50 men and 50 women were
employed in the experiment. The results are shown in Table 10.2. Do the data present
sufficient evidence to suggest a difference between true mean reaction times for men
and women? Use α = .05.

Solution Let μ1 and μ2 denote the true mean reaction times for men and women, respectively.
If we wish to test the hypothesis that the means differ, we must test H0 : (μ1 −μ2) = 0
against Ha : (μ1 − μ2) 7= 0. The two-sided alternative permits us to detect either the
case μ1 > μ2 or the reverse case μ2 > μ1; in either case, H0 is false.

The point estimator of (μ1 −μ2) is (Y 1 −Y 2). As we discussed in Sections 8.3 and
8.6, because the samples are independent and both are large, this estimator satisfies
the assumptions necessary to develop a large-sample test. Hence, if we desire to test

Table 10.2 Data for Example 10.7

Men Women

n1 = 50 n2 = 50
y1 = 3.6 seconds y2 = 3.8 seconds
s2

1 = .18 s2
2 = .14
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H0 : μ1 − μ2 = D0 (where D0 is some fixed value) versus any alternative, the test
statistic is given by

Z = (Y 1 − Y 2) − D0√
σ 2

1

n1
+ σ 2

2

n2

,

where σ 2
1 and σ 2

2 are the respective population variances. In this application, we want
to use a two-tailed test. Thus, for α = .05, we reject H0 for |z| > zα/2 = z.025 = 1.96.

For large samples (say, ni > 30), the sample variances provide good estimates of
their corresponding population variances. Substituting these values, along with y1, y2,

n1, n2, and D0 = 0, into the formula for the test statistic, we have

z = y1 − y2 − 0√
σ 2

1

n1
+ σ 2

2

n2

≈ 3.6 − 3.8√
.18

50
+ .14

50

= −2.5.

This value is less than −zα/2 = −1.96 and therefore falls in the rejection region.
Hence, at the α = .05 level, we conclude that sufficient evidence exists to permit us
to conclude that mean reaction times differ for men and women.

In this section, we have described the general procedure for implementing a large-
sample tests of hypotheses for some parameters of frequent practical interest. We
will discuss in Section 10.4 how to calculate β, the probability of a type II error, for
these large-sample tests. Constructing confidence intervals for these parameters and
implementing formal tests of hypotheses are remarkably similar. Both procedures use
the estimators of the respective parameters, the standard errors of these estimators, and
quantities obtained from the table of the standard normal distribution. In Section 10.5,
we will explicitly point out a correspondence between large-sample testing procedures
and large-sample confidence intervals.

Exercises
10.9 Applet Exercise Use the applet Hypothesis Testing (for Proportions) to assess the impact of

changing the sample size on the value of α. When you access the applet, the default settings
will permit simulations, when the true value of p = .5, of repeated α = .05 level Z -tests for
H0 : p = .5 versus Ha : p 7= .5 and n = 15.

a What action qualifies as an “error” in the scenario to be simulated?

b Click the button “Draw Sample” to obtain the results associated with a single sample of
size 15. How many successes resulted? What is the value for p̂? Compute the value of the
large-sample test statistic. Does your calculation agree with the value of z given in the table
beneath the normal curve? Does the value of z fall in the rejection region? Did the result
of this simulation result in an error?

c Click the button “Draw Sample” five more times. How many different values for z did
you observe? How many values appeared in the rejection region given by the tails of the
normal curve?
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d Click the button “Draw Sample” until you obtain a simulated sample that results in rejecting
H0. What was the value of p̂ that led to rejection of H0? How many tests did you perform
until you first rejected H0? Why did it take so many simulations until you first rejected
the null?

e Click the button “Draw 50 Samples” until you have completed 200 or more simulations.
Hover the pointer over the shaded box above “Reject” in the bottom bar graph. What
proportion of the simulations resulted in rejecting H0?

f Why are the boxes above “Reject” and “Error” of exactly the same height?

g Use the up and down arrows to the right of the “n for sample ” line to change the sample size
for each simulation to 20. Click the button “Draw 50 Samples” until you have simulated at
least 200 tests. What proportion of the simulations resulted in rejecting H0?

h Repeat the instructions in part (g) for samples of size 30, 40, and 50. Click the button “Show
Summary” to see the results of all simulations that you performed thus far. What do you
observe about the proportions of times that H0 is rejected using samples of size 15, 20, 30,
40, and 50? Are you surprised by these results? Why?

10.10 Applet Exercise Refer to Exercise 10.9. Click the button “Clear Summary” to delete the results
of any previous simulations. Change the sample size for each simulation to n = 30 and leave
the null and alternative hypotheses at their default settings H0 : p = .5, Ha : p 7= .5.

a Leave the true value of p at its default setting p = .5. With this scenario, what is an error?
Simulate at least 200 tests. What proportion of the tests resulted in rejecting H0? What
do you notice about the heights of the boxes above “Reject” and “Error” in the bottom
right-hand graph? Why?

b Leave all settings unchanged except change the true value of p to .6. With this modification,
what is an error? Simulate at least 200 tests. What proportion of the tests resulted in rejecting
H0? What do you notice about the heights of the boxes above “Reject” and “Error” in the
bottom right-hand graph? Why?

c Leave all settings from part (b) unchanged except change the true value of p to .7. Simulate
at least 200 tests. Repeat, setting the true value of p to .8. Click the button “Show Summary.”
As the true value of p moves further from .5 and closer to 1, what do you observe about the
proportion of simulations that lead to rejection of H0? What would you expect to observe
if a set of simulations was conducted when the true value of p is .9?

d What would you expect to observe if simulations were repeated when the real value of p
is .4, .3, and .2? Try it.

10.11 Applet Exercise In Exercise 10.9(h), you observed that when the null hypothesis is true, for
all sample sizes the proportion of the time H0 is rejected is approximately equal to α the
probability of a type I error. If we test H0 : p = .5, Ha : p 7= .5, what happens to the value of
β when the sample size increases? Set the real value of p to .6 and keep the rest of the settings
at their default values (α = .05, n = 15).

a In the scenario to be simulated, what is the only kind of error that can be made?

b Click the button “Clear Summary.” Conduct at least 200 simulations. What proportion of
the simulations resulted in type II errors (hover the pointer over the box about “Error” in the
lower right portion of the display)? How is the proportion of type II errors related to the
proportion of times that H0 is rejected?

c Change n, the number of trials used for each simulated test, to 30 and leave all other settings
unchanged. Simulate at least 200 tests. Repeat for n = 50 and n = 100. Click the button
“Show Summary.” How do the values of β(.6), the probability of a type II error when
p = .6, change as the sample size increases?

d Leave the window with the summary information open and continue with Exercise 10.12.
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10.12 Applet Exercise Refer to Exercise 10.11. Change α to .1 but keep H0 : p = .5, Ha : p 7= .5 and
the true value of p = .6. Simulate at least 200 tests when n = 15. Repeat for n = 30, 50, and
100. Click on the button “Show Summary.” You will now have two summary tables (it might
be necessary to drag the last table from on top of the first). Compare the error rates when tests
are simulated using 15, 30, 50, and 100 trials.

a Which of the two tests α = .05 or α = .10 gives the smaller simulated values for β, using
samples of size 15?

b Which gives the smaller simulated values for β for each of the other sample sizes?

10.13 Applet Exercise If you were to repeat the instructions of Exercise 10.10, using n = 100 instead
of n = 30, what would you expect to be similar? What would you expect to be different?

10.14 Applet Exercise Refer to Exercise 10.9. Set up the applet to test H0 : p = .1versus Ha : p < .1
by clicking the radio button “Lower” in the line labeled “Tail” and adjusting the hypothesized
value to .1. Set the true value of p = .1, n = 5, and α = .20.

a Click the button “Draw Sample” until you obtain a sample with zero successes. What is
the value of z? What is the smallest possible value for z? Is it possible that you will get a
sample so that the value of z falls in the rejection region? What does this imply about the
probability that the “large sample” test procedure will reject the null hypothesis? Does this
result invalidate the use of large sample tests for a proportion?

b Will the test from part (a) reject the true null approximately 20% of the time if we use
n = 10? Try it by simulating at least 100 tests. What proportion of the simulations result
in rejection of the null hypothesis?

c Look through the values of p̂ in the table under the normal curve and identify the value of
p̂ for which the null is rejected. Use the tables in the appendix to compute the probability
of observing this value when n = 10 and p = .1. Is this value close to .2?

d Is n = 100 large enough so that the simulated proportion of rejects is close to .2? Simulate
at least 100 tests and give your answer based on the simulation.

10.15 Applet Exercise Refer to Exercise 10.10. Click the button “Clear Summary” to delete the
results of any previous simulations. Change the sample size for each simulation to n = 30
and set up the applet to simulate testing H0 : p = .4 versus Ha : p > .4 at the .05 level of
significance.

a Click the button “Clear Summary” to erase the results or any previous simulations. Set
the real value of p to .4 and implement at least 200 simulations. What is the percentage
simulated tests that result in rejecting the null hypothesis? Does the test work as you
expected?

b Leave all settings as they were in part (a) but change the real value of p to .5. Simulate
at least 200 tests. Repeat when the real value of p is .6 and .7. Click the button “Show
Summary.” What do you observe about the rejection rate as the true value of p gets further
from .4 and closer to 1? Does the pattern that you observe match your impression of how
a good test should perform?

10.16 Applet Exercise Refer to Exercise 10.15. Again, we wish to assess the performance of the
test for H0 : p = .4 versus Ha : p > .4 at the .05 level of significance using samples of size 30.

a If the true value of p is .3, is accepting the alternative hypothesis a correct or incorrect
decision?

b Click the button “Clear Summary.” Change the real value of p to .3 and simulate at
least 200 tests. What fraction of the simulations resulted in accepting the alternative
hypothesis?
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c Change the real value of p to .2 and simulate at least 200 tests. Click the button “Show
Summary.” Does anything look wrong?

10.17 A survey published in the American Journal of Sports Medicine2 reported the number of
meters (m) per week swum by two groups of swimmers—those who competed exclusively in
breaststroke and those who competed in the individual medley (which includes breaststroke).
The number of meters per week practicing the breaststroke was recorded for each swimmer, and
the summary statistics are given below. Is there sufficient evidence to indicate that the average
number of meters per week spent practicing breaststroke is greater for exclusive breaststrokers
than it is for those swimming individual medley?

Specialty

Exclusively Breaststroke Individual Medley

Sample size 130 80
Sample mean (m) 9017 5853
Sample standard deviation (m) 7162 1961
Population mean μ1 μ2

a State the null and alternative hypotheses.

b What is the appropriate rejection region for an α = .01 level test?

c Calculate the observed value of the appropriate test statistic.

d What is your conclusion?

e What is a practical reason for the conclusion you reached in part (d)?

10.18 The hourly wages in a particular industry are normally distributed with mean $13.20 and
standard deviation $2.50. A company in this industry employs 40 workers, paying them an
average of $12.20 per hour. Can this company be accused of paying substandard wages? Use
an α = .01 level test.

10.19 The output voltage for an electric circuit is specified to be 130. A sample of 40 independent
readings on the voltage for this circuit gave a sample mean 128.6 and standard deviation 2.1.
Test the hypothesis that the average output voltage is 130 against the alternative that it is less
than 130. Use a test with level .05.

10.20 The Rockwell hardness index for steel is determined by pressing a diamond point into the
steel and measuring the depth of penetration. For 50 specimens of an alloy of steel, the Rock-
well hardness index averaged 62 with standard deviation 8. The manufacturer claims that this
alloy has an average hardness index of at least 64. Is there sufficient evidence to refute the
manufacturer’s claim at the 1% significance level?

10.21 Shear strength measurements derived from unconfined compression tests for two types of soils
gave the results shown in the following table (measurements in tons per square foot). Do the
soils appear to differ with respect to average shear strength, at the 1% significance level?

Soil Type I Soil Type II

n1 = 30 n2 = 35
y1 = 1.65 y2 = 1.43
s1 = 0.26 s2 = 0.22

2. Source: Kurt Grote, T. L. Lincoln, and J. G. Gamble, “Hip Adductor Injury in Competitive Swimmers,”
American Journal of Sports Medicine 32(1) (2004): 104.
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10.22 In Exercise 8.66, we examined the results of a 2001 study by Leonard, Speziale and Pernick
comparing traditional and activity-oriented methods for teaching biology. Pretests were given
to students who were subsequently taught by one of the two methods. Summary statistics were
given for the pretest scores for 368 students who were subsequently taught using the traditional
method and 372 who were taught using the activity-oriented method.

a Without looking at the data, would you expect there to be a difference in the mean pretest
scores for those subsequently taught using the different methods? Based on your conjecture,
what alternative hypothesis would you choose to test versus the null hypothesis that there
is no difference in the mean pretest scores for the two groups?

b Does the alternative hypothesis that you posed in part (a) correspond to a one-tailed or a
two-tailed statistical test?

c The mean and standard deviation of the pretest scores for those subsequently taught using
the traditional method were 14.06 and 5.45, respectively. For those subsequently taught
using the activity-oriented method, the respective corresponding mean and standard devi-
ation were 13.38 and 5.59. Do the data provide support for the conjecture that the mean
pretest scores do not differ for students subsequently taught using the two methods? Test
using α = .01.

10.23 Studies of the habits of white-tailed deer indicate that these deer live and feed within very
limited ranges, approximately 150 to 205 acres. To determine whether the ranges of deer
located in two different geographical areas differ, researchers caught, tagged, and fitted 40 deer
with small radio transmitters. Several months later, the deer were tracked and identified, and
the distance y from the release point was recorded. The mean and standard deviation of the
distances from the release point were as given in the accompanying table.3

Location

1 2

Sample size 40 40
Sample mean (ft) 2980 3205
Sample standard deviation (ft) 1140 963
Population mean μ1 μ2

a If you have no preconceived reason for believing that one population mean is larger than
the other, what would you choose for your alternative hypothesis? Your null hypothesis?

b Would your alternative hypothesis in part (a) imply a one-tailed or a two-tailed test? Explain.

c Do the data provide sufficient evidence to indicate that the mean distances differ for the
two geographical locations? Test using α = .10.

10.24 A study by Children’s Hospital in Boston indicates that about 67% of American adults and about
15% of children and adolescents are overweight.4 Thirteen children in a random sample of size
100 were found to be overweight. Is there sufficient evidence to indicate that the percentage
reported by Children’s Hospital is too high? Test at the α = 0.05 level of significance.

10.25 An article in American Demographics reports that 67% of American adults always vote in
presidential elections.5 To test this claim, a random sample of 300 adults was taken, and 192

3. Source: Charles Dickey, “A Strategy for Big Bucks,” Field and Stream, October 1990.

4. Source: Judy Holland, “ ‘Cheeseburger Bill’ on the Menu,” Press-Enterprise (Riverside, Calif.),
March 9, 2004, p. E1.

5. Source: Christopher Reynolds, “Rocking the Vote,” American Demographics, February 2004, p. 48.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



506 Chapter 10 Hypothesis Testing

stated that they always voted in presidential elections. Do the results of this sample provide
sufficient evident to indicate that the percentage of adults who say that they always vote in
presidential elections is different than the percentage reported in American Demographics?
Test using α = .01.

10.26 According to the Washington Post, nearly 45% of all Americans are born with brown eyes,
although their eyes don’t necessarily stay brown.6 A random sample of 80 adults found 32
with brown eyes. Is there sufficient evidence at the .01 level to indicate that the proportion of
brown-eyed adults differs from the proportion of Americans who are born with brown eyes?

10.27 The state of California is working very hard to ensure that all elementary age students whose
native language is not English become proficient in English by the sixth grade. Their progress
is monitored each year using the California English Language Development test. The results
for two school districts in southern California for the 2003 school year are given in the accom-
panying table.7 Do the data indicate a significant difference in the 2003 proportions of students
who are fluent in English for the two districts? Use α = .01.

District Riverside Palm Springs

Number of students tested 6124 5512
Percentage fluent 40 37

10.28 The commercialism of the U.S. space program has been a topic of great interest since Dennis
Tito paid $20 million to ride along with the Russian cosmonauts on the space shuttle.8 In a
survey of 500 men and 500 women, 20% of the men and 26% of the women responded that
space should remain commercial free.

a Does statistically significant evidence exist to suggest that there is a difference in the
population proportions of men and women who think that space should remain commercial
free? Use a .05 level test.

b Why is a statistically significant difference in these population proportions of practical
importance to advertisers?

10.29 A manufacturer of automatic washers offers a model in one of three colors: A, B, or C. Of
the first 1000 washers sold, 400 were of color A. Would you conclude that customers have a
preference for color A? Justify your answer.

10.30 A manufacturer claimed that at least 20% of the public preferred her product. A sample of 100
persons is taken to check her claim. With α = .05, how small would the sample percentage
need to be before the claim could legitimately be refuted? (Notice that this would involve a
one-tailed test of the hypothesis.)

10.31 What conditions must be met for the Z test to be used to test a hypothesis concerning a
population mean μ?

10.32 In March 2001, a Gallup poll asked, “How would you rate the overall quality of the environment
in this country today—as excellent, good, fair or poor?” Of 1060 adults nationwide, 46% gave
a rating of excellent or good. Is this convincing evidence that a majority of the nation’s adults
think the quality of the environment is fair or poor? Test using α = .05.

6. Source: “Seeing the World Through Tinted Lenses,” Washington Post, March 16, 1993, p. 5.

7. Source: Cadonna Peyton, “Pupils Build English Skills,” Press-Enterprise (Riverside, Calif.), March 19,
2004, p. B-1.

8. Source: Adapted from “Toplines: To the Moon?” American Demographics, August 2001, p. 9.
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10.33 A political researcher believes that the fraction p1 of Republicans strongly in favor of the death
penalty is greater than the fraction p2 of Democrats strongly in favor of the death penalty. He
acquired independent random samples of 200 Republicans and 200 Democrats and found 46
Republicans and 34 Democrats strongly favoring the death penalty. Does this evidence provide
statistical support for the researcher’s belief? Use α = .05.

10.34 Exercise 8.58 stated that a random sample of 500 measurements on the length of stay in hospitals
had sample mean 5.4 days and sample standard deviation 3.1 days. A federal regulatory agency
hypothesizes that the average length of stay is in excess of 5 days. Do the data support this
hypothesis? Use α = .05.

10.35 Michael Sosin9 investigated determinants that account for individuals’ making a transition from
having a home (domiciled) but using meal programs to becoming homeless. The following
table contains the data obtained in the study. Is there sufficient evidence to indicate that the
proportion of those currently working is larger for domiciled men than for homeless men? Use
α = .01.

Homeless Men Domiciled Men

Sample size 112 260
Number currently working 34 98

*10.36 Refer to Exercise 8.68(b). Is there evidence of a difference between the proportion of residents
favoring complete protection of alligators and the proportion favoring their destruction? Use
α = .01.

10.4 Calculating Type II Error Probabilities
and Finding the Sample Size for Z Tests
Calculating β can be very difficult for some statistical tests, but it is easy for the tests
developed in Section 10.3. Consequently, we can use the Z test to demonstrate both
the calculation of β and the logic employed in selecting the sample size for a test.

For the test H0 : θ = θ0 versus Ha : θ > θ0, we can calculate type II error probabil-
ities only for specific values for θ in Ha . Suppose that the experimenter has in mind
a specific alternative—say, θ = θa (where θa > θ0). Because the rejection region is
of the form

RR = {θ̂ : θ̂ > k},
the probability β of a type II error is

β = P(θ̂ is not in RR when Ha is true)

= P(θ̂ ≤ k when θ = θa) = P

(
θ̂ − θa

σθ̂

≤ k − θa

σθ̂

when θ = θa

)
.

9. Source: Michael Sosin, “Homeless and Vulnerable Meal Program Users: A Comparison Study,” Social
Problems 39(2) (1992).
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If θa is the true value of θ , then (θ̂ − θa)/σθ̂ has approximately a standard nor-
mal distribution. Consequently, β can be determined (approximately) by finding a
corresponding area under a standard normal curve.

For a fixed sample of size n, the size of β depends on the distance between θa and
θ0. If θa is close to θ0, the true value of θ (either θ0 or θa) is difficult to detect, and
the probability of accepting H0 when Ha is true tends to be large. If θa is far from θ0,
the true value is relatively easy to detect, and β is considerably smaller. As we saw in
Section 10.2, for a specified value of α, β can be made smaller by choosing a large
sample size n.

EXAMPLE 10.8 Suppose that the vice president in Example 10.5 wants to be able to detect a difference
equal to one call in the mean number of customer calls per week. That is, he wishes
to test H0 : μ = 15 against Ha : μ = 16. With the data as given in Example 10.5, find
β for this test.

Solution In Example 10.5, we had n = 36, y = 17, and s2 = 9. The rejection region for a .05
level test was given by

z = y − μ0

σ/
√

n
> 1.645,

which is equivalent to

y − μ0 > 1.645

(
σ√
n

)
or y > μ0 + 1.645

(
σ√
n

)
.

Substituting μ0 = 15 and n = 36 and using s to approximate σ , we find the rejection
region to be

y > 15 + 1.645

(
3√
36

)
, or equivalently, y > 15.8225.

This rejection region is shown in Figure 10.5. Then, by definition, β = P(Y ≤
15.8225 when μ = 16) is given by the shaded area under the dashed curve to the left
of k = 15.8225 in Figure 10.5. Thus, for μa = 16,

β = P

(
Y − μa

σ/
√

n
≤ 15.8225 − 16

3/
√

36

)
= P(Z ≤ −.36) = .3594.

$

Reject H0

#

0 = 15& 16 = &ak

Accept H0

y

F I G U R E 10.5
Rejection region for

Example 10.8
(k = 15.8225)
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10.4 Calculating Type II Error Probabilities 509

The large value of β tells us that samples of size n = 36 frequently will fail to
detect a difference of 1 unit from the hypothesized means. We can reduce the value
of β by increasing the sample size n.

The preceding example suggests the procedure that an experimenter employs when
choosing the sample size(s) for an experiment. Suppose that you want to test H0 : μ =
μ0 versus Ha : μ > μ0. If you specify the desired values of α and β (where β

is evaluated when μ = μa and μa > μ0), any further adjustment of the test must
involve two remaining quantities: the sample size n and the point at which the rejection
region begins, k. Because α and β can be written as probabilities involving n and k,
we have two equations in two unknowns, which can be solved simultaneously for n.
Thus,

α = P(Y > k when μ = μ0)

= P

(
Y − μ0

σ/
√

n
>

k − μ0

σ/
√

n
when μ = μ0

)
= P(Z > zα),

β = P(Y ≤ k when μ = μa)

= P

(
Y − μa

σ/
√

n
≤ k − μa

σ/
√

n
when μ = μa

)
= P(Z ≤ −zβ).

(See Figure 10.5.)
From the previous equations for α and β, we have

k − μ0

σ/
√

n
= zα and

k − μa

σ/
√

n
= −zβ .

Solving both of the above equations for k gives

k = μ0 + zα

(
σ√
n

)
= μa − zβ

(
σ√
n

)
.

Thus,

(zα + zβ)

(
σ√
n

)
= μa − μ0, or equivalently,

√
n = (zα + zβ)σ

(μa − μ0)
.

Sample Size for an Upper-Tail α-Level Test

n = (zα + zβ)2σ 2

(μa − μ0)2

Exactly the same solution would be obtained for a one-tailed alternative, Ha : μ =
μa with μa < μ0. The method just employed can be used to develop a similar
formula for sample size for any one-tailed, hypothesis-testing problem that satisfies
the conditions of Section 10.3.
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EXAMPLE 10.9 Suppose that the vice president of Example 10.5 wants to test H0 : μ = 15 against
Ha : μ = 16 with α = β = .05. Find the sample size that will ensure this accuracy.
Assume that σ 2 is approximately 9.

Solution Because α = β = .05, it follows that zα = zβ = z.05 = 1.645. Then

n = (zα + zβ)2σ 2

(μa − μ0)2
= (1.645 + 1.645)2(9)

(16 − 15)2
= 97.4.

Hence, n = 98 observations should be used to meet the requirement that α ≈ β ≈ .05
for the vice president’s test.

Exercises
10.37 Refer to Exercise 10.19. If the voltage falls as low as 128, serious consequences may result.

For testing H0 : μ = 130 versus Ha : μ = 128, find the probability of a type II error, β, for the
rejection region used in Exercise 10.19.

10.38 Refer to Exercise 10.20. The steel is sufficiently hard to meet usage requirements if the mean
Rockwell hardness measure does not drop below 60. Using the rejection region found in
Exercise 10.20, find β for the specific alternative μa = 60.

10.39 Refer to Exercise 10.30. Calculate the value of β for the alternative pa = .15.

10.40 Refer to Exercise 10.33. The political researcher should have designed a test for which β is
tolerably low when p1 exceeds p2 by a meaningful amount. For example, find a common
sample size n for a test with α = .05 and β ≤ .20 when in fact p1 exceeds p2 by .1. [Hint: The
maximum value of p(1 − p) is .25.]

10.41 Refer to Exercise 10.34. Using the rejection region found there, calculate β when μa = 5.5.

10.42 In Exercises 10.34 and 10.41, how large should the sample size be if we require that α = .01
and β = .05 when μa = 5.5?

10.43 A random sample of 37 second graders who participated in sports had manual dexterity scores
with mean 32.19 and standard deviation 4.34. An independent sample of 37 second graders
who did not participate in sports had manual dexterity scores with mean 31.68 and standard
deviation 4.56.

a Test to see whether sufficient evidence exists to indicate that second graders who participate
in sports have a higher mean dexterity score. Use α = .05.

b For the rejection region used in part (a), calculate β when μ1 − μ2 = 3.

10.44 Refer to Exercise 10.43. Find the sample sizes that give α = .05 and β = .05 when μ1−μ2 = 3.
(Assume equal-size samples for each group.)
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10.5 Relationships Between Hypothesis-Testing
Procedures and Confidence Intervals
Thus far, we have considered two large-sample procedures for making inferences
about a target parameter θ . In Section 8.6, we observed that if θ̂ is an estimator for
θ that has an approximately normal sampling distribution, a two-sided confidence
interval for θ with confidence coefficient 1 − α is given by

θ̂ ± zα/2σθ̂ .

In this expression, σθ̂ is the standard error of the estimator θ̂ (the standard deviation
of the sampling distribution of θ̂ ), and zα/2 is a number obtained using the standard
normal table and such that P(Z > zα/2) = α/2. For large samples, if we were
interested in an α-level test of H0 : θ = θ0 versus the two-sided alternative Ha : θ 7= θ0,
the results of the previous section indicate that we would use a Z test based on the
test statistic

Z = θ̂ − θ0

σθ̂

and would reject H0 if the value of Z fell in the rejection region {|z| > zα/2}. Both
of these procedures make heavy use of the estimator θ̂ , its standard error σθ̂ , and the
table value zα/2. Let us explore these two procedures more fully.

The complement of the rejection region associated with any test is sometimes
called the acceptance region for the test. For any of our large-sample, two-tailed
α-level tests, the acceptance region is given by RR = {−zα/2 ≤ z ≤ zα/2}. That is,
we do not reject H0 : θ = θ0 in favor of the two-tailed alternative if

−zα/2 ≤ θ̂ − θ0

σθ̂

≤ zα/2.

Restated, the null hypothesis is not rejected (is “accepted”) at level α if

θ̂ − zα/2σθ̂ ≤ θ0 ≤ θ̂ + zα/2σθ̂ .

Notice that the quantities on the far left and far right of the previous string of inequal-
ities are the lower and upper endpoints, respectively, of a 100(1 − α)% two-sided
confidence interval for θ . Thus, a duality exists between our large-sample procedures
for constructing a 100(1 − α)% two-sided confidence interval and for implement-
ing a two-sided hypothesis test with level α. Do not reject H0 : θ = θ0 in favor of
Ha : θ 7= θ0 if the value θ0 lies inside a 100(1 −α)% confidence interval for θ . Reject
H0 if θ0 lies outside the interval. Equivalently, a 100(1 − α)% two-sided confidence
interval can be interpreted as the set of all values of θ0 for which H0 : θ = θ0 is
“acceptable” at level α. Notice that any value inside the confidence interval is an ac-
ceptable value of the parameter. There is not one acceptable value for the parameter
but many (indeed, the infinite number of values inside the interval). For this reason,
we usually do not accept the null hypothesis that θ = θ0, even if the value θ0 falls
inside our confidence interval. We recognize that many values of θ are acceptable and
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512 Chapter 10 Hypothesis Testing

refrain from accepting a single θ value as being the true value. Additional comments
regarding hypothesis testing are contained in Section 10.7.

Our previous discussion focused on the duality between two-sided confidence
intervals and two-sided hypothesis tests. In the exercises that follow this section, you
will be asked to demonstrate the correspondence between large-sample, one-sided
hypothesis tests of level α and the construction of the appropriate upper or lower
bounds with confidence coefficients 1−α. If you desire an α-level test of H0 : θ = θ0

versus Ha : θ > θ0 (an upper-tail test), you should accept the alternative hypothesis
if θ0 is less than a 100(1 − α)% lower confidence bound for θ . If the appropriate
alternative hypothesis is Ha : θ < θ0 (a lower-tail test), you should reject H0 : θ = θ0

in favor of Ha if θ0 is larger than a 100(1 − α)% upper confidence bound for θ .

Exercises
10.45 Refer to Exercise 10.21. Construct a 99% confidence interval for the difference in mean shear

strengths for the two soil types.

a Is the value μ1 − μ2 = 0 inside or outside this interval?

b Based on the interval, should the null hypothesis discussed in Exercise 10.21 be rejected?
Why?

c How does the conclusion that you reached compare with your conclusion in Exercise 10.21?

10.46 A large-sample α-level test of hypothesis for H0 : θ = θ0 versus Ha : θ > θ0 rejects the null
hypothesis if

θ̂ − θ0

σθ̂

> zα.

Show that this is equivalent to rejecting H0 if θ0 is less than the large-sample 100(1 − α)%
lower confidence bound for θ .

10.47 Refer to Exercise 10.32. Construct a 95% lower confidence bound for the proportion of the
nation’s adults who think the quality of the environment is fair or poor.

a How does the value p = .50 compare to this lower bound?

b Based on the lower bound in part (a), should the alternative hypothesis of Exercise 10.32
be accepted?

c Is there any conflict between the answer in part (b) and your answer to Exercise 10.32?

10.48 A large-sample α-level test of hypothesis for H0 : θ = θ0 versus Ha : θ < θ0 rejects the null
hypothesis if

θ̂ − θ0

σθ̂

< −zα.

Show that this is equivalent to rejecting H0 if θ0 is greater than the large-sample 100(1 − α)%
upper confidence bound for θ .

10.49 Refer to Exercise 10.19. Construct a 95% upper confidence bound for the average voltage
reading.
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a How does the value μ = 130 compare to this upper bound?

b Based on the upper bound in part (a), should the alternative hypothesis of Exercise 10.19
be accepted?

c Is there any conflict between the answer in part (b) and your answer to Exercise 10.19?

10.6 Another Way to Report the Results
of a Statistical Test: Attained
Significance Levels, or p-Values
As previously indicated, the probability α of a type I error is often called the signifi-
cance level, or, more simply, the level of the test. Although small values of α are often
recommended, the actual value of α to use in an analysis is somewhat arbitrary. One
experimenter may choose to implement a test with α = .05 whereas another experi-
menter might prefer α = .01. It is possible, therefore, for two persons to analyze the
same data and reach opposite conclusions—one concluding that the null hypothesis
should be rejected at the α = .05 significance level and the other deciding that the
null hypothesis should not be rejected with α = .01. Further, α-values of .05 or .01
often are used out of habit or for the sake of convenience rather than as a result of
careful consideration of the ramifications of making a type I error.

Once a test statistic (Y in our polling example, or one of the Z ’s of Section 10.3)
is decided on, it is often possible to report the p-value or attained significance level
associated with a test. This quantity is a statistic representing the smallest value of α

for which the null hypothesis can be rejected.

DEFINITION 10.2 If W is a test statistic, the p-value, or attained significance level, is the small-
est level of significance α for which the observed data indicate that the null
hypothesis should be rejected.

The smaller the p-value becomes, the more compelling is the evidence that the null
hypothesis should be rejected. Many scientific journals require researchers to report
p-values associated with statistical tests because these values provide the reader
with more information than is contained in a statement that the null hypothesis was
rejected or not rejected for some value of α chosen by the researcher. If the p-value
is small enough to be convincing to you, you should reject the null hypothesis. If
an experimenter has a value of α in mind, the p-value can be used to implement an
α-level test. The p-value is the smallest value of α for which the null hypothesis can
be rejected. Thus, if the desired value of α is greater than or equal to the p-value,
the null hypothesis is rejected for that value of α. Indeed, the null hypothesis should
be rejected for any value of α down to and including the p-value. Otherwise, if α is
less than the p-value, the null hypothesis cannot be rejected. In a sense, the p-value
allows the reader of published research to evaluate the extent to which the observed
data disagree with the null hypothesis. Particularly, the p-value permits each reader
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514 Chapter 10 Hypothesis Testing

to use his or her own choice for α in deciding whether the observed data should lead
to rejection of the null hypothesis.

The procedures for finding p-values for the tests that we have discussed thus far
are presented in the following examples.

EXAMPLE 10.10 Recall our discussion of the political poll (see Examples 10.1 through 10.4) where
n = 15 voters were sampled. If we wish to test H0 : p = .5 versus Ha : p < .5, using
Y = the number of voters favoring Jones as our test statistic, what is the p-value
if Y = 3? Interpret the result.

Solution In previous discussions, we noted that H0 should be rejected for small values of
Y . Thus, the p-value for this test is given by P{Y ≤ 3}, where Y has a binomial
distribution with n = 15 and p = .5 (the shaded area in the binomial distribution of
Figure 10.6). Using Table 1, Appendix 3, we find that the p-value is .018.

Because the p-value = .018 represents the smallest value of α for which the null
hypothesis is rejected, an experimenter who specifies any value of α ≥ .018 would
be led to reject H0 and to conclude that Jones does not have a plurality of the vote.
If the experimenter chose an α-value of less than .018, however, the null hypothesis
could not be rejected.

0 1 2 3 4 y

F I G U R E 10.6
Illustration of p-value

for Example 10.10

This example illustrates that the reporting of p-values is particularly beneficial
when the appropriate test statistic possesses a discrete distribution. In situations like
these, one often cannot find any rejection region that yields an α-value of a specified
magnitude. For example, in this instance, no rejection region of the form {y ≤ a} can
be found for which α = .05. In such cases, reporting the p-value is usually preferable
to limiting oneself to values of α that can be obtained on the basis of the discrete
distribution of the test statistic.

Example 10.10 also indicates the general method for computing p-values. If
we were to reject H0 in favor of Ha for small values of a test statistic W—say,
RR: {w ≤ k}—the p-value associated with an observed value w0 of W is given by

p-value = P(W ≤ w0, when H0 is true).

Analogously, if we were to reject H0 in favor of Ha for large values of W—say,
RR: {w ≥ k}—the p-value associated with the observed value w0 is

p-value = P(W ≥ w0, when H0 is true).

Calculation of a p-value for a two-tailed alternative is illustrated in the following
example.
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EXAMPLE 10.11 Find the p-value for the statistical test of Example 10.7.

Solution Example 10.7 presents a test of the null hypothesis H0 : μ1 − μ2 = 0 versus the
alternative hypothesis Ha : μ1 − μ2 7= 0. The value of the test statistic, computed
from the observed data, was z = −2.5. Because this test is two-tailed, the p-value is
the probability that either Z ≤ −2.5 or Z ≥ 2.5 (the shaded areas in Figure 10.7).
From Table 4, Appendix 3, we find that P(Z ≥ 2.5) = P(Z ≤ −2.5) = .0062.
Because this is a two-tailed test, the p-value = 2(.0062) = .0124. Thus, if α = .05
(a value larger than .0124), we reject H0 in favor of Ha and, in agreement with the
conclusion of Example 10.7, conclude that evidence of a difference in mean reaction
time for men and women exists. However, if α = .01 (or any value of α < .0124)
were chosen, we could not legitimately claim to have detected a difference in mean
reaction times for the two sexes.

– 2.5 2.50

F I G U R E 10.7
Shaded areas give the

p-value for
Example 10.11.

For the statistical tests that we have developed thus far, the experimenter can
compute exact p-values by using the binomial and Z tables in Appendix 3. The
applet Normal Probabilities can also be used to compute p-values associated with the
Z tests discussed in Sections 10.3 and 10.4. Tables (in the appendix) of distributions
for some of the test statistics that we encounter in later sections give critical values
only for largely differential values of α (for example, .10, .05, .025, .01, and .005).
Consequently, such tables cannot be used to compute exact p-values. However, the
tables provided in the appendix for the F , t , and χ2 (and some other) distributions do
permit us to determine a region of values inside which the p-value is known to lie. For
example, if a test result is statistically significant for α = .05 but not for α = .025,
we will report that .025 ≤ p-value ≤ .05. Thus, for any α ≥ .05, we reject the null
hypothesis; for α < .025, we do not reject the null hypothesis; and for values of α that
fall between .025 and .05, we need to seek more complete tables of the appropriate
distribution before reaching a conclusion. The tables in the appendix provide useful
information about p-values, but the results are usually rather cumbersome. Exact
p-values associated with test statistics with t , χ2, and F distributions are easily
obtained using the applets introduced in Chapter 7. Many calculators are also capable
of computing exact p-values.

The recommendation that a researcher report the p-value for a test and leave its
interpretation to a reader does not violate the traditional (decision theoretic) statistical
testing procedures described in the preceding sections. The reporting of a p-value
simply leaves the decision regarding whether to reject the null hypothesis (with the
associated potential of committing type I or type II errors) to the reader. Thus, the
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responsibility of choosing α and, possibly, the problem of evaluating the probability
β of making a type II error are shifted to the reader.

Exercises
10.50 High airline occupancy rates on scheduled flights are essential for profitability. Suppose that a

scheduled flight must average at least 60% occupancy to be profitable and that an examination of
the occupancy rates for 120 10:00 A.M. flights from Atlanta to Dallas showed mean occupancy
rate per flight of 58% and standard deviation 11%. Test to see if sufficient evidence exists to
support a claim that the flight is unprofitable. Find the p-value associated with the test. What
would you conclude if you wished to implement the test at the α = .10 level?

10.51 Two sets of elementary schoolchildren were taught to read by using different methods, 50 by
each method. At the conclusion of the instructional period, a reading test yielded the results
y1 = 74, y2 = 71, s1 = 9, and s2 = 10.

a What is the attained significance level if you wish to see whether evidence indicates a
difference between the two population means?

b What would you conclude if you desired an α-value of .05?

10.52 A biologist has hypothesized that high concentrations of actinomycin D inhibit RNA synthesis
in cells and thereby inhibit the production of proteins. An experiment conducted to test this
theory compared the RNA synthesis in cells treated with two concentrations of actinomycin D:
0.6 and 0.7 micrograms per liter. Cells treated with the lower concentration (0.6) of actinomycin
D yielded that 55 out of 70 developed normally whereas only 23 out of 70 appeared to develop
normally for the higher concentration (0.7). Do these data indicate that the rate of normal RNA
synthesis is lower for cells exposed to the higher concentrations of actinomycin D?

a Find the p-value for the test.

b If you chose to use α = .05 what is your conclusion?

10.53 How would you like to live to be 200 years old? For centuries, humankind has sought the key
to the mystery of aging. What causes aging? How can aging be slowed? Studies have focused
on biomarkers, physical or biological changes that occur at a predictable time in a person’s life.
The theory is that, if ways can be found to delay the occurrence of these biomarkers, human
life can be extended. A key biomarker, according to scientists, is forced vital capacity (FVC),
the volume of air that a person can expel after taking a deep breath. A study of 5209 men and
women aged 30 to 62 showed that FVC declined, on the average, 3.8 deciliters (dl) per decade
for men and 3.1 deciliters per decade for women.10 Suppose that you wished to determine
whether a physical fitness program for men and women aged 50 to 60 would delay aging; to
do so, you measured the FVC for 30 men and 30 women participating in the fitness program
at the beginning and end of the 50- to 60-year age interval and recorded the drop in FVC for
each person. A summary of the data appears in the accompanying table.

Men Women

Sample size 30 30
Sample average drop in FVC (dl) 3.6 2.7
Sample standard deviation (dl) 1.1 1.2
Population mean drop in FVC μ1 μ2

10. Source: T. Boddé, “Biomarkers of Aging: Key to a Younger Life,” Bioscience 31(8) (1981): 566–567.
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a Do the data provide sufficient evidence to indicate that the decrease in the mean FVC over
the decade for the men on the physical fitness program is less than 3.8 dl? Find the attained
significance level for the test.

b Refer to part (a). If you choose α = .05, do the data support the contention that the mean
decrease in FVC is less than 3.8 dl?

c Test to determine whether the FVC drop for women on the physical fitness program was
less than 3.1 dl for the decade. Find the attained significance level for the test.

d Refer to part (c). If you choose α = .05, do the data support the contention that the mean
decrease in FVC is less than 3.1 dl?

10.54 Do you believe that an exceptionally high percentage of the executives of large corporations
are right-handed? Although 85% of the general public is right-handed, a survey of 300 chief
executive officers of large corporations found that 96% were right-handed.

a Is this difference in percentages statistically significant? Test using α = .01.

b Find the p-value for the test and explain what it means.

10.55 A check-cashing service found that approximately 5% of all checks submitted to the service
were bad. After instituting a check-verification system to reduce its losses, the service found
that only 45 checks were bad in a random sample of 1124 that were cashed. Does sufficient
evidence exist to affirm that the check-verification system reduced the proportion of bad checks?
What attained significance level is associated with the test? What would you conclude at the
α = .01 level?

10.56 A pharmaceutical company conducted an experiment to compare the mean times (in days)
necessary to recover from the effects and complications that follow the onset of the common
cold. This experiment compared persons on a daily dose of 500 milligrams (mg) of vitamin C
to those who were not given a vitamin supplement. For each treatment category, 35 adults were
randomly selected, and the mean recovery times and standard deviations for the two groups
were found to be as given in the accompanying table.

Treatment

No Supplement 500 mg Vitamin C

Sample size 35 35
Sample mean 6.9 5.8
Sample standard deviation 2.9 1.2

a Do the data indicate that the use of vitamin C reduces the mean time required to recover?
Find the attained significance level.

b What would the company conclude at the α = .05 level?

10.57 A publisher of a newsmagazine has found through past experience that 60% of subscribers
renew their subscriptions. In a random sample of 200 subscribers, 108 indicated that they
planned to renew their subscriptions. What is the p-value associated with the test that the
current rate of renewals differs from the rate previously experienced?

10.58 In a study to assess various effects of using a female model in automobile advertising, each of
100 male subjects was shown photographs of two automobiles matched for price, color, and
size but of different makes. Fifty of the subjects (group A) were shown automobile 1 with a
female model and automobile 2 with no model. Both automobiles were shown without the
model to the other 50 subjects (group B). In group A, automobile 1 (shown with the model)
was judged to be more expensive by 37 subjects. In group B, automobile 1 was judged to be
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more expensive by 23 subjects. Do these results indicate that using a female model increases
the perceived cost of an automobile? Find the associated p-value and indicate your conclusion
for an α = .05 level test.

10.7 Some Comments on the Theory
of Hypothesis Testing
As previously indicated, we can choose between implementing a one-tailed or a two-
tailed test for a given situation. This choice is dictated by the practical aspects of the
problem and depends on the alternative value of the parameter θ that the experimenter
is trying to detect. If we stood to suffer a large financial loss if θ were greater than
θ0 but not if it were less, we would concentrate our attention on detecting values of θ

greater than θ0. Hence, we would reject in the upper tail of the distribution for the test
statistics previously discussed. On the other hand, if we were equally interested in
detecting values of θ less than or greater than θ0, we would employ a two-tailed test.

The theory of statistical tests of hypotheses (outlined in Section 10.2 and used
in Section 10.3) is a very clear-cut procedure that enables the researcher either to
reject or to accept the null hypothesis, with measured risk α or β. Unfortunately, this
theoretical framework does not suffice for all practical situations.

For any statistical test, the probability α of a type I error depends on the value of
the parameter specified in the null hypothesis. This probability can be calculated, at
least approximately, for each of the testing procedures discussed in this text. For the
procedures discussed thus far, the probability β of a type II error can be calculated only
after a specific value of the parameter of interest has been singled out for consideration.
The selection of a practically meaningful value for this parameter is often difficult.
Even if a meaningful alternative can be identified, the actual calculation of β is
sometimes quite tedious. Specification of a meaningful alternative hypothesis is even
more difficult for some of the testing procedures that we will consider in subsequent
chapters.

Of course, we do not want to ignore the possibility of committing a type II error.
Later in this chapter, we will determine methods for selecting tests with the smallest
possible value of β for tests where α, the probability of a type I error, is a fixed value
selected by the researcher. Even in these situations, however, the smallest possible
value of β can be quite large.

These obstacles do not invalidate the use of statistical tests; rather, they urge us to be
cautious about drawing conclusions where insufficient evidence is available to permit
rejection of the null hypothesis. If a truly meaningful value for β can be calculated,
we should feel justified in accepting H0 if the value of β is small and the value of the
test statistic falls outside the rejection region. In the more typical situation where a
truly meaningful value for β is unavailable, we will modify our procedure as follows.

When the value of the test statistic is not in the rejection region, we will “fail to
reject” rather than “accept” the null hypothesis. In the polling example discussed in
Example 10.1, we tested H0 : p = .5 versus Ha : p < .5. If our observed value of
Y falls into the rejection region, we reject H0 and say that the evidence supports the
research hypothesis that Jones will lose. In this situation, we will have demonstrated

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.7 Some Comments on the Theory of Hypothesis Testing 519

support for the hypothesis we wanted to support—the research hypothesis. If, however,
Y does not fall in the rejection region and we can determine no specific value of p
in Ha that is of direct interest, we simply state that we will not reject H0 and must
seek additional information before reaching a conclusion. Alternatively, we could
report the p-value associated with the statistical test and leave the interpretation to
the reader.

If H0 is rejected for a “small” value of α (or for a small p-value), this occurrence
does not imply that the null hypothesis is “wrong by a large amount.” It does mean that
the null hypothesis can be rejected based on a procedure that incorrectly rejects the
null hypothesis (when H0 is true) with a small probability (that is, with a small prob-
ability of a type I error). We also must refrain from equating statistical with practical
significance. If we consider the experiment described and analyzed in Examples 10.7
and 10.11, the p-value of .0124 is “small,” and the result is statistically significant for
any choice of α ≥ .0124. However, the difference between the mean reaction times
for the two samples is only .2 second, a result that may or may not be practically
significant. To assess the practical significance of such a difference, you may wish to
form a confidence interval for μ1 − μ2 by using the methods of Section 8.6.

Finally, some comments are in order regarding the choice of the null hypotheses that
we have used, particularly in the one-sided tests. For example, in Example 10.1, we
identified the appropriate alternative hypothesis as Ha : p < .5 and used H0 : p = .5
as our null hypothesis. The test statistic was Y = the number of voters who favored
Jones in a sample of size n = 15. One rejection region that we considered was
{y ≤ 2}. You might wonder why we did not use H∗

0 : p ≥ .5 as the null hypothesis.
This makes a lot of sense, because every possible value of p is either in H∗

0 : p ≥ .5
or in Ha : p < .5.

So why did we use H0 : p = .5? The brief answer is that what we really care
about is the alternative hypothesis Ha : p < .5; the null hypothesis is not our primary
concern. As previously discussed, we usually do not actually accept the null hypothesis
anyway, regardless of its form. In addition, H0 : p = .5 is easier to deal with and leads
to exactly the same conclusions at the same α-value without requiring us to develop
additional theory to deal with the more complicated H∗

0 : p ≥ .5. When we used
H0 : p = .5 as our null hypotheses, calculating the α-level of the test was relatively
simple: We just found P(Y ≤ 2 when p = .5). If we had used H∗

0 : p ≥ .5 as the
null hypothesis, our previous definition of α would have been inadequate because
the value of P(Y ≤ 2) is actually a function of p for p ≥ .5. In cases like these,
α is defined to be the maximum (over all values of p ≥ .5) value of P(Y ≤ 2).
Although we will not derive this result here, maxp≥.5 P(Y ≤ 2) occurs when p = .5,
the “boundary” value of p in H∗

0 : p ≥ .5. Thus, we get the “right” value of α if we
use the simpler null hypothesis H0 : p = .5.

Similar statements are true for all of the tests that we have considered thus far and
that we will consider in future discussions. That is, if we consider Ha : θ > θ0 to
be the appropriate research hypothesis, α = maxθ≤θ0 P(test statistic in RR) typically
occurs when θ = θ0, the “boundary” value of θ . Similarly, if Ha : θ < θ0 is the
appropriate research hypothesis, α = maxθ≥θ0 P(test statistic in RR) typically occurs
when θ = θ0. Thus, using H0 : θ = θ0 instead of H∗

0 : θ ≥ θ0 leads to the correct
testing procedure and the correct calculation of α without needlessly raising additional
considerations.
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Exercises
10.59 Applet Exercise Use the applet Hypothesis Testing (for Proportions) (refer to Exercises 10.9–

10.16) to complete the following. Set up the applet to simulate the results of tests of H0 : p = .8
versus Ha : p > .8, using α = .2 and samples of size n = 30. Click the button “Clear Summary”
to erase the results of any previous simulations.

a Set the true value of p to .8 and implement at least 200 simulated tests. What proportion
of simulations results in rejection of the null hypothesis?

b Leave all settings at their previous values except change the true value of p to .75. Implement
at least 200 simulated tests and observe the proportion of the simulations that led to rejection
of the null hypothesis. Repeat, setting the true value of p to .7 and again with the true value
of p = .65.

c What would you expect to happen if the simulation was repeated after setting the true value
of p to any value less than .65? Try it.

d Click the button “Show Summary.” Which of the true p’s used in the simulations resulted
in the largest proportion of simulated test that rejected the null and accepted the alternative,
Ha : p > .8? Does this confirm any statements made in the last paragraph of Section 10.7?
Which statement?

10.60 Applet Exercise Refer to Exercise 10.59. Set up the applet to simulate the results of tests of
H0 : p = .4 versus Ha : p < .4, using α = .2 and samples of size n = 30. Click the button
“Clear Summary” to erase the results of any previous simulations.

a Set the true value of p to .4 and implement at least 200 simulated tests. What proportion
of simulations result in rejection of the null hypothesis?

b Leave all setting at their previous values except change the true value of p to .45. Implement
at least 200 simulated tests and observe the proportion of the simulations that led to rejection
of the null hypothesis. Repeat, setting the true value of p to .5, then to .55.

c What would you expect to happen if the simulation was repeated after setting the true value
of p to any value greater than .55? Try it.

d Click the button “Show Summary.” Which of the true p’s used in the simulations resulted in
the largest proportion of simulated tests that rejected the null and accepted the alternative,
Ha : p < .4? Does this confirm any statements made in the last paragraph of Section 10.7?
Which statement?

10.8 Small-Sample Hypothesis Testing
for μ and μ1 − μ2

In Section 10.3, we discussed large-sample hypothesis testing procedures that, like the
interval estimation procedures developed in Section 8.6, are useful for large samples.
For these procedures to be applicable, the sample size must be large enough that
Z = (θ̂ − θ0)/σθ̂ has approximately a standard normal distribution. Section 8.8
contains procedures based on the t distribution for constructing confidence intervals
for μ (the mean of a single normal population) and μ1 − μ2 (the difference in the
means of two normal populations with equal variances). In this section, we develop
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formal procedures for testing hypotheses about μ and μ1 − μ2, procedures that are
appropriate for small samples from normal populations.

We assume that Y1, Y2, . . . , Yn denote a random sample of size n from a normal
distribution with unknown mean μ and unknown variance σ 2. If Y and S denote
the sample mean and sample standard deviation, respectively, and if H0 : μ = μ0 is
true, then

T = Y − μ0

S/
√

n

has a t distribution with n − 1 df (see Section 8.8).
Because the t distribution is symmetric and mound-shaped, the rejection region for

a small-sample test of the hypothesis H0 : μ = μ0 must be located in the tails of the t
distribution and be determined in a manner similar to that used with the large-sample
Z statistic. By analogy with the Z test developed in Section 10.3, the proper rejection
region for the upper-tail alternative Ha : μ > μ0 is given by

RR = {t > tα},

where tα is such that P{T > tα} = α for a t distribution with n − 1 df (see Table 5,
Appendix 3).

A summary of the tests for μ based on the t distribution, known as t tests, is as
follows.

A Small-Sample Test for μ

Assumptions: Y1, Y2, . . . , Yn constitute a random sample from a normal
distribution with E(Yi ) = μ.
H0 : μ = μ0.

Ha :

⎧⎨⎩
μ > μ0 (upper-tail alternative).

μ < μ0 (lower-tail alternative).

μ 7= μ0 (two-tailed alternative).

Test statistic: T = Y − μ0

S/
√

n
.

Rejection region:

⎧⎨⎩
t > tα (upper-tail RR).

t < −tα (lower-tail RR).

|t | > tα/2 (two-tailed RR).
(See Table 5, Appendix 3, for values of tα , with ν = n − 1 df.)

EXAMPLE 10.12 Example 8.11 gives muzzle velocities of eight shells tested with a new gunpowder,
along with the sample mean and sample standard deviation, y = 2959 and s = 39.1.
The manufacturer claims that the new gunpowder produces an average velocity of
not less than 3000 feet per second. Do the sample data provide sufficient evidence to
contradict the manufacturer’s claim at the .025 level of significance?
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Solution Assuming that muzzle velocities are approximately normally distributed, we can
use the test just outlined. We want to test H0 : μ = 3000 versus the alternative,
Ha : μ < 3000. The rejection region is given by t < −t.025 = −2.365, where t
possesses ν = (n − 1) = 7 df. Computing, we find that the observed value of the test
statistic is

t = y − μ0

s/
√

n
= 2959 − 3000

39.1/
√

8
= −2.966.

This value falls in the rejection region (that is, t = −2.966 is less than −2.365); hence,
the null hypothesis is rejected at the α = .025 level of significance. We conclude that
sufficient evidence exists to contradict the manufacturer’s claim and that the true mean
muzzle velocity is less than 3000 feet per second at the .025 level of significance.

EXAMPLE 10.13 What is the p-value associated with the statistical test in Example 10.12?

Solution Because the null hypothesis should be rejected if t is “small,” the smallest value of α

for which the null hypothesis can be rejected is p-value = P(T < −2.966), where
T has a t distribution with n − 1 = 7 df.

Unlike the table of areas under the normal curve (Table 4, Appendix 3), Table 5 in
Appendix 3 does not give areas corresponding to many values of t . Rather, it gives the
values of t corresponding to upper-tail areas equal to .10, .05, .025, .010, and .005.
Because the t distribution is symmetric about 0, we can use these upper-tail areas
to provide corresponding lower-tail areas. In this instance, the t statistic is based on
7 df; hence, we consult the df = 7 row of Table 5 and find that −2.966 falls between
−t.025 = −2.365 and −t.01 = −2.998. These values are indicated in Figure 10.8.
Because the observed value of T (−2.966) is less than −t.025 = −2.376 but not less
than −t.01 = −2.998, we reject H0 for α = .025 but not for α = .01. Thus, the
p-value for the test satisfies .01 ≤ p-value ≤ .025.

The exact p-value is easily obtained using the applet Student’s t Probabilities and
Quantiles (accessible at academic.cengage.com/statistics/wackerly). Using the applet
with 7 df, we obtain p-value = P(T < −2.966) = P(T > 2.966) = .01046, a value
that is indeed between .01 and .025. Thus, the data indicate that the manufacturer’s
claim should be rejected for any choice of α ≥ .01046.

–2.996

–2.365.025

–2.998

.01

p-value

F I G U R E 10.8
Bounding the p-value

for Example 10.13,
using Table 4,

Appendix 3
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A second application of the t distribution is in constructing a small-sample test to
compare the means of two normal populations that possess equal variances. Suppose
that independent random samples are selected from each of two normal populations:
Y11, Y12, . . . , Y1n1 from the first and Y21, Y22, . . . , Y2n2 from the second, where the
mean and variance of the i th population are μi and σ 2, for i = 1, 2. Further, assume
that Y i and S2

i , for i = 1, 2, are the corresponding sample means and variances. When
these assumptions are satisfied, we showed in Section 8.8 that if

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

is the pooled estimator for σ 2, then

T = (Y 1 − Y 2) − (μ1 − μ2)

Sp

√
1

n1
+ 1

n2

has a Student’s t distribution with n1 + n2 − 2 df. If we want to test the null hypoth-
esis H0 : μ1 − μ2 = D0 for some fixed value D0, it follows that, if H0 is true, then

T = Y 1 − Y 2 − D0

Sp

√
1

n1
+ 1

n2

has a Student’s t distribution with n1 + n2 − 2 df. Notice that this small-sample test
statistic resembles its large-sample counterpart, the Z -statistic of Section 10.3. Tests
of the hypothesis H0 : μ1 − μ2 = D0 versus upper-tail, lower-tail, and two-tailed
alternatives are conducted in the same manner as in the large-sample test except that
we employ the t statistic and tables of the t distribution to reach our conclusions. A
summary of the small-sample testing procedures for μ1 − μ2 follows.

Small-Sample Tests for Comparing Two Population Means

Assumptions: Independent samples from normal distributions with σ 2
1 = σ 2

2 .

H0 : μ1 − μ2 = D0.

Ha :

⎧⎨⎩
μ1 − μ2 > D0 (upper-tail alternative).

μ1 − μ2 < D0 (lower-tail alternative).

μ1 − μ2 7= D0 (two-tailed alternative).

Test statistic: T = Y 1 − Y 2 − D0

Sp

√
1
n1

+ 1
n2

, where Sp =
√

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Rejection region:

⎧⎨⎩
t > tα (upper-tail RR).

t < −tα (lower-tail RR).

|t | > tα/2 (two-tailed RR).

Here, P(T > tα) = α and degrees of freedom ν = n1 + n2 − 2. (See
Table 5, Appendix 3.)
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EXAMPLE 10.14 Example 8.12 gives data on the length of time required to complete an assembly
procedure using each of two different training methods. The sample data are as
shown in Table 10.3. Is there sufficient evidence to indicate a difference in true mean
assembly times for those trained using the two methods? Test at the α = .05 level of
significance.

Table 10.3 Data for Example 10.14

Standard Procedure New Procedure

n1 = 9 n2 = 9
y1 = 35.22 seconds y2 = 31.56 seconds∑9

i=1(y1i − y1)
2 = 195.56

∑9
i=1(y2i − y2)

2 = 160.22

Solution We are testing H0 : (μ1 − μ2) = 0 against the alternative Ha : (μ1 − μ2) 7= 0.
Consequently, we must use a two-tailed test. The test statistic is

T = (Y 1 − Y 2) − D0

Sp

√
1

n1
+ 1

n2

with D0 = 0, and the rejection region for α = .05 is |t | > tα/2 = t.025. In this case,
t.025 = 2.120 because t is based on (n1 + n2 − 2) = 9 + 9 − 2 = 16 df.

The observed value of the test statistic is found by first computing

sp =
√

s2
p =

√
195.56 + 160.22

9 + 9 − 2
=

√
22.24 = 4.716.

Then,

t = y1 − y2

sp

√
1

n1
+ 1

n2

= 35.22 − 31.56

4.716

√
1

9
+ 1

9

= 1.65.

This value does not fall in the rejection region (|t | > 2.120); hence, the null hypothesis
is not rejected. There is insufficient evidence to indicate a difference in the mean
assembly times for the two training periods at the α = .05 level of significance.

Notice that, in line with the comments of Section 10.7, we have not accepted
H0 : μ1 − μ2 = 0. Rather, we have stated that we lack sufficient evidence to reject
H0 and to accept the alternative Ha : μ1 − μ2 7= 0.

EXAMPLE 10.15 Find the p-value for the statistical test of Example 10.14.

Solution The observed value of the test statistic for this two-tailed test was t = 1.65. The
p-value for this test is thus the probability that T > 1.65 or T < −1.65, the areas
shaded in Figure 10.9—that is, A1 + A2.

Because this test statistic is based on n1 + n2 − 2 = 16 df, we consult Table 5,
Appendix 3, to find t.05 = 1.746 and t.10 = 1.337. Thus, A1 = P(T > 1.65) lies
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–1.65 1.65

1.337
.10 1.746

.05

A2 A1

0

F I G U R E 10.9
Shaded areas are

the p-value for
Example 10.15

between .05 and .10; that is, .05 < A1 < .1. Similarly, .05 < A2 < .1. Because the
p-value = A1 + A2, it follows that .1 < p-value < .2.

The applet Student’s t Probabilities and Quantiles yields that, with 16 df, A1 =
P(T > 1.65) = .0592 = A2 and that the exact p-value = .1184. Thus, the smallest
value of α for which the data indicate a difference in the mean assembly times for
those trained using the two methods is .1184.

Whether the p-value is determined exactly using the applet or bounded using
Table 5, Appendix 3, if we select α = .05, we cannot reject the null hypothesis.
This is the same conclusion that we reached in Example 10.14 where we formally
implemented the .05 level test.

The test of Example 10.12 is based on the assumption that the muzzle velocity
measurements have been randomly selected from a normal population. In most cases,
it is impossible to verify this assumption. We might ask how this predicament affects
the validity of our conclusions.

Empirical studies of the test statistic

Y − μ

S/
√

n

have been conducted by sampling from many populations with nonnormal distribu-
tions. Such investigations have shown that moderate departures from normality in the
distribution of the population have little effect on the probability distribution of the
test statistic. This result, coupled with the common occurrence of near-normal dis-
tributions of data in nature, makes the t test of a population mean extremely useful.
Statistical tests that lack sensitivity to departures from the assumptions upon which
they are based possess wide applicability. Because of their insensitivity to formal
assumption violations, they are called robust statistical tests.

Like the t test for a single mean, the t test for comparing two population means
(often called the two-sample t test) is robust relative to the assumption of normality.
It is also robust relative to the assumption that σ 2

1 = σ 2
2 when n1 and n2 are equal (or

nearly equal).
Finally, the duality between tests and confidence intervals that we considered in

Section 10.6 holds for the tests based on the t distributions that we considered in this
section and the confidence intervals presented in Section 8.8.
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Exercises
10.61 Why is the Z test usually inappropriate as a test procedure when the sample size is small?

10.62 What assumptions are made when a Student’s t test is employed to test a hypothesis involving
a population mean?

10.63 A chemical process has produced, on the average, 800 tons of chemical per day. The daily
yields for the past week are 785, 805, 790, 793, and 802 tons.

a Do these data indicate that the average yield is less than 800 tons and hence that something
is wrong with the process? Test at the 5% level of significance. What assumptions must be
satisfied in order for the procedure that you used to analyze these data to be valid?

b Use Table 5, Appendix 3, to give bounds for the associated p-value.

c Applet Exercise Use the applet Student’s t Probabilities and Quantiles to find the exact
p-value. Does the exact p-value satisfy the bounds that you obtained in part (b)?

d Use the p-value from part (c) to decide at the 5% significance level whether something
is wrong with the process. Does your conclusion agree with the one that you reached in
part (a)?

10.64 A coin-operated soft-drink machine was designed to discharge on the average 7 ounces of
beverage per cup. In a test of the machine, ten cupfuls of beverage were drawn from the
machine and measured. The mean and standard deviation of the ten measurements were 7.1
ounces and .12 ounce, respectively. Do these data present sufficient evidence to indicate that
the mean discharge differs from 7 ounces?

a What can be said about the attained significance level for this test based on the t table in
the appendix?

b Applet Exercise Find the exact p-value by using the applet Student’s t Probabilities and
Quantiles.

c What is the appropriate decision if α = .10?

10.65 Operators of gasoline-fueled vehicles complain about the price of gasoline in gas stations.
According to the American Petroleum Institute, the federal gas tax per gallon is constant (18.4¢
as of January 13, 2005), but state and local taxes vary from 7.5¢ to 32.10¢ for n = 18 key
metropolitan areas around the country.11 The total tax per gallon for gasoline at each of these 18
locations is given next. Suppose that these measurements constitute a random sample of size 18:

42.89 53.91 48.55 47.90 47.73 46.61
40.45 39.65 38.65 37.95 36.80 35.95
35.09 35.04 34.95 33.45 28.99 27.45

a Is there sufficient evidence to claim that the average per gallon gas tax is less than 45¢?
Use the t table in the appendix to bound the p-value associated with the test.

b Applet Exercise What is the exact p-value?

c Construct a 95% confidence interval for the average per gallon gas tax in the United States.

10.66 Researchers have shown that cigarette smoking has a deleterious effect on lung function. In
their study of the effect of cigarette smoking on the carbon monoxide diffusing capacity (DL)
of the lung, Ronald Knudson, W. Kaltenborn and B. Burrows found that current smokers had

11. Source: “Gasoline Tax Rates by State,” http://www.gaspricewatch.com/usgastaxes.asp, 13 January
2005.
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DL readings significantly lower than either ex-smokers or nonsmokers.12 The carbon monoxide
diffusing capacity for a random sample of current smokers was as follows:

103.768 88.602 73.003 123.086 91.052
92.295 61.675 90.677 84.023 76.014

100.615 88.017 71.210 82.115 89.222
102.754 108.579 73.154 106.755 90.479

Do these data indicate that the mean DL reading for current smokers is lower than 100, the
average DL reading for nonsmokers?

a Test at the α = .01 level.

b Bound the p-value using a table in the appendix.

c Applet Exercise Find the exact p-value.

10.67 Nutritional information provided by Kentucky Fried Chicken (KFC) claims that each small
bag of potato wedges contains 4.8 ounces of food and 280 calories. A sample of ten orders
from KFC restaurants in New York and New Jersey averaged 358 calories.13

a If the sample standard deviation was s = 54, is there sufficient evidence to indicate that the
average number of calories in small bags of KFC potato wedges is greater than advertised?
Test at the 1% level of significance.

b Construct a 99% lower confidence bound for the true mean number of calories in small
bags of KFC potato wedges.

c On the basis of the bound you obtained in part (b), what would you conclude about the claim
that the mean number of calories exceeds 280? How does your conclusion here compare
with your conclusion in part (a) where you conducted a formal test of hypothesis?

10.68 What assumptions are made about the populations from which independent random samples
are obtained when the t distribution is used to make small-sample inferences concerning the
differences in population means?

10.69 Two methods for teaching reading were applied to two randomly selected groups of elementary
schoolchildren and then compared on the basis of a reading comprehension test given at the
end of the learning period. The sample means and variances computed from the test scores are
shown in the accompanying table.

Method I Method II

Number of children in group 11 14
y 64 69
s2 52 71

Do the data present sufficient evidence to indicate a difference in the mean scores for the
populations associated with the two teaching methods?

a What can be said about the attained significance level, using the appropriate table in the
appendix?

12. Source: Ronald Knudson, W. Kaltenborn, and B. Burrows, “The Effects of Cigarette Smoking and
Smoking Cessation on the Carbon Monoxide Diffusing Capacity of the Lung in Asymptomatic Subjects,”
American Review of Respiratory Diseases 140 (1989) 645–651.

13. Source: “KFC: Too Finger-Lickin’ Good?,” Good Housekeeping Saavy Consumer Product Tests,
http://magazines.ivillage.com/goodhousekeeping/print/0,,446041,00.html, 11 March 2004.
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b Applet Exercise What can be said about the attained significance level, using the appro-
priate applet?

c What assumptions are required?

d What would you conclude at the α = .05 level of significance?

10.70 A study was conducted by the Florida Game and Fish Commission to assess the amounts of
chemical residues found in the brain tissue of brown pelicans. In a test for DDT, random samples
of n1 = 10 juveniles and n2 = 13 nestlings produced the results shown in the accompanying
table (measurements in parts per million, ppm).

Juveniles Nestlings

n1 = 10 n2 = 13
y1 = .041 y2 = .026
s1 = .017 s2 = .006

a Test the hypothesis that mean amounts of DDT found in juveniles and nestlings do not
differ versus the alternative, that the juveniles have a larger mean. Use α = .05. (This test
has important implications regarding the accumulation of DDT over time.)

b Is there evidence that the mean for juveniles exceeds that for nestlings by more than .01 ppm?

i Bound the p-value, using a table in the appendix.

ii Applet Exercise Find the exact p-value, using the appropriate applet.

10.71 Under normal conditions, is the average body temperature the same for men and women?
Medical researchers interested in this question collected data from a large number of men and
women, and random samples from that data are presented in the accompanying table.14 Is there
sufficient evidence to indicate that mean body temperatures differ for men and women?

Body Temperatures (◦F)

Men Women

96.9 97.8
97.4 98.0
97.5 98.2
97.8 98.2
97.8 98.2
97.9 98.6
98.0 98.8
98.6 99.2
98.8 99.4

a Bound the p-value, using a table in the appendix.

b Applet Exercise Compute the p-value.

10.72 An Article in American Demographics investigated consumer habits at the mall. We tend to
spend the most money when shopping on weekends, particularly on Sundays between 4:00
and 6:00 P.M. Wednesday-morning shoppers spend the least.15 Independent random samples

14. Source: Journal of Statistics Education Data Archive, http://www.amstat.org/publications/jse/jse-
data-archive.html, March 2006.

15. Source: John Fetto,“Shop Around the Clock,” American Demographics September 2003, p. 18.
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of weekend and weekday shoppers were selected and the amount spent per trip to the mall was
recorded as shown in the following table:

Weekends Weekdays

n1 = 20 n2 = 20
y1 = $78 y2 = $67
s1 = $22 s2 = $20

a Is there sufficient evidence to claim that there is a difference in the average amount spent
per trip on weekends and weekdays? Use α = .05.

b What is the attained significance level?

10.73 In Exercise 8.83, we presented some data collected in a study by Susan Beckham and her
colleagues. In this study, measurements were made of anterior compartment pressure (in mil-
limeters of mercury) for ten healthy runners and ten healthy cyclists. The data summary is
repeated here for your convenience.

Runners Cyclists

Condition Mean s Mean s

Rest 14.5 3.92 11.1 3.98
80% maximal O2 12.2 3.49 11.5 4.95

consumption

a Is there sufficient evidence to justify claiming that a difference exists in mean compartment
pressures for runners and cyclists who are resting? Use α = .05. Bound or determine the
associated p-value.

b Does sufficient evidence exist to permit us to identify a difference in mean compartment
pressures for runners and cyclists at 80% maximal O2 consumption? Use α = .05. Bound
or determine the associated p-value.

10.74 Refer to Exercise 8.88. A report from a testing laboratory claims that, for these species of fish,
the average LC50 measurement is 6 ppm. Use the data of Exercise 8.88 to determine whether
sufficient evidence exists to indicate that the average LC50 measurement is less than 6 ppm.
Use α = .05.

10.75 The tremendous growth of the Florida lobster (called spiny lobster) industry over the past
20 years has made it the state’s second most valuable fishery industry. A declaration by the
Bahamian government that prohibits U.S. lobsterers from fishing on the Bahamian portion of
the continental shelf was expected to reduce dramatically the landings in pounds per lobster
trap. According to the records, the prior mean landings per trap was 30.31 pounds. A random
sampling of 20 lobster traps since the Bahamian fishing restriction went into effect gave the
following results (in pounds):

17.4 18.9 39.6 34.4 19.6
33.7 37.2 43.4 41.7 27.5
24.1 39.6 12.2 25.5 22.1
29.3 21.1 23.8 43.2 24.4

Do these landings provide sufficient evidence to support the contention that the mean landings
per trap has decreased since imposition of the Bahamian restrictions? Test using α = .05.
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10.76 Jan Lindhe conducted a study16 on the effect of an oral antiplaque rinse on plaque buildup on
teeth. Fourteen subjects, whose teeth were thoroughly cleaned and polished, were randomly
assigned to two groups of seven subjects each. Both groups were assigned to use oral rinses (no
brushing) for a 2-week period. Group 1 used a rinse that contained an antiplaque agent. Group 2,
the control group, received a similar rinse except that, unknown to the subjects, the rinse con-
tained no antiplaque agent. A plaque index y, a measure of plaque buildup, was recorded at 4,
7, and 14 days. The mean and standard deviation for the 14-day plaque measurements for the
two groups are given in the following table:

Control Group Antiplaque Group

Sample size 7 7
Mean 1.26 .78
Standard deviation .32 .32

a State the null and alternative hypotheses that should be used to test the effectiveness of the
antiplaque oral rinse.

b Do the data provide sufficient evidence to indicate that the oral antiplaque rinse is effective?
Test using α = .05.

c Bound or find the p-value for the test.

10.77 In Exercise 8.90, we presented a summary of data regarding SAT scores (verbal and math) for
high school students who intended to major in engineering or in language and literature. The
data are summarized in the following table:

Prospective Major Verbal Math

Engineering (n = 15) y = 446 s = 42 y = 548 s = 57
Language/literature (n = 15) y = 534 s = 45 y = 517 s = 52

a Is there sufficient evidence to indicate a difference in mean verbal SAT scores for high school
students intending to major in engineering and in language/literature? Bound or determine
the associated p-value. What would you conclude at the α = .05 significance level?

b Are the results you obtained in part (a) consistent with those you obtained in
Exercise 8.90(a)?

c Answer the questions posed in part (a) in relation to the mean math SAT scores for the two
groups of students.

d Are the results you obtained in part (c) consistent with those you obtained in Exer-
cise 8.90(b)?

10.9 Testing Hypotheses Concerning Variances
We again assume that we have a random sample Y1, Y2, . . . , Yn from a normal dis-
tribution with unknown mean μ and unknown variance σ 2. In Section 8.9, we used
the pivotal method to construct a confidence interval for the parameter σ 2. In this
section, we consider the problem of testing H0 : σ 2 = σ 2

0 for some fixed value σ 2
0

16. Source: Jan Lindhe, “Clinical Assessment of Antiplaque Agents,” Compendium of Continuing Edu-
cation in Dentistry, supl. no. 5, 1984.
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versus various alternative hypotheses. If H0 is true and σ 2 = σ 2
0 , Theorem 7.3 implies

that

χ2 = (n − 1)S2

σ 2
0

has a χ2 distribution with n − 1 df. If we desire to test H0 : σ 2 = σ 2
0 versus Ha : σ 2 >

σ 2
0 , we can use χ2 = (n − 1)S2/σ 2

0 as our test statistic, but how should we select the
rejection region RR?

If Ha is true and the actual value of σ 2 is larger than σ 2
0 , we would expect S2

(which estimates the true value of σ 2) to be larger than σ 2
0 . The larger S2 is relative

to σ 2
0 , the stronger is the evidence to support Ha : σ 2 > σ 2

0 . Notice that S2 is large
relative to σ 2

0 if and only if χ2 = (n − 1)S2/σ 2
0 is large. Thus, we see that a rejection

region of the form RR = {χ2 > k} for some constant k is appropriate for testing
H0 : σ 2 = σ 2

0 versus Ha : σ 2 > σ 2
0 . If we desire a test for which the probability of a

type I error is α, we use the rejection region

RR = {
χ2 > χ2

α

}
,

where P(χ2 > χ2
α) = α. (Values of χ2

α can be found in Table 6, Appendix 3.) An
illustration of this rejection region is found in Figure 10.10(a).

If we want to test H0 : σ 2 = σ 2
0 versus Ha : σ 2 < σ 2

0 (a lower-tail alternative),
analogous reasoning leads to a rejection region located in the lower tail of the χ2

distribution. Alternatively, we can test H0 : σ 2 = σ 2
0 versus Ha : σ 2 7= σ 2

0 (a two-
tailed test) by using a two-tailed rejection region. Graphs illustrating these rejection
regions are given in Figure 10.10.
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Rejection regions

RR for testing
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2
0 versus

(a) Ha : σ 2 > σ
2
0 ;

(b) Ha : σ 2 < σ
2
0 ;

and (c) Ha : σ 2 7= σ
2
0
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Test of Hypotheses Concerning a Population Variance

Assumptions: Y1, Y2, . . . , Yn constitute a random sample from a normal
distribution with

E(Yi ) = μ and V (Yi ) = σ 2.

H0 : σ 2 = σ 2
0

Ha :

⎧⎪⎨⎪⎩
σ 2 > σ 2

0 (upper-tail alternative).

σ 2 < σ 2
0 (lower-tail alternative).

σ 2 7= σ 2
0 (two-tailed alternative).

Test statistic: χ2 = (n − 1)S2

σ 2
0

.

Rejection region:

⎧⎪⎨⎪⎩
χ2 > χ2

α (upper-tail RR).

χ2 < χ2
1−α (lower-tail RR).

χ2 > χ2
α/2 or χ2 < χ2

1−α/2 (two-tailed RR).

Notice that χ2
α is chosen so that, for ν = n − 1 df, P(χ2 > χ2

α) = α.
(See Table 6, Appendix 3.)

EXAMPLE 10.16 A company produces machined engine parts that are supposed to have a diameter
variance no larger than .0002 (diameters measured in inches). A random sample of
ten parts gave a sample variance of .0003. Test, at the 5% level, H0 : σ 2 = .0002
against Ha : σ 2 > .0002.

Solution If it is reasonable to assume that the measured diameters are normally distributed, the
appropriate test statistic is χ2 = (n − 1)S2/σ 2

0 . Because we have posed an upper-tail
test, we reject H0 for values of this statistic larger than χ2

.05 = 16.919 (based on 9 df).
The observed value of the test statistic is

(n − 1)s2

σ 2
0

= (9)(.0003)

.0002
= 13.5.

Thus, H0 is not rejected. There is not sufficient evidence to indicate that σ 2 exceeds
.0002 at the 5% level of significance.

EXAMPLE 10.17 Determine the p-value associated with the statistical test of Example 10.16.

Solution The p-value is the probability that a χ2 random variable with 9 df is larger than
the observed value of 13.5. The area corresponding to this probability is shaded in
Figure 10.11. By examining the row corresponding to 9 df in Table 6, Appendix 3,
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.113.5

14.6837

0

p-value

F I G U R E 10.11
Illustration of the

p-value for Example
10.17 (χ2 density

with 9 df )

we find that χ2
.1 = 14.6837. As Figure 10.11 indicates, the shaded area exceeds .1, and

thus the p-value is more than .1. That is, for any value of α < .1, the null hypothesis
cannot be rejected. This agrees with the conclusion of Example 10.16.

The exact p-value is easily obtained using the applet Chi-Square Probability and
Quantiles. As indicated in Figure 10.11, we require P(χ2 > 13.5). When χ2 has
9 df, as in the present situation, the applet yields P(χ2 > 13.5) = .14126.

EXAMPLE 10.18 An experimenter was convinced that the variability in his measuring equipment results
in a standard deviation of 2. Sixteen measurements yielded s2 = 6.1. Do the data
disagree with his claim? Determine the p-value for the test. What would you conclude
if you chose α = .05?

Solution We require a test of H0 : σ 2 = 4 versus Ha : σ 2 7= 4, a two-tailed test. The value
of the test statistic is χ2 = 15(6.1)/4 = 22.875. Referring to Table 6, Appendix 3,
we see that, for 15 df, χ2

.05 = 24.9958 and χ2
.10 = 22.3072. Thus, the portion of the

p-value that falls in the upper tail is between .05 and .10. Because we need to account
for a corresponding equal area in the lower tail (this area is also between .05 and
.10), it follows that .1 < p-value < .2. Using the applet Chi-Square Probability and
Quantiles to compute the exact p-value, we obtain P(χ2 > 22.8750) = .0868, and
that p-value = 2(.0868) = .1736. Whether we use the bounds obtained from Table 6
or the exact p-value obtained from the applet, it is clear that the chosen value of
α = .05 is smaller than the p-value; therefore, we cannot reject the experimenters
claim at the α = .05 level.

Sometimes we wish to compare the variances of two normal distributions, particu-
larly by testing to determine whether they are equal. These problems are encountered
in comparing the precision of two measuring instruments, the variation in quality
characteristics of a manufactured product, or the variation in scores for two test-
ing procedures. For example, suppose that Y11, Y12, . . . , Y1n1 and Y21, Y22, . . . , Y2n2
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are independent random samples from normal distributions with unknown means
and that V (Y1i ) = σ 2

1 and V (Y2i ) = σ 2
2 , where σ 2

1 and σ 2
2 are unknown. Sup-

pose that we want to test the null hypothesis H0 : σ 2
1 = σ 2

2 against the alternative
Ha : σ 2

1 > σ 2
2 .

Because the sample variances S2
1 and S2

2 estimate the respective population vari-
ances, we reject H0 in favor of Ha if S2

1 is much larger than S2
2 . That is, we use a

rejection region RR of the form

RR =
{

S2
1

S2
2

> k

}
,

where k is chosen so that the probability of a type I error is α. The appropriate value of k
depends on the probability distribution of the statistic S2

1/S2
2 . Notice that (n1−1)S2

1/σ 2
1

and (n2 − 1)S2
2/σ 2

2 are independent χ2 random variables. From Definition 7.3, it
follows that

F = (n1 − 1)S2
1

σ 2
1 (n1 − 1)

/
(n2 − 1)S2

2

σ 2
2 (n2 − 1)

= S2
1σ 2

2

S2
2σ 2

1

has an F distribution with (n1 − 1) numerator degrees of freedom and (n2 − 1)

denominator degrees of freedom. Under the null hypothesis that σ 2
1 = σ 2

2 , it follows
that F = S2

1/S2
2 and the rejection region RR given earlier is equivalent to RR =

{F > k} = {F > Fα}, where k = Fα is the value of the F distribution with
ν1 = (n1 − 1) and ν2 = (n2 − 1) such that P(F > Fα) = α. Values of Fα are given
in Table 7, Appendix 3. This rejection region is shown in Figure 10.12.

RR

1 – #

#

F#

0

F I G U R E 10.12
Rejection region

RR for testing
H0 : σ 2

1 = σ
2
2 versus

Ha : σ 2
1 > σ

2
2
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EXAMPLE 10.19 Suppose that we wish to compare the variation in diameters of parts produced by
the company in Example 10.16 with the variation in diameters of parts produced by
a competitor. Recall that the sample variance for our company, based on n = 10
diameters, was s2

1 = .0003. In contrast, the sample variance of the diameter measure-
ments for 20 of the competitor’s parts was s2

2 = .0001. Do the data provide sufficient
information to indicate a smaller variation in diameters for the competitor? Test with
α = .05.

Solution We are testing H0 : σ 2
1 = σ 2

2 against the alternative Ha : σ 2
1 > σ 2

2 . The test statistic,
F = (S2

1/S2
2), is based on ν1 = 9 numerator and ν2 = 19 denominator degrees of

freedom, and we reject H0 for values of F larger than F.05 = 2.42. (See Table 7,
Appendix 3.) Because the observed value of the test statistic is

F = s2
1

s2
2

= .0003

.0001
= 3,

we see that F > F.05; therefore, at the α = .05 level, we reject H0 : σ 2
1 = σ 2

2 in
favor of Ha : σ 2

1 > σ 2
2 and conclude that the competing company produces parts with

smaller variation in their diameters.

EXAMPLE 10.20 Give bounds for the p-value associated with the data of Example 10.19. Use the applet
F-Ratio Probabilities and Quantiles to determine the exact p-value.

Solution The calculated F-value for this upper-tail test is F = 3. Because this value is based
on ν1 = 9 and ν2 = 19 numerator and denominator degrees of freedom, respectively,
Table 7, Appendix 3, can be used to determine that F.025 = 2.88 whereas F.01 = 3.52.
Thus, the observed value, F = 3, would lead to rejection of the null hypothesis for
α = .025 but not for α = .01. Hence, .01 < p-value < .025.

We require p-value = P(F > 3) when F has an F distribution with ν1 = 9
numerator degrees of freedom and ν2 = 19 denominator degrees of freedom. Direct
use of the applet yields that P(F > 3) = .02096, a value clearly between .01 and
.025, as indicated by the bounds for the p-value obtained from Table 7.

Suppose that, for Example 10.19, our research hypothesis was Ha : σ 2
1 < σ 2

2 . How
would we proceed? We are at liberty to identify either population as population 1.
Therefore, if we simply interchange the arbitrary labels of 1 and 2 on the two popula-
tions (and the corresponding identifiers on sample sizes, sample variances, etc.), our
alternative hypothesis becomes Ha : σ 2

1 > σ 2
2 , and we can proceed as before. That is,

if the research hypothesis is that the variance of one population is larger than the vari-
ance of another population, we identify the population with the hypothesized larger
variance as population 1 and proceed as indicated in the solution to Example 10.19.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



536 Chapter 10 Hypothesis Testing

Test of the Hypothesis σ2
1 =σ

2
2

Assumptions: Independent samples from normal populations.
H0 : σ 2

1 = σ 2
2 .

Ha : σ 2
1 > σ 2

2 .

Test statistic: F = S2
1

S2
2

.

Rejection region: F > Fα , where Fα is chosen so that P(F > Fα) = α

when F has ν1 = n1 − 1 numerator degrees of freedom and ν2 = n2 − 1
denominator degrees of freedom. (See Table 7, Appendix 3.)

If we wish to test H0 : σ 2
1 = σ 2

2 versus Ha : σ 2
1 7= σ 2

2 with type I error probability
α, we can employ F = S2

1/S2
2 as a test statistic and reject H0 in favor of Ha if the

calculated F-value is in either the upper or the lower α/2 tail of the F distribution.
The upper-tail critical values can be determined directly from Table 7, Appendix 3;
but how do we determine the lower-tail critical values?

Notice that F = S2
1/S2

2 and F−1 = S2
2/S2

1 both have F distributions, but the
numerator and denominator degrees of freedom are interchanged (the process of
inversion switches the roles of numerator and denominator). Let Fa

b denote a random
variable with an F distribution with a and b numerator and denominator degrees of
freedom, respectively, and let Fa

b,α/2 be such that

P
(
Fa

b > Fa
b,α/2

) = α/2.

Then

P
[(

Fa
b

)−1
<

(
Fa

b,α/2

)−1] = α/2

and, therefore,

P
[
Fb

a <
(
Fa

b,α/2

)−1] = α/2.

That is, the value that cuts off a lower-tail area of α/2 for an Fb
a distribution can be

found by inverting Fa
b,α/2. Thus, if we use F = S2

1/S2
2 as a test statistic for testing

H0 : σ 2
1 = σ 2

2 versus Ha : σ 2
1 7= σ 2

2 , the appropriate rejection region is

RR :
{

F > Fn1−1
n2−1,α/2 or F <

(
Fn2−1

n1−1,α/2

)−1}
.

An equivalent test (see Exercise 10.81) is obtained as follows. Let nL and nS denote
the sample sizes associated with the larger and smaller sample variances, respectively.
Place the larger sample variance in the numerator and the smaller sample variance in
the denominator of the F statistic, and reject H0 : σ 2

1 = σ 2
2 in favor of Ha : σ 2

1 7= σ 2
2

if F > Fα/2, where Fα/2 is determined for ν1 = nL − 1 and ν2 = nS − 1 numerator
and denominator degrees of freedom, respectively.

EXAMPLE 10.21 An experiment to explore the pain thresholds to electrical shocks for males and females
resulted in the data summary given in Table 10.4. Do the data provide sufficient
evidence to indicate a significant difference in the variability of pain thresholds for
men and women? Use α = .10. What can be said about the p-value?
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Table 10.4 Data for Example 10.21

Males Females

n 14 10
y 16.2 14.9
s2 12.7 26.4

Solution Let us assume that the pain thresholds for men and women are approximately normally
distributed. We desire to test H0 : σ 2

M = σ 2
F versus Ha : σ 2

M 7= σ 2
F , where σ 2

M and σ 2
F

are the variances of pain thresholds for men and women, respectively. The larger
S2 is 26.4 (the S2 for women), and the sample size associated with the larger S2 is
nL = 10. The smaller S2 is 12.7 (the S2 for men), and nS = 14 (the number of men
in the sample). Therefore, we compute

F = 26.4

12.7
= 2.079,

and we compare this value to Fα/2 = F.05 with ν1 = 10−1 = 9 and ν2 = 14−1 = 13
numerator and denominator degrees of freedom, respectively. Because F.05 = 2.71
and because 2.079 is not larger than the critical value (2.71), insufficient evidence ex-
ists to support a claim that the variability of pain thresholds differs for men and women.

The p-value associated with the observed value of F for this two-tailed test can
be bounded as follows. Referring to Table 7, Appendix 3, with ν1 = 9, ν2 = 13
numerator and denominator degrees of freedom, respectively, we find F.10 = 2.16.
Thus, p-value > 2(.10) = .20. Unless we were willing to work with a very large
value of α (some value greater than .2), these results would not allow us to conclude
that the variances of pain thresholds differ for men and women.

The exact p-value is easily obtained using the applet F-Ratio Probabilities and
Quantiles. With 9 numerator and 13 denominator degrees of freedom, P(F >

2.079) = .1005 and p-value = 2(.1005) = .2010, a value larger that .20, as deter-
mined through the use of Table 7.

Although we used the notation F in Example 10.21 to denote the ratio with the
larger S2 in the numerator and the smaller S2 in the denominator, this ratio does not
have an F distribution (notice that the ratio defined in this way must be greater than
or equal to 1). Nevertheless, the tables of the F distribution can be used to determine
the rejection region for an α-level test (see Exercise 10.81).

Both the χ2 tests and the F tests presented in this section are very sensitive to
departures from the assumption of normality of the underlying population(s). Thus,
unlike the t tests of Section 10.8, these tests are not robust if the normality assumption
is violated.

Exercises
10.78 A manufacturer of hard safety hats for construction workers is concerned about the mean and

the variation of the forces its helmets transmit to wearers when subjected to a standard external
force. The manufacturer desires the mean force transmitted by helmets to be 800 pounds
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538 Chapter 10 Hypothesis Testing

(or less), well under the legal 1000-pound limit, and desires σ to be less than 40. Tests were
run on a random sample of n = 40 helmets, and the sample mean and variance were found to
be equal to 825 pounds and 2350 pounds2, respectively.

a If μ = 800 and σ = 40, is it likely that any helmet subjected to the standard external force
will transmit a force to a wearer in excess of 1000 pounds? Explain.

b Do the data provide sufficient evidence to indicate that when subjected to the standard
external force, the helmets transmit a mean force exceeding 800 pounds?

c Do the data provide sufficient evidence to indicate that σ exceeds 40?

10.79 The manufacturer of a machine to package soap powder claimed that her machine could load
cartons at a given weight with a range of no more than .4 ounce. The mean and variance
of a sample of eight 3-pound boxes were found to equal 3.1 and .018, respectively. Test the
hypothesis that the variance of the population of weight measurements is σ 2 = .01 against the
alternative that σ 2 > .01.

a Use an α = .05 level of significance. What assumptions are required for this test?

b What can be said about the attained significance level using a table in the appendix?

c Applet Exercise What can be said about the attained significance level using the appro-
priate applet?

10.80 Under what assumptions may the F distribution be used in making inferences about the ratio
of population variances?

10.81 From two normal populations with respective variances σ 2
1 and σ 2

2 , we observe independent
sample variances S2

1 and S2
2 , with corresponding degrees of freedom ν1 = n1−1 and ν2 = n2−1.

We wish to test H0 : σ 2
1 = σ 2

2 versus Ha : σ 2
1 7= σ 2

2 .

a Show that the rejection region given by

{
F > Fν1

ν2,α/2 or F <
(

Fν2
ν1,α/2

)−1}
,

where F = S2
1/S2

2 , is the same as the rejection region given by

{
S2

1/S2
2 > Fν1

ν2,α/2 or S2
2/S2

1 > Fν2
ν1,α/2

}
.

b Let S2
L denote the larger of S2

1 and S2
2 and let S2

S denote the smaller of S2
1 and S2

2 . Let νL

and νS denote the degrees of freedom associated with S2
L and S2

S , respectively. Use part (a)
to show that, under H0,

P
(

S2
L/S2

S > FνL
νS ,α/2

)
= α.

Notice that this gives an equivalent method for testing the equality of two variances.

10.82 Exercises 8.83 and 10.73 presented some data collected in a 1993 study by Susan Beckham and
her colleagues. In this study, measurements of anterior compartment pressure (in millimeters
of mercury) were taken for ten healthy runners and ten healthy cyclists. The researchers also
obtained pressure measurements for the runners and cyclists at maximal O2 consumption. The
data summary is given in the accompanying table.
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Runners Cyclists

Condition Mean s Mean s

Rest 14.5 3.92 11.1 3.98
80% maximal O2 12.2 3.49 11.5 4.95

consumption
Maximal O2 consumption 19.1 16.9 12.2 4.67

a Is there sufficient evidence to support a claim that the variability of compartment pressure
differs for runners and cyclists who are resting? Use α = .05.

b i What can be said about the attained significance level using a table in the appendix?

ii Applet Exercise What can be said about the attained significance level using the
appropriate applet?

c Is there sufficient evidence to support a claim that the variability in compartment pressure
between runners and cyclists differs at maximal O2 consumption? Use α = .05.

d i What can be said about the attained significance level using a table in the appendix?

ii Applet Exercise What can be said about the attained significance level using the
appropriate applet?

10.83 The manager of a dairy is in the market for a new bottle-filling machine and is considering
machines manufactured by companies A and B. If ruggedness, cost, and convenience are
comparable in the two machines, the deciding factor will be the variability of fills (the machine
producing fills with the smaller variance being preferable). Let σ 2

1 and σ 2
2 be the fill variances

for machines produced by companies A and B, respectively. Now consider various tests of the
null hypothesis H0 : σ 2

1 = σ 2
2 . Obtaining samples of fills from the two machines and using the

test statistic S2
1/S2

2 , we could set up as the rejection region an upper-tail area, a lower-tail area,
or a two-tailed area of the F distribution, depending on the interests to be served. Identify the
type of rejection region that would be most favored by the following persons, and explain why.

a The manager of the dairy

b A salesperson for company A

c A salesperson for company B

10.84 An experiment published in The American Biology Teacher studied the efficacy of using 95%
ethanol and 20% bleach as disinfectants for removing bacterial and fungal contamination when
culturing plant tissues. The experiment was repeated 15 times with each disinfectant, using
eggplant as the plant tissue cultured.17 Five cuttings per plant were placed on a petri dish,
disinfected using each agent, and stored at 25◦C for 4 weeks. The observations reported were
the number of uncontaminated eggplant cuttings after the 4 weeks of storage. Relevant data is
given in the following table. Are you willing to assume that the underlying population variances
are equal?

Disinfectant 95% Ethanol 20% Bleach

Mean 3.73 4.80
Variance 2.78095 0.17143
n 15 15

17. Source: Michael Brehm, J. Buguliskis, D. Hawkins, E. Lee, D. Sabapathi, and R. Smith, “Determin-
ing Differences in Efficacy of Two Disinfectants Using t tests,” The American Biology Teacher 58(2),
(1996): 111.
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540 Chapter 10 Hypothesis Testing

a What can be said about the attained significance level using the F table in the appendix?

b Applet Exercise What can be said about the attained significance level using the applet
F-Ratio Probabilities and Quantiles?

c What would you conclude, with α = .02?

10.85 Applet Exercise A precision instrument is guaranteed to be accurate to within 2 units. A
sample of four instrument readings on the same object yielded the measurements 353, 351,
351, and 355. Give the attained significance level for testing the null hypothesis σ = .7 versus
the alternative hypothesis σ > .7.

10.86 Aptitude tests should produce scores with a large amount of variation so that an administrator
can distinguish between persons with low aptitude and persons with high aptitude. The standard
test used by a certain industry has been producing scores with a standard deviation of 10 points.
A new test is given to 20 prospective employees and produces a sample standard deviation
of 12 points. Are scores from the new test significantly more variable than scores from the
standard? Use α = .01.

10.87 Refer to Exercise 10.70. Is there sufficient evidence, at the 5% significance level, to support
concluding that the variance in measurements of DDT levels is greater for juveniles than it is
for nestlings?

10.10 Power of Tests and the
Neyman–Pearson Lemma
In the remaining sections of this chapter, we move from practical examples of statis-
tical tests to a theoretical discussion of their properties. We have suggested specific
tests for a number of practical hypothesis testing situations, but you may wonder why
we chose those particular tests. How did we decide on the test statistics that were
presented, and how did we know that we had selected the best rejection regions?

The goodness of a test is measured by α and β, the probabilities of type I and type II
errors, respectively. Typically, the value of α is chosen in advance and determines the
location of the rejection region. A related but more useful concept for evaluating the
performance of a test is called the power of the test. Basically, the power of a test is
the probability that the test will lead to rejection of the null hypothesis.

DEFINITION 10.3 Suppose that W is the test statistic and RR is the rejection region for a test of
a hypothesis involving the value of a parameter θ . Then the power of the test,
denoted by power(θ), is the probability that the test will lead to rejection of H0

when the actual parameter value is θ . That is,

power(θ) = P(W in RR when the parameter value is θ).

Suppose that we want to test the null hypothesis H0 : θ = θ0 and that θa is a
particular value for θ chosen from Ha . The power of the test at θ = θ0, power(θ0), is
equal to the probability of rejecting H0 when H0 is true. That is, power(θ0) = α, the
probability of a type I error. For any value of θ from Ha , the power of a test measures
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Power

#

0%

1F I G U R E 10.13
A typical power

curve for the test of
H0 : θ = θ0 against

the alternative
Ha : θ 7= θ0

the test’s ability to detect that the null hypothesis is false. That is, for θ = θa ,

power(θa) = P(rejecting H0 when θ = θa).

If we express the probability β of a type II error when θ = θa as β(θa), then

β(θa) = P(accepting H0 when θ = θa).

It follows that the power of the test at θa and the probability of a type II error are
related as follows.

Relationship Between Power and β

If θa is a value of θ in the alternative hypothesis Ha , then

power(θa) = 1 − β(θa).

A typical power curve, a graph of power(θ), is shown in Figure 10.13.
Ideally, a test would detect a departure from H0 : θ = θ0 with certainty; that is,

power(θa) would be 1 for all θa in Ha (see Figure 10.14). Because, for a fixed sample
size, α and β both cannot be made arbitrarily small, this is clearly not possible.
Therefore, for a fixed sample size n, we adopt the procedure of selecting a (small)
value for α and finding a rejection region RR to minimize β(θa) at each θa in Ha .
Equivalently, we choose RR to maximize power(θ) for θ in Ha . From among all tests
with a significance level of α, we seek the test whose power function comes closest
to the ideal power function (Figure 10.14) if such a test exists. How do we find such
a testing procedure?

Before we proceed, we must define simple and composite hypotheses. Suppose
that Y1, Y2, . . . , Yn constitute a random sample from an exponential distribution with

Power ( )%

%%0

1

F I G U R E 10.14
Ideal power curve for
the test of H0 : θ = θ0

versus Ha : θ 7= θ0

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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parameter λ; that is, f (y) = (1/λ)e−y/λ, y > 0. Then the hypothesis H : λ = 2
uniquely specifies the distribution from which the sample is taken as having density
function f (y) = (1/2)e−y/2, y > 0. The hypothesis H : λ = 2 is therefore an
example of a simple hypothesis. In contrast, the hypothesis H∗ : λ > 2 is a composite
hypothesis because under H∗ the density function f (y) is not uniquely determined.
The form of the density is exponential, but the parameter λ could be 3 or 15 or any
value greater than 2.

DEFINITION 10.4 If a random sample is taken from a distribution with parameter θ , a hypothesis
is said to be a simple hypothesis if that hypothesis uniquely specifies the distri-
bution of the population from which the sample is taken. Any hypothesis that
is not a simple hypothesis is called a composite hypothesis.

If Y1, Y2, . . . , Yn represent a random sample from a normal distribution with known
variance σ 2 = 1, then H : μ = 5 is a simple hypothesis because, if H is true, the
density function is uniquely specified to be a normal density function with μ = 5 and
σ 2 = 1. If, on the other hand, σ 2 is not known, the hypothesis H : μ = 5 determines
the mean of the normal distribution but does not determine the value of the variance.
Therefore, if σ 2 is not known, H : μ = 5 is a composite hypothesis.

Suppose that we would like to test a simple null hypothesis H0 : θ = θ0 versus a
simple alternative hypothesis Ha : θ = θa . Because we are concerned only with two
particular values of θ (θ0 and θa), we would like to choose a rejection region RR so
that α = power(θ0) is a fixed value and power(θa) is as large as possible. That is, we
seek a most powerful α level test. The following theorem provides the methodology
for deriving the most powerful test for testing simple H0 versus simple Ha . [Note: As
in Definition 9.4, we use the notation L(θ) = L(y1, y2, . . . , yn | θ) to indicate that
the likelihood function depends on y1, y2, . . . , yn and on θ .]

THEOREM 10.1 The Neyman–Pearson Lemma Suppose that we wish to test the simple null
hypothesis H0 : θ = θ0 versus the simple alternative hypothesis Ha : θ = θa ,
based on a random sample Y1, Y2, . . . , Yn from a distribution with parameter θ .
Let L(θ) denote the likelihood of the sample when the value of the parameter
is θ . Then, for a given α, the test that maximizes the power at θa has a rejection
region, RR, determined by

L(θ0)

L(θa)
< k.

The value of k is chosen so that the test has the desired value for α. Such a test
is a most powerful α-level test for H0 versus Ha .

The proof of Theorem 10.1 is not given here, but it can be found in some of the
texts listed in the references at the end of the chapter. We illustrate the application of
the theorem with the following example.
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EXAMPLE 10.22 Suppose that Y represents a single observation from a population with probability
density function given by

f (y | θ) =
{

θyθ−1, 0 < y < 1,

0, elsewhere.

Find the most powerful test with significance level α = .05 to test H0 : θ = 2 versus
Ha : θ = 1.

Solution Because both of the hypotheses are simple, Theorem 10.1 can be applied to derive
the required test. In this case,

L(θ0)

L(θa)
= f (y|θ0)

f (y|θa)
= 2y

(1)y0
= 2y, for 0 < y < 1,

and the form of the rejection region for the most powerful test is

2y < k.

Equivalently, the rejection region RR is {y < k/2}. Or because k/2 = k∗, a constant,
the rejection region is RR: {y < k∗}.

Because α = .05 is specified, the value of k∗ is determined by

.05 = P(Y in RR when θ = 2) = P(Y < k∗ when θ = 2) =
∫ k∗

0
2y dy = (k∗)2.

Therefore, (k∗)2 = .05, and the rejection region of the most powerful test is

RR: {y <
√

.05 = .2236}.
Among all tests for H0 versus Ha based on a sample size of 1 and with α fixed at
.05, this test has the largest possible value for power(θa) = power(1). Equivalently,
among all tests with α = .05 this test has the smallest type II error probability when
β(θa) is evaluated at θa = 1. What is the actual value for power(θ) when θ = 1?

power(1) = P(Y in RR when θ = 1) = P(Y < .2236 when θ = 1)

=
∫ .2236

0
(1) dy = .2236.

Even though the rejection region {y < .2236} gives the maximum value for power(1)

among all tests with α = .05, we see that β(1) = 1 − .2236 = .7764 is still very
large.

Notice that the forms of the test statistic and of the rejection region depend on both
H0 and Ha . If the alternative is changed to Ha : θ = 4, the most powerful test is based
on Y 2, and we reject H0 in favor of Ha if Y 2 > k ′, for some constant k ′. Also notice
that the Neyman–Pearson lemma gives the form of the rejection region; the actual
rejection region depends on the specified value for α.

For discrete distributions, it is not always possible to find a test whose significance
level is exactly equal to some predetermined value of α. In such cases, we specify

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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the test to be the one for which the probability of a type I error is closest to the
predetermined value of α without exceeding it.

Suppose that we sample from a population whose distribution is completely spec-
ified except for the value of a single parameter θ . If we desire to test H0 : θ = θ0

(simple) versus Ha : θ > θ0 (composite), no general theorem comparable to Theo-
rem 10.1 is applicable if either hypothesis is composite. However, Theorem 10.1 can
be applied to obtain a most powerful test for H0 : θ = θ0 versus Ha : θ = θa for any
single value θa , where θa > θ0. In many situations, the actual rejection region for
the most powerful test depends only on the value of θ0 (and does not depend on the
particular choice of θa). When a test obtained by Theorem 10.1 actually maximizes
the power for every value of θ greater than θ0, it is said to be a uniformly most powerful
test for H0 : θ = θ0 versus Ha : θ > θ0. Analogous remarks apply to the derivation
of tests for H0 : θ = θ0 versus Ha : θ < θ0. We illustrate these ideas in the following
example.

EXAMPLE 10.23 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a normal distribution
with unknown mean μ and known variance σ 2. We wish to test H0 : μ = μ0 against
Ha : μ > μ0 for a specified constant μ0. Find the uniformly most powerful test with
significance level α.

Solution We begin by looking for the most powerful α-level test of H0 : μ = μ0 versus H∗
a : μ =

μa for one fixed value of μa that is larger than μ0. Because

f (y | μ) =
(

1

σ
√

2π

)
exp

[−(y − μ)2

2σ 2

]
, −∞ < y < ∞,

we have

L(μ) = f (y1 | μ) f (y2 | μ) · · · f (yn | μ) =
(

1

σ
√

2π

)n

exp

[
−

n∑
i=1

(yi − μ)2

2σ 2

]
.

[Recall that exp(w) is simply ew in another form.] Because both H0 and H∗
a are simple

hypotheses, Theorem 10.1, implies that the most powerful test of H0 : μ = μ0 versus
H∗

a : μ = μa is given by

L(μ0)

L(μa)
< k,

which in this case is equivalent to(
1

σ
√

2π

)n

exp

[
− ∑n

i=1

(yi − μ0)
2

2σ 2

]
(

1

σ
√

2π

)n

exp

[
− ∑n

i=1

(yi − μa)
2

2σ 2

] < k.

This inequality can be rearranged as follows:

exp

{
− 1

2σ 2

[
n∑

i=1

(yi − μ0)
2 −

n∑
i=1

(yi − μa)
2

]}
< k.
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Taking natural logarithms and simplifying, we have

− 1

2σ 2

[
n∑

i=1

(yi − μ0)
2 −

n∑
i=1

(yi − μa)
2

]
< ln(k)

n∑
i=1

(yi − μ0)
2 −

n∑
i=1

(yi − μa)
2 > −2σ 2 ln(k)

n∑
i=1

y2
i − 2nyμ0 + nμ2

0 −
n∑

i=1

y2
i + 2nyμa − nμ2

a > −2σ 2 ln(k)

y(μa − μ0) >
−2σ 2 ln(k) − nμ2

0 + nμ2
a

2n
or, since μa > μ0,

y >
−2σ 2 ln(k) − nμ2

0 + nμ2
a

2n(μa − μ0)
.

Because σ 2, n, μ0, and μa are all known constants, the quantity on the right-hand
side of this inequality is a constant—call it k ′. Therefore, the most powerful test of
H0 : μ = μ0 versus H∗

a : μ = μa has the rejection region given by

RR = {y > k ′}.
The precise value of k ′ is determined by fixing α and noting that

α = P(Y in RR when μ = μ0)

= P(Y > k ′ when μ = μ0)

= P

(
Y − μ0

σ/
√

n
>

k ′ − μ0

σ/
√

n

)
= P

(
Z >

√
n(k ′ − μ0)/σ

)
.

Because, under H0, Z has a standard normal distribution, P(Z > zα) = α and the
required value for k ′ must satisfy√

n(k ′ − μ0)/σ = zα, or equivalently, k ′ = μ0 + zασ/
√

n.

Thus, the α-level test that has the largest possible value for power(θa) is based on
the statistic Y and has rejection region RR = {y > μ0 + zασ/

√
n}. We now observe

that neither the test statistic nor the rejection region for this α-level test depends on
the particular value assigned to μa . That is, for any value of μa greater than μ0, we
obtain exactly the same rejection region. Thus, the α-level test with the rejection region
previously given has the largest possible value for power(μa) for every μa > μ0. It is
the uniformly most powerful test for H0 : μ = μ0 versus Ha : μ > μ0. This is exactly
the test that we considered in Section 10.3.

Again consider the situation where the random sample is taken from a distribution
that is completely specified except for the value of a single parameter θ . If we wish to
derive a test for H0 : θ ≤ θ0 versus Ha : θ > θ0 (so that both H0 and Ha are composite
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hypotheses), how do we proceed? Suppose that we use the method illustrated in
Example 10.23 to find a uniformly most powerful test for H ′

0 : θ = θ0 versus Ha : θ >

θ0. If θ1 is a fixed value of θ that is less than θ0 and we use the same test for H ′′
0 : θ = θ1

versus Ha , typically, α will decrease and power(θa) will remain unchanged for all θa

in Ha . In other words, if we have a good test for discriminating between H ′
0 and Ha ,

the same test will be even better for discriminating between H ′′
0 and Ha . For tests with

composite null hypotheses of the form H0 : θ ≤ θ0 (or H0 : θ ≥ θ0), we define the
significance level α to be the probability of a type I error when θ = θ0; that is, α =
power(θ0). Generally, this value for α is the maximum value of the power function
for θ ≤ θ0 (or θ ≥ θ0). Using this methodology, we can show that the test derived in
Example 10.23 for testing H0 : θ = θ0 versus Ha : θ > θ0 is also the uniformly most
powerful α-level test for testing H0 : θ ≤ θ0 versus Ha : θ > θ0.

In Example 10.23, we derived the uniformly most powerful test for H0 : μ = μ0

versus Ha : μ > μ0 and found it to have rejection region {y > μ0 + zασ/
√

n). If
we wished to test H0 : μ = μ0 versus Ha : μ < μ0, analogous calculations would
lead us to {y < μ0 − zασ/

√
n} as the rejection region for the test that is uniformly

most powerful for all μa < μ0. Therefore, if we wish to test H0 : μ = μ0 versus
Ha : μ 7= μ0, no single rejection region yields the most powerful test for all values
of μa 7= μ0. Although there are some special exceptions, in most instances there do
not exist uniformly most powerful two-tailed tests. Thus, there are many null and
alternative hypotheses for which uniformly most powerful tests do not exist.

The Neyman–Pearson lemma is useless if we wish to test a hypothesis about a single
parameter θ when the sampled distribution contains other unspecified parameters. For
example, we might want to test H0 : μ = μ0 when the sample is taken from a normal
distribution with unknown variance σ 2. In this case, H0 : μ = μ0 does not uniquely
determine the form of the distribution (since σ 2 could be any nonnegative number),
and it is therefore not a simple hypothesis. The next section presents a very general and
widely used method for developing tests of hypotheses. The method is particularly
useful when unspecified parameters (called nuisance parameters) are present.

Exercises
10.88 Refer to Exercise 10.2. Find the power of the test for each alternative in (a)–(d).

a p = .4.

b p = .5.

c p = .6.

d p = .7.

e Sketch a graph of the power function.

10.89 Refer to Exercise 10.5. Find the power of test 1 for each alternative in (a)–(e).

a θ = .1.

b θ = .4.

c θ = .7.

d θ = 1.

e Sketch a graph of the power function.
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*10.90 Refer to Exercise 10.5.

a Find the power of test 2 for each of the following alternatives: θ = .1, θ = .4, θ = .7, and
θ = 1.

b Sketch a graph of the power function.

c Compare the power function in part (b) with the power function that you found in Exercise
10.89 (this is the power function for test 1, Exercise 10.5). What can you conclude about
the power of test 2 compared to the power of test 1 for all θ ≥ 0?

10.91 Let Y1, Y2, . . . , Y20 be a random sample of size n = 20 from a normal distribution with unknown
mean μ and known variance σ 2 = 5. We wish to test H0 : μ = 7 versus Ha : μ > 7.

a Find the uniformly most powerful test with significance level .05.

b For the test in part (a), find the power at each of the following alternative values for
μ : μa = 7.5, 8.0, 8.5, and 9.0.

c Sketch a graph of the power function.

10.92 Consider the situation described in Exercise 10.91. What is the smallest sample size such that
an α = .05-level test has power at least .80 when μ = 8?

10.93 For a normal distribution with mean μ and variance σ 2 = 25, an experimenter wishes to test
H0 : μ = 10 versus Ha : μ = 5. Find the sample size n for which the most powerful test will
have α = β = .025.

10.94 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a normal distribution with known
mean μ and unknown variance σ 2. Find the most powerful α-level test of H0 : σ 2 = σ 2

0 versus
Ha : σ 2 = σ 2

1 , where σ 2
1 > σ 2

0 . Show that this test is equivalent to a χ 2 test. Is the test uniformly
most powerful for Ha : σ 2 > σ 2

0 ?

10.95 Suppose that we have a random sample of four observations from the density function

f (y | θ) =

⎧⎪⎨⎪⎩
(

1

2θ 3

)
y2e−y/θ , y > 0,

0, elsewhere.

a Find the rejection region for the most powerful test of H0 : θ = θ0 against Ha : θ = θa ,
assuming that θa > θ0. [Hint: Make use of the χ 2 distribution.]

b Is the test given in part (a) uniformly most powerful for the alternative θ > θ0?

10.96 Suppose Y is a random sample of size 1 from a population with density function

f (y | θ) =
{

θyθ−1, 0 ≤ y ≤ 1,

0, elsewhere,

where θ > 0.

a Sketch the power function of the test with rejection region: Y > .5.

b Based on the single observation Y , find a uniformly most powerful test of size α for testing
H0 : θ = 1 versus Ha : θ > 1.

*10.97 Let Y1, Y2, . . . , Yn be independent and identically distributed random variables with discrete
probability function given by

y

1 2 3

p(y | θ) θ 2 2θ(1 − θ) (1 − θ)2

where 0 < θ < 1. Let Ni denote the number of observations equal to i for i = 1, 2, 3.
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548 Chapter 10 Hypothesis Testing

a Derive the likelihood function L(θ) as a function of N1, N2, and N3.

b Find the most powerful test for testing H0 : θ = θ0 versus Ha : θ = θa , where θa > θ0.
Show that your test specifies that H0 be rejected for certain values of 2N1 + N2.

c How do you determine the value of k so that the test has nominal level α? You need not do
the actual computation. A clear description of how to determine k is adequate.

d Is the test derived in parts (a)–(c) uniformly most powerful for testing H0 : θ = θ0 versus
Ha : θ > θ0? Why or why not?

10.98 Let Y1, . . . , Yn be a random sample from the probability density function given by

f (y | θ) =

⎧⎪⎨⎪⎩
(

1

θ

)
mym−1e−ym/θ , y > 0,

0, elsewhere,

with m denoting a known constant.

a Find the uniformly most powerful test for testing H0 : θ = θ0 against Ha : θ > θ0.

b If the test in part (a) is to have θ0 = 100, α = .05, and β = .05 when θa = 400, find the
appropriate sample size and critical region.

10.99 Let Y1, Y2, . . . , Yn denote a random sample from a population having a Poisson distribution
with mean λ.

a Find the form of the rejection region for a most powerful test of H0 : λ = λ0 against
Ha : λ = λa , where λa > λ0.

b Recall that
∑n

i=1 Yi has a Poisson distribution with mean nλ. Indicate how this information
can be used to find any constants associated with the rejection region derived in part (a).

c Is the test derived in part (a) uniformly most powerful for testing H0 : λ = λ0 against
Ha : λ > λ0? Why?

d Find the form of the rejection region for a most powerful test of H0 : λ = λ0 against
Ha : λ = λa , where λa < λ0.

10.100 Let Y1, Y2, . . . , Yn denote a random sample from a population having a Poisson distribution with
mean λ1. Let X1, X2, . . . , Xm denote an independent random sample from a population having
a Poisson distribution with mean λ2. Derive the most powerful test for testing H0 : λ1 = λ2 = 2
versus Ha : λ1 = 1/2, λ2 = 3.

10.101 Suppose that Y1, Y2, . . . , Yn denote a random sample from a population having an exponential
distribution with mean θ .

a Derive the most powerful test for H0 : θ = θ0 against Ha : θ = θa , where θa < θ0.

b Is the test derived in part (a) uniformly most powerful for testing H0 : θ = θ0 against
Ha : θ < θ0?

10.102 Let Y1, Y2, . . . , Yn denote a random sample from a Bernoulli-distributed population with
parameter p. That is,

p(yi | p) = pyi (1 − p)1−yi , yi = 0, 1.

a Suppose that we are interested in testing H0 : p = p0 versus Ha : p = pa , where p0 < pa .

i Show that

L(p0)

L(pa)
=

[
p0(1 − pa)

(1 − p0)pa

]∑
yi

(
1 − p0

1 − pa

)n

.
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10.11 Likelihood Ratio Tests 549

ii Argue that L(p0)/L(pa) < k if and only if
∑n

i=1 yi > k∗ for some constant k∗.

iii Give the rejection region for the most powerful test of H0 versus Ha .

b Recall that
∑n

i=1 Yi has a binomial distribution with parameters n and p. Indicate how
to determine the values of any constants contained in the rejection region derived in part
[a(iii)].

c Is the test derived in part (a) uniformly most powerful for testing H0 : p = p0 versus
Ha : p > p0? Why or why not?

*10.103 Let Y1, Y2, . . . , Yn denote a random sample from a uniform distribution over the interval (0, θ).

a Find the most powerful α-level test for testing H0 : θ = θ0 against Ha : θ = θa , where
θa < θ0.

b Is the test in part (a) uniformly most powerful for testing H0 : θ = θ0 against Ha : θ < θ0?

*10.104 Refer to the random sample of Exercise 10.103.

a Find the most powerful α-level test for testing H0 : θ = θ0 against Ha : θ = θa , where
θa > θ0.

b Is the test in part (a) uniformly most powerful for testing H0 : θ = θ0 against Ha : θ > θ0?

c Is the most powerful α-level test that you found in part (a) unique?

10.11 Likelihood Ratio Tests
Theorem 10.1 provides a method of constructing most powerful tests for simple
hypotheses when the distribution of the observations is known except for the value of
a single unknown parameter. This method can sometimes be used to find uniformly
most powerful tests for composite hypotheses that involve a single parameter. In
many cases, the distribution of concern has more than one unknown parameter. In
this section, we present a very general method that can be used to derive tests of
hypotheses. The procedure works for simple or composite hypotheses and whether
or not other parameters with unknown values are present.

Suppose that a random sample is selected from a distribution and that the likelihood
function L(y1, y2, . . . , yn | θ1, θ2, . . . , θk) is a function of k parameters, θ1, θ2, . . . , θk .
To simplify notation, let % denote the vector of all k parameters—that is, % =
(θ1, θ2, . . . , θk)—and write the likelihood function as L(%). It may be the case that
we are interested in testing hypotheses only about one of the parameters, say, θ1. For
example, if as in Example 10.24, we take a sample from a normally distributed popu-
lation with unknown mean μ and unknown variance σ 2, then the likelihood function
depends on the two parameters μ and σ 2 and % = (μ, σ 2). If we are interested in
testing hypotheses about only the mean μ, then σ 2—a parameter not of particular
interest to us—is called a nuisance parameter. Thus, the likelihood function may be
a function with both unknown nuisance parameters and a parameter of interest.

Suppose that the null hypothesis specifies that % (may be a vector) lies in a par-
ticular set of possible values—say, #0—and that the alternative hypothesis specifies
that % lies in another set of possible values #a , which does not overlap #0. For
example, if we sample from a population with an exponential distribution with mean
λ (in this case, λ is the only parameter of the distribution, and % = λ), we might be
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550 Chapter 10 Hypothesis Testing

interested in testing H0 : λ = λ0 versus Ha : λ 7= λ0. In this exponential example, #0

contains only the single value λ0 and #a = {λ > 0 : λ 7= λ0}. Denote the union of
the two sets, #0 and #a , by #; that is, # = #0 ∪ #a . In the exponential example,
# = {λ0} ∪ {λ > 0 : λ 7= λ0} = {λ : λ > 0}, the set of all possible values for λ. Either
or both of the hypotheses H0 and Ha can be composite because they might contain
multiple values of the parameter of interest or because other unknown parameters
may be present.

Let L(#̂0) denote the maximum (actually the supremum) of the likelihood function
for all % ∈ #0. That is, L(#̂0) = max%∈#0 L(%). Notice that L(#̂0) represents the
best explanation for the observed data for all % ∈ #0 and can be found by using
methods similar to those used in Section 9.7. Similarly, L(#̂) = max%∈# L(%)

represents the best explanation for the observed data for all % ∈ # = #0 ∪ #a . If
L(#̂0) = L(#̂), then a best explanation for the observed data can be found inside #0,
and we should not reject the null hypothesis H0 : % ∈ #0. However, if L(#̂0) < L(#̂),
then the best explanation for the observed data can be found inside #a , and we should
consider rejecting H0 in favor of Ha . A likelihood ratio test is based on the ratio
L(#̂0)/L(#̂).

A Likelihood Ratio Test
Define λ by

λ = L(#̂0)

L(#̂)
=

max
%∈#0

L(%)

max
%∈#

L(%)
.

A likelihood ratio test of H0 : % ∈ #0 versus Ha : % ∈ #a employs λ as a test
statistic, and the rejection region is determined by λ ≤ k.

It can be shown that 0 ≤ λ ≤ 1. A value of λ close to zero indicates that the likeli-
hood of the sample is much smaller under H0 than it is under Ha . Therefore, the data
suggest favoring Ha over H0. The actual value of k is chosen so that α achieves the
desired value. We illustrate the mechanics of this method with the following example.

EXAMPLE 10.24 Suppose that Y1, Y2, . . . , Yn constitute a random sample from a normal distribution
with unknown mean μ and unknown variance σ 2. We want to test H0 : μ = μ0 versus
Ha : μ > μ0. Find the appropriate likelihood ratio test.

Solution In this case, % = (μ, σ 2). Notice that #0 is the set {(μ0, σ
2) : σ 2 > 0}, #a =

{(μ, σ 2) : μ > μ0, σ
2 > 0}, and hence that # = #0 ∪ #a = {(μ, σ 2) : μ ≥ μ0,

σ 2 > 0}. The constant value of the variance σ 2 is completely unspecified. We must
now find L(#̂0) and L(#̂).

For the normal distribution, we have

L(%) = L(μ, σ 2) =
(

1√
2π

)n (
1

σ 2

)n/2

exp

[
−

n∑
i=1

(yi − μ)2

2σ 2

]
.
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10.11 Likelihood Ratio Tests 551

Restricting μ to #0 implies that μ = μ0, and we can find L(#̂0) if we determine
the value of σ 2 that maximizes L(μ, σ 2) subject to the constraint that μ = μ0. From
Example 9.15, we see that when μ = μ0 the value of σ 2 that maximizes L(μ0, σ

2) is

σ̂ 2
0 = 1

n

n∑
i=1

(yi − μ0)
2.

Thus, L(#̂0) is obtained by replacing μ with μ0 and σ 2 with σ̂ 2
0 in L(μ, σ 2), which

gives

L(#̂0) =
(

1√
2π

)n (
1

σ̂ 2
0

)n/2

exp

[
−

n∑
i=1

(yi − μ0)
2

2σ̂ 2
0

]
=

(
1√
2π

)n (
1

σ̂ 2
0

)n/2

e−n/2.

We now turn to finding L(#̂). As in Example 9.15, it is easier to look at ln L(μ, σ 2),

ln[L(μ, σ 2)] = −n

2
ln σ 2 − n

2
ln 2π − 1

2σ 2

n∑
i=1

(yi − μ)2.

Taking derivatives with respect to μ and σ 2, we obtain

∂{ln[L(μ, σ 2)]}
∂μ

= 1

σ 2

n∑
i=1

(yi − μ),

∂{ln[L(μ, σ 2)]}
∂σ 2

= −
( n

2σ 2

)
+ 1

2σ 4

n∑
i=1

(yi − μ)2.

We need to find the maximum of L(μ, σ 2) over the set # = {(μ, σ 2) : μ ≥ μ0,
σ 2 > 0}. Notice that

∂L(μ, σ 2)/∂μ < 0, if μ > y,

∂L(μ, σ 2)/∂μ = 0, if μ = y,

∂L(μ, σ 2)/∂μ > 0, if μ < y.

Thus, over the set # = {(μ, σ 2) : μ ≥ μ0, σ 2 > 0}, ln L(μ, σ 2) [and also L(μ, σ 2)]
is maximized at μ̂ where

μ̂ =
{

y, if y > μ0,

μ0, if y ≤ μ0.

Just as earlier, the value of σ 2 in # that maximizes L(μ, σ 2), is

σ̂ 2 = 1

n

n∑
i=1

(yi − μ̂)2.

L(#̂) is obtained by replacing μ with μ̂ and σ 2 with σ̂ 2, which yields

L(#̂) =
(

1√
2π

)n (
1

σ̂ 2

)n/2

exp

[
−

n∑
i=1

(yi − μ̂)2

2σ̂ 2

]
=

(
1√
2π

)n (
1

σ̂ 2

)n/2

e−n/2.
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552 Chapter 10 Hypothesis Testing

Thus,

λ = L(#̂0)

L(#̂)
=

(
σ̂ 2

σ̂ 2
0

)n/2

=

⎧⎪⎪⎨⎪⎪⎩
[ ∑n

i=1(yi − y)2∑n
i=1(yi − μ0)2

]n/2

, if y > μ0

1, if y ≤ μ0.

Notice that λ is always less than or equal to 1. Thus, “small” values of λ are those
less than some k < 1. Because

n∑
i=1

(yi − μ0)
2 =

n∑
i=1

[(yi − y) + (y − μ0)]
2

=
n∑

i=1

(yi − y)2 + n(y − μ0)
2

if k < 1, it follows that the rejection region, λ ≤ k, is equivalent to∑n
i=1(yi − y)2∑n

i=1(yi − μ0)2
< k2/n = k ′

∑n
i=1(yi − y)2∑n

i=1(yi − y)2 + n(y − μ0)2
< k ′

1

1 + n(y − μ0)
2∑n

i=1(yi − y)2

< k ′.

This inequality in turn is equivalent to

n(y − μ0)
2∑n

i=1(yi − y)2
>

1

k ′ − 1 = k ′′

n(y − μ0)
2

1

n − 1

n∑
i=1

(yi − y)2

> (n − 1)k ′′

or, because y > μ0 when λ < k < 1,
√

n(y − μ0)

s
>

√
(n − 1)k ′′,

where

s2 = 1

n − 1

n∑
i=1

(yi − y)2.

Notice that
√

n(Y − μ0)/S is the t statistic employed in previous sections. Conse-
quently, the likelihood ratio test is equivalent to the t test of Section 10.8.
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10.11 Likelihood Ratio Tests 553

Situations in which the likelihood ratio test assumes a well-known form are not
uncommon. In fact, all the tests of Sections 10.8 and 10.9 can be obtained by the
likelihood ratio method. For most practical problems, the likelihood ratio method
produces the best possible test, in terms of power.

Unfortunately, the likelihood ratio method does not always produce a test statistic
with a known probability distribution, such as the t statistic of Example 10.24. If the
sample size is large, however, we can obtain an approximation to the distribution of λ

if some reasonable “regularity conditions” are satisfied by the underlying population
distribution(s). These are general conditions that hold for most (but not all) of the
distributions that we have considered. The regularity conditions mainly involve the
existence of derivatives, with respect to the parameters, of the likelihood function.
Another key condition is that the region over which the likelihood function is positive
cannot depend on unknown parameter values.

THEOREM 10.2 Let Y1, Y2, . . . , Yn have joint likelihood function L(%). Let r0 denote the num-
ber of free parameters that are specified by H0 : % ∈ #0 and let r denote the
number of free parameters specified by the statement % ∈ #. Then, for large
n, −2 ln(λ) has approximately a χ2 distribution with r0 − r df.

The proof of this result is beyond the scope of this text. Theorem 10.2 allows us
to use the table of the χ2 distribution to find rejection regions with fixed α when n
is large. Notice that −2 ln(λ) is a decreasing function of λ. Because the likelihood
ratio test specifies that we use RR: {λ < k}, this rejection may be rewritten as
RR : {−2 ln(λ) > −2 ln(k) = k∗}. For large sample sizes, if we desire an α-level
test, Theorem 10.2 implies that k∗ ≈ χ2

α . That is, a large-sample likelihood ratio test
has rejection region given by

−2 ln(λ) > χ2
α , where χ2

α is based on r0 − r df.

The size of the sample necessary for a “good” approximation varies from application
to application. It is important to realize that large-sample likelihood ratio tests are
based on −2 ln(λ), where λ is the original likelihood ratio, λ = L(#̂0)/L(#̂).

EXAMPLE 10.25 Suppose that an engineer wishes to compare the number of complaints per week filed
by union stewards for two different shifts at a manufacturing plant. One hundred
independent observations on the number of complaints gave means x = 20 for shift
1 and y = 22 for shift 2. Assume that the number of complaints per week on the i th
shift has a Poisson distribution with mean θi , for i = 1, 2. Use the likelihood ratio
method to test H0 : θ1 = θ2 versus Ha : θ1 7= θ2 with α ≈ .01.

Solution The likelihood of the sample is now the joint probability function of all xi ’s and y j ’s
and is given by

L(θ1, θ2) =
(

1

k

)
θ

∑
xi

1 e−nθ1θ
∑

y j

2 e−nθ2 ,

where k = x1! · · · xn!y1! · · · yn!, and n = 100. In this example, % = (θ1, θ2) and
#0 = {(θ1, θ2) : θ1 = θ2 = θ}, where θ is unknown. Hence, under H0 the likelihood
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554 Chapter 10 Hypothesis Testing

function is a function of the single parameter θ , and

L(θ) =
(

1

k

)
θ

∑
xi +

∑
y j e−2nθ .

Notice that, for % ∈ #0, L(θ) is maximized when θ is equal to its maximum likelihood
estimate,

θ̂ = 1

2n

(
n∑

i=1

xi +
n∑

j=1

y j

)
= 1

2
(x + y).

In this example, #a = {(θ1, θ2) : θ1 7= θ2} and # = {(θ1, θ2) : θ1 > 0, θ2 > 0}. Using
the general likelihood L(θ1, θ2), a function of both θ1 and θ2, we see that L(θ1, θ2) is
maximized when θ̂1 = x and θ̂2 = y, respectively. That is, L(θ1, θ2) is maximized
when both θ1 and θ2 are replaced by their maximum likelihood estimates. Thus,

λ = L(#̂0)

L(#̂)
= k−1(θ̂)nx+nye−2nθ̂

k−1(θ̂1)nx (θ̂2)nye−nθ̂1−nθ̂2
= (θ̂)nx+ny

(x)nx (y)ny
.

Notice that λ is a complicated function of x and y. The observed value of θ̂ is
(1/2)(x + y) = (1/2)(20 + 22) = 21. The observed value of λ is

λ = 21(100)(20+22)

20(100)(20)22(100)(22)

and hence

−2 ln(λ) = −(2)[4200 ln(21) − 2000 ln(20) − 2200 ln(22)] = 9.53.

In this application, the number of free parameters in # = {(θ1, θ2) : θ1 > 0, θ2 > 0}
is k = 2. In #0 = {(θ1, θ2) : θ1 = θ2 = θ}, r0 = 1 of these free parameters is fixed.
In the set #, r = 0 of the parameters are fixed. Theorem 10.2 implies that −2 ln(λ)

has an approximately χ2 distribution with r0 − r = 1 − 0 = 1 df. Small values of
λ correspond to large values of −2 ln(λ), so the rejection region for a test at approx-
imately the α = .01 level contains the values of −2 ln(λ) that exceed χ2

.01 = 6.635,
the value that cuts off an area of .01 in the right-hand tail of a χ2 density with 1 df.

Because the observed value of −2 ln(λ) is larger than χ2
.01, we reject H0 : θ1 = θ2.

We conclude, at approximately the α = .01 level of significance, that the mean
numbers of complaints filed by the union stewards do differ.

Exercises
10.105 Let Y1, Y2, . . . , Yn denote a random sample from a normal distribution with mean μ (unknown)

and variance σ 2. For testing H0 : σ 2 = σ 2
0 against Ha : σ 2 > σ 2

0 , show that the likelihood ratio
test is equivalent to the χ 2 test given in Section 10.9.

10.106 A survey of voter sentiment was conducted in four midcity political wards to compare the
fraction of voters favoring candidate A. Random samples of 200 voters were polled in each of
the four wards, with the results as shown in the accompanying table. The numbers of voters
favoring A in the four samples can be regarded as four independent binomial random variables.

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises 555

Construct a likelihood ratio test of the hypothesis that the fractions of voters favoring candidate
A are the same in all four wards. Use α = .05.

Ward

Opinion 1 2 3 4 Total

Favor A 76 53 59 48 236
Do not favor A 124 147 141 152 564

Total 200 200 200 200 800

10.107 Let S2
1 and S2

2 denote, respectively, the variances of independent random samples of sizes n
and m selected from normal distributions with means μ1 and μ2 and common variance σ 2. If
μ1 and μ2 are unknown, construct a likelihood ratio test of H0 : σ 2 = σ 2

0 against Ha : σ 2 = σ 2
a ,

assuming that σ 2
a > σ 2

0 .

10.108 Suppose that X1, X2, . . . , Xn1 , Y1, Y2, . . . , Yn2 , and W1, W2, . . . , Wn3 are independent random
samples from normal distributions with respective unknown means μ1, μ2, and μ3 and vari-
ances σ 2

1 , σ 2
2 , and σ 2

3 .

a Find the likelihood ratio test for H0 : σ 2
1 = σ 2

2 = σ 2
3 against the alternative of at least one

inequality.

b Find an approximate critical region for the test in part (a) if n1, n2, and n3 are large and
α = .05.

*10.109 Let X1, X2, . . . , Xm denote a random sample from the exponential density with mean θ1 and
let Y1, Y2, . . . , Yn denote an independent random sample from an exponential density with
mean θ2.

a Find the likelihood ratio criterion for testing H0 : θ1 = θ2 versus Ha : θ1 7= θ2.

b Show that the test in part (a) is equivalent to an exact F test [Hint: Transform
∑

X i and∑
Y j to χ 2 random variables.]

*10.110 Show that a likelihood ratio test depends on the data only through the value of a sufficient
statistic. [Hint: Use the factorization criterion.]

10.111 Suppose that we are interested in testing the simple null hypothesis H0 : θ = θ0 versus the
simple alternative hypothesis Ha : θ = θa . According to the Neyman–Pearson lemma, the test
that maximizes the power at θa has a rejection region determined by

L(θ0)

L(θa)
< k.

In the context of a likelihood ratio test, if we are interested in the simple H0 and Ha , as stated,
then #0 = {θ0}, #a = {θa}, and # = {θ0, θa}.
a Show that the likelihood ratio λ is given by

λ = L(θ0)

max{L(θ0), L(θa)} = 1

max

{
1,

L(θa)

L(θ0)

} .

b Argue that λ < k if and only if, for some constant k ′,
L(θ0)

L(θa)
< k ′.

c What do the results in parts (a) and (b) imply about likelihood ratio tests when both the
null and alternative hypotheses are simple?
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10.112 Suppose that independent random samples of sizes n1 and n2 are to be selected from normal
populations with means μ1 and μ2, respectively, and common variance σ 2. For testing H0 : μ1 =
μ2 versus Ha : μ1 − μ2 > 0 (σ 2 unknown), show that the likelihood ratio test reduces to the
two-sample t test presented in Section 10.8.

10.113 Refer to Exercise 10.112. Show that in testing of H0 : μ1 = μ2 versus Ha : μ1 7= μ2 (σ 2

unknown) the likelihood ratio test reduces to the two-sample t test.

*10.114 Refer to Exercise 10.113. Suppose that another independent random sample of size n3 is selected
from a third normal population with mean μ3 and variance σ 2. Find the likelihood ratio test
for testing H0 : μ1 = μ2 = μ3 versus the alternative that there is at least one inequality. Show
that this test is equivalent to an exact F test.

10.12 Summary
In Chapters 8–10, we have presented the basic concepts associated with two methods
for making inferences: estimation and tests of hypotheses. Philosophically, estimation
(Chapters 8 and 9) focuses on this question: What is the numerical value of a parameter
θ? In contrast, a test of a hypothesis attempts to answer this question: Is there enough
evidence to support the alternative hypothesis? Often, the inferential method that
you employ for a given situation depends on how you, the experimenter, prefer to
phrase your inference. Sometimes this decision is taken out of your hands. That
is, the practical question clearly implies that either an estimation or a hypothesis-
testing procedure be used. For example, acceptance or rejection of incoming supplies
or outgoing products in a manufacturing process clearly requires a decision, or a
statistical test. We have seen that a duality exists between these two inference-making
procedures. A two-sided confidence interval with confidence coefficient 1 − α may
be viewed as the set of all values of θ0 that are “acceptable” null hypothesis values for
θ if we use a two-sided α-level test. Similarly, a two-sided α-level test for H0 : θ = θ0

can be implemented by constructing a two-sided confidence interval (with confidence
coefficient 1−α) and rejecting H0 if the value θ0 falls outside the confidence interval.

Associated with both methods for making inferences are measures of their good-
ness. Thus, the expected width of a confidence interval and the confidence coefficient
both measure the goodness of the estimation procedure. Likewise, the goodness of a
statistical test is measured by the probabilities α and β of type I and type II errors.
These measures of goodness enable us to compare one statistical test with another
and to develop a theory for acquiring statistical tests with desirable properties. The
ability to evaluate the goodness of an inference is one of the major contributions of
statistics to the analysis of experimental data. Of what value is an inference if you
have no measure of its validity?

In this chapter, we have investigated the elements of a statistical test and discussed
how a test works. Some useful tests are given to show how they can be used in practical
situations, and you will see other interesting applications in the chapters that follow.

Many of the testing procedures developed in this chapter were presented from an in-
tuitive perspective. However, we have also illustrated the use of the Neyman–Pearson
lemma in deriving most powerful procedures for testing a simple null hypothesis
versus a simple alternative hypothesis. In addition, we have seen how the Neyman–
Pearson method can sometimes be used to find uniformly most powerful tests for
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composite null and alternative hypotheses if the underlying distribution is specified
except for the value of a single parameter. The likelihood ratio procedure provides
a general method for developing a statistical test. Likelihood ratio tests can be de-
rived whether or not nuisance parameters are present. In general, likelihood ratio tests
possess desirable properties. The Neyman–Pearson and likelihood ratio procedures
both require that the distribution of the sampled population(s) must be known, except
for the values of some parameters. Otherwise, the likelihood functions cannot be
determined and the methods cannot be applied.
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Supplementary Exercises
10.115 True or False.

a If the p-value for a test is .036, the null hypothesis can be rejected at the α = .05 level of
significance.

b In a formal test of hypothesis, α is the probability that the null hypothesis is incorrect.

c If the p-value is very small for a test to compare two population means, the difference
between the means must be large.

d Power(θ∗) is the probability that the null hypothesis is rejected when θ = θ∗.

e Power(θ) is always computed by assuming that the null hypothesis is true.

f If .01 < p-value < .025, the null hypothesis can always be rejected at the α = .02 level
of significance.

g Suppose that a test is a uniformly most powerful α-level test regarding the value of a
parameter θ . If θa is a value in the alternative hypothesis, β(θa) might be smaller for some
other α-level test.

h When developing a likelihood ratio test, it is possible that L(#̂0) > L(#̂).

i −2 ln(λ) is always positive.

10.116 Refer to Exercise 10.6. Find power(p), for p = .2, .3, .4, .5, .6, .7, and .8 and draw a rough
sketch of the power function.
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10.117 Lord Rayleigh was one of the earliest scientists to study the density of nitrogen. In his studies,
he noticed something peculiar. The nitrogen densities produced from chemical compounds
tended to be smaller than the densities of nitrogen produced from the air. Lord Rayleigh’s
measurements18 are given in the following table. These measurements correspond to the mass
of nitrogen filling a flask of specified volume under specified temperature and pressure.

Compound Chemical Atmosphere

2.30143 2.31017
2.29890 2.30986
2.29816 2.31010
2.30182 2.31001
2.29869 2.31024
2.29940 2.31010
2.29849 2.31028
2.29889 2.31163
2.30074 2.30956
2.30054

a For the measurements from the chemical compound, y = 2.29971 and s = .001310; for
the measurements from the atmosphere, y = 2.310217 and s = .000574. Is there sufficient
evidence to indicate a difference in the mean mass of nitrogen per flask for chemical
compounds and air? What can be said about the p-value associated with your test?

b Find a 95% confidence interval for the difference in mean mass of nitrogen per flask for
chemical compounds and air.

c Based on your answer to part (b), at the α = .05 level of significance, is there sufficient
evidence to indicate a difference in mean mass of nitrogen per flask for measurements from
chemical compounds and air?

d Is there any conflict between your conclusions in parts (a) and (b)? Although the difference
in these mean nitrogen masses is small, Lord Rayleigh emphasized this difference rather
than ignoring it, and this led to the discovery of inert gases in the atmosphere.

10.118 The effect of alcohol consumption on the body appears to be much greater at higher altitudes.
To test this theory, a scientist randomly selected 12 subjects and divided them into two groups
of 6 each. One group was transported to an altitude of 12,000 feet, and each member in the
group ingested 100 cubic centimeters (cm3) of alcohol. The members of the second group were
taken to sea level and given the same amount of alcohol. After 2 hours, the amount of alcohol
in the blood of each subject was measured (measurements in grams/100 cm3). The data are
given in the following table. Is there sufficient evidence to indicate that retention of alcohol is
greater at 12,000 feet than at sea level? Test at the α = .10 level of significance.

Sea Level 12,000 feet

.07 .13

.10 .17

.09 .15

.12 .14

.09 .10

.13 .14

18. Source: Proceedings, Royal Society (London) 55 (1894): 340–344.
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10.119 Currently, 20% of potential customers buy soap of brand A. To increase sales, the company
will conduct an extensive advertising campaign. At the end of the campaign, a sample of 400
potential customers will be interviewed to determine whether the campaign was successful.

a State H0 and Ha in terms of p, the probability that a customer prefers soap brand A.

b The company decides to conclude that the advertising campaign was a success if at least
92 of the 400 customers interviewed prefer brand A. Find α. (Use the normal approximation
to the binomial distribution to evaluate the desired probability.)

10.120 In the past, a chemical plant has produced an average of 1100 pounds of chemical per day. The
records for the past year, based on 260 operating days, show the following:

y = 1060 pounds/day, s = 340 pounds/day.

We wish to test whether the average daily production has dropped significantly over the past
year.

a Give the appropriate null and alternative hypotheses.

b If Z is used as a test statistic, determine the rejection region corresponding to a level of
significance of α = .05.

c Do the data provide sufficient evidence to indicate a drop in average daily production?

10.121 The braking ability of two types of automobiles was compared. Random samples of 64 auto-
mobiles were tested for each type. The recorded measurement was the distance required to stop
when the brakes were applied at 40 miles per hour. The computed sample means and variances
were as follows:

y1 = 118, y2 = 109,

s2
1 = 102, s2

2 = 87.

Do the data provide sufficient evidence to indicate a difference in the mean stopping distances
of the two types of automobiles? Give the attained significance level.

10.122 The stability of measurements of the characteristics of a manufactured product is important
in maintaining product quality. In fact, it is sometimes better to obtain small variation in the
measured value of some important characteristic of a product and have the process mean
slightly off target than to get wide variation with a mean value that perfectly fits requirements.
The latter situation may produce a higher percentage of defective product than the former. A
manufacturer of light bulbs suspected that one of his production lines was producing bulbs
with a high variation in length of life. To test this theory, he compared the lengths of life of
n = 50 bulbs randomly sampled from the suspect line and n = 50 from a line that seemed
to be in control. The sample means and variances for the two samples were as shown in the
following table.

Suspect Line Line in Control

y1 = 1,520 y2 = 1,476

s2
1 = 92,000 s2

2 = 37,000

a Do the data provide sufficient evidence to indicate that bulbs produced by the suspect line
possess a larger variance in length of life than those produced by the line that is assumed
to be in control? Use α = .05.

b Find the approximate observed significance level for the test and interpret its value.
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10.123 A pharmaceutical manufacturer purchases a particular material from two different suppliers.
The mean level of impurities in the raw material is approximately the same for both suppliers,
but the manufacturer is concerned about the variability of the impurities from shipment to
shipment. If the level of impurities tends to vary excessively for one source of supply, it
could affect the quality of the pharmaceutical product. To compare the variation in percentage
impurities for the two suppliers, the manufacturer selects ten shipments from each of the two
suppliers and measures the percentage of impurities in the raw material for each shipment. The
sample means and variances are shown in the accompanying table.

Supplier A Supplier B

y1 = 1.89 y2 = 1.85
s2

1 = .273 s2
2 = .094

n1 = 10 n2 = 10

a Do the data provide sufficient evidence to indicate a difference in the variability of the
shipment impurity levels for the two suppliers? Test using α = .10. Based on the re-
sults of your test, what recommendation would you make to the pharmaceutical manu-
facturer?

b Find a 90% confidence interval for σ 2
B and interpret your results.

10.124 The data in the following table give readings in foot-pounds of the impact strength of two kinds
of packaging material, type A and type B. Determine whether the data suggests a difference in
mean strength between the two kinds of material. Test at the α = .10 level of significance.

A B

1.25 .89
1.16 1.01
1.33 .97
1.15 .95
1.23 .94
1.20 1.02
1.32 .98
1.28 1.06
1.21 .98∑

yi = 11.13

y = 1.237∑
y2

i = 13.7973

∑
yi = 8.80

y = .978∑
y2

i = 8.6240

10.125 How much combustion efficiency should a homeowner expect from an oil furnace? The EPA
states that 80% or higher is excellent, 75% to 79% is good, 70% to 74% is fair, and below 70%
is poor. A home-heating contractor who sells two makes of oil heaters (call them A and B)
decided to compare their mean efficiencies by analyzing the efficiencies of 8 heaters of type
A and 6 of type B. The resulting efficiency ratings in percentages for the 14 heaters are shown
in the accompanying table.
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Type A Type B

72 78
78 76
73 81
69 74
75 82
74 75
69
75

a Do the data provide sufficient evidence to indicate a difference in mean efficiencies for
the two makes of home heaters? Find the approximate p-value for the test and interpret its
value.

b Find a 90% confidence interval for (μA − μB) and interpret the result.

10.126 Suppose that X1, X2, . . . , Xn1 , Y1, Y2, . . . , Yn2 , and W1, W2, . . . , Wn3 are independent random
samples from normal distributions with respective unknown means μ1, μ2, and μ3 and common
variances σ 2

1 = σ 2
2 = σ 2

3 = σ 2. Suppose that we want to estimate a linear function of the means:
θ = a1μ1 + a2μ2 + a3μ3. Because the maximum-likelihood estimator (MLE) of a function
of parameters is the function of the MLEs of the parameters, the MLE of θ is θ̂ = a1 X +
a2Y + a3W .

a What is the standard error of the estimator θ̂?

b What is the distribution of the estimator θ̂?

c If the sample variances are given by S2
1 , S2

2 , and S2
3 , respectively, consider

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2 + (n3 − 1)S2

3

n1 + n2 + n3 − 3
.

i What is the distribution of (n1 + n2 + n3 − 3)S2
p/σ

2?

ii What is the distribution of

T = θ̂ − θ

Sp

√
a2

1

n1
+ a2

2

n2
+ a2

3

n3

?

d Give a confidence interval for θ with confidence coefficient 1 − α.

e Develop a test for H0 : θ = θ0 versus Ha : θ 7= θ0.

10.127 A merchant figures her weekly profit to be a function of three variables: retail sales (denoted
by X ), wholesale sales (denoted by Y ), and overhead costs (denoted by W ). The variables
X, Y , and W are regarded as independent, normally distributed random variables with means
μ1, μ2, and μ3 and variances σ 2, aσ 2, and bσ 2, respectively, for known constants a and b
but unknown σ 2. The merchant’s expected profit per week is μ1 + μ2 − μ3. If the merchant
has made independent observations of X, Y , and W for the past n weeks, construct a test of
H0 : μ1 + μ2 − μ3 = k against the alternative Ha : μ1 + μ2 − μ3 7= k, for a given constant k.
You may specify α = .05.

10.128 A reading exam is given to the sixth graders at three large elementary schools. The scores
on the exam at each school are regarded as having normal distributions with unknown means
μ1, μ2, and μ3, respectively, and unknown common variance σ 2(σ 2

1 = σ 2
2 = σ 2

3 = σ 2). Using
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the data in the accompanying table on independent random samples from each school, test to
see if evidence exists of a difference between μ1 and μ2. Use α = .05.

School I School II School III

n1 = 10 n2 = 10 n3 = 10∑
x2

i = 36,950
∑

y2
i = 25,850

∑
w2

i = 49,900

x = 60 y = 50 w = 70

*10.129 Suppose that Y1, Y2, . . . , Yn denote a random sample from the probability density function
given by

f (y | θ1, θ2) =

⎧⎪⎨⎪⎩
(

1

θ1

)
e−(y−θ2)/θ1 , y > θ2,

0, elsewhere.

Find the likelihood ratio test for testing H0 : θ1 = θ1,0 versus Ha : θ1 > θ1,0, with θ2 unknown.

*10.130 Refer to Exercise 10.129. Find the likelihood ratio test for testing H0 : θ2 = θ2,0 versus Ha : θ2 >

θ2,0, with θ1 unknown.
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11.1 Introduction
In Chapter 9, we considered several methods for finding estimators of parameters,
including the methods of moments and maximum likelihood and also methods based
on sufficient statistics. Another method of estimation, the method of least squares, is
the topic of this chapter.

In all our previous discussions of statistical inference, we assumed that the observ-
able random variables Y1, Y2, . . . , Yn were independent and identically distributed.
One implication of this assumption is that the expected value of Yi ,E(Yi ), is constant
(if it exists). That is, E(Yi ) = μ does not depend on the value of any other variables.
Obviously, this assumption is unrealistic in many inferential problems. For example,
the mean stopping distance for a particular type of automobile will depend on the
speed that the automobile is traveling; the mean potency of an antibiotic depends on
the amount of time that the antibiotic has been stored; the mean amount of elongation
observed in a metal alloy depends on the force applied and the temperature of the
alloy. In this chapter, we undertake a study of inferential procedures that can be used
when a random variable Y , called the dependent variable, has a mean that is a func-
tion of one or more nonrandom variables x1, x2, . . . , xk , called independent variables.
(In this context, the terms independent and dependent are used in their mathematical
sense. There is no relationship with the probabilistic concept of independent random
variables.)

Many different types of mathematical functions can be used to model a response
that is a function of one or more independent variables. These can be classified into
two categories: deterministic and probabilistic models. For example, suppose that y
and x are related according to the equation

y = β0 + β1x,

where β0 and β1 are unknown parameters. This model is called a deterministic math-
ematical model because it does not allow for any error in predicting y as a function
of x . This model implies that y always takes the value β0 +β1(5.5) whenever x = 5.5.

Suppose that we collect a sample of n values of y corresponding to n different
settings of the independent variable x and that a plot of the data is as shown in
Figure 11.1. It is quite clear from the figure that the expected value of Y may increase
as a linear function of x but that a deterministic model is far from an adequate
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F I G U R E 11.1
Plot of data
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description of reality. Repeated experiments when x = 5.5 would yield values of
Y that vary in a random manner. This tells us that the deterministic model is not
an exact representation of the relationship between the two variables. Further, if the
model were used to predict Y when x = 5.5, the prediction would be subject to some
unknown error. This, of course, leads us to the use of statistical methods. Predicting
Y for a given value of x is an inferential process. If the prediction is to be of value in
real life we need to be able to assess the likelihood of observing prediction errors of
various magnitudes.

In contrast to the deterministic model, statisticians use probabilistic models. For
example, we might represent the responses of Figure 11.1 by the model

E(Y ) = β0 + β1x

or, equivalently,

Y = β0 + β1x + ε

where ε is a random variable possessing a specified probability distribution with
mean 0. We think of Y as the sum of a deterministic component E(Y ) and a ran-
dom component ε. This model accounts for the random behavior of Y exhibited in
Figure 11.1 and provides a more accurate description of reality than the deterministic
model. Further, the properties of the error of prediction for Y can be derived for many
probabilistic models.

Figure 11.2 presents a graphical representation of the probabilistic model Y = β0+
β1x +ε. When x = 5.5, there is a population of possible values of Y . The distribution
of this population is indicated on the main portion of the graph and is centered on
the line E(Y ) = β0 + β1x at the point x = 5.5. This population has a distribution
with mean β0 + β1(5.5) and variance σ 2, as shown in the magnified version of the

1

1 2 3 4 5 6 7 8

0$

$1

x

y $ $E(Y ) = 0 + 1x

0 + 1 (5.5)$ $ y

F I G U R E 11.2
Graph of the

probabilistic model
Y = β0 + β1x + ε
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distribution that is boxed in Figure 11.2. When x = 7, there is another population of
possible values for Y . The distribution of this population has the same form as the
distribution of Y -values when x = 5.5 and has the same variance σ 2, but when x = 7,
the distribution of Y has mean β0 + β1(7). The same is true for each possible value
of the independent variable x . That is, in a regression model, a separate population
of response values exists for each possible setting of the independent variable(s).
These populations all have the same variance, and the shape of the distributions of the
populations are all the same (see Figure 11.2); however, the mean of each population
depends, through the regression model, on the setting of the independent variable(s).
Scientific and mathematical textbooks are filled with deterministic models of reality.
Indeed, many of the mathematical functions that appear in calculus and physics books
are deterministic mathematical models of nature. For example, Newton’s law relating
the force of a moving body to its mass and acceleration,

F = ma,

is a deterministic model that, for practical purposes, predicts with little error. In con-
trast, other models—such as functions graphically represented in scientific journals
and texts—are often poor. The spatter of points that would give graphic evidence
of their inadequacies, similar to the random behavior of the points in Figure 11.1,
has been de-emphasized, which leads novice scientists to accept the corresponding
“laws” and theories as an exact description of nature.

If deterministic models can be used to predict with negligible error, for all practical
purposes, we use them. If not, we seek a probabilistic model, which will not be an
exact characterization of nature but which will enable us to assess the validity of our
inferences.

11.2 Linear Statistical Models
Although infinitely many different functions can be used to model the mean value of
the response variable Y as a function of one or more independent variables, we will
concentrate on a set of models called linear statistical models. If Y is the response
variable and x is a single independent variable, it may be reasonable in some situations
to use the model E(Y ) = β0 + β1x for unknown parameter values β0 and β1. Notice
that in this model E(Y ) is a linear function of x (for a given β0 and β1) and also a
linear function of β0 and β1 [because E(Y ) = cβ0 + dβ1 with c = 1 and d = x]. In
the model E(Y ) = β0 + β1x2, E(Y ) is not a linear function of x , but it is a linear
function of β0 and β1 [because E(Y ) = cβ0 + dβ1 with c = 1 and d = x2]. When we
say we have a linear statistical model for Y , we mean that E(Y ) is a linear function of
the unknown parameters β0 and β1 and not necessarily a linear function of x . Thus,
Y = β0 +β1(ln x)+ ε is a linear model (because ln x takes on known values for each
fixed value of x).

If the model relates E(Y ) as a linear function of β0 and β1 only, the model is
called a simple linear regression model. If more than one independent variable—say,
x1, x2, . . . , xk—are of interest and we model E(Y ) by

E(Y ) = β0 + β1x1 + · · · + βk xk,
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x1

E(Y ) = 0 + 1x1 + 2x2$ $ $

F I G U R E 11.3
Plot of E (Y ) =

β0 + β1x1 + β2x2

the model is called a multiple linear regression model. Because x1, x2, . . . , xk are
regarded as variables with known values, they are assumed to be measured without
error in an experiment. For example, if you think that the mean yield E(Y ) is a
function of the variable t , the temperature of a chemical process, you might let x1 = t
and x2 = et and use the model E(Y ) = β0 + β1x1 + β2x2 or, equivalently, E(Y ) =
β0 + β1t + β2et . Or, if E(Y ) is a function of two variables x1 and x2, you might
choose a planar approximation to the true mean response, using the linear model
E(Y ) = β0 + β1x1 + β2x2. Thus, E(Y ) is a linear function of β0, β1, and β2 and
represents a plane in the y, x1, x2 space (see Figure 11.3). Similarly,

E(Y ) = β0 + β1x + β2x2

is a linear statistical model, where E(Y ) is a second-order polynomial function of the
independent variable x , with x1 = x and x2 = x2. This model would be appropriate
for a response that traces a segment of a parabola over the experimental region.

The expected percentage E(Y ) of water in paper during its manufacture could be
represented as a second-order function of the temperature of the dryer, x1, and the
speed of the paper machine, x2. Thus,

E(Y ) = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1 + β5x2

2 ,

where β0, β1, . . . , β5 are unknown parameters in the model. Geometrically, E(Y )

traces a second-order (conic) surface over the x1, x2 plane (see Figure 11.4).
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2

DEFINITION 11.1 A linear statistical model relating a random response Y to a set of independent
variables x1, x2, . . . , xk is of the form

Y = β0 + β1x1 + β2x2 + · · · + βk xk + ε,

where β0, β1, . . . , βk are unknown parameters, ε is a random variable, and the
variables x1, x2, . . . , xk assume known values. We will assume that E(ε) = 0
and hence that

E(Y ) = β0 + β1x1 + β2x2 + · · · + βk xk .

Consider the physical interpretation of the linear model Y . It says that Y is equal
to an expected value, β0 + β1x1 + β2x2 + · · · + βk xk (a function of the independent
variables x1, x2, . . . , xk), plus a random error ε. From a practical point of view, ε

acknowledges our inability to provide an exact model for nature. In repeated experi-
mentation, Y varies about E(Y ) in a random manner because we have failed to include
in our model all of the many variables that may affect Y . Fortunately, many times the
net effect of these unmeasured, and most often unknown, variables is to cause Y to
vary in a manner that may be adequately approximated by an assumption of random
behavior.

In this chapter, we use the method of least squares to derive estimators for the
parameters β0, β1, . . . , βk in a linear regression model. In many applications, one
or more of these parameters will have meaningful interpretations. For this reason,
we develop inferential methods for an individual β parameter and for sets of β pa-
rameters. If we estimate the parameters β0, β1, . . . , β5 in the model expressing the
expected percentage E(Y ) of water in paper as a second-order polynomial in x1 (the
dryer temperature) and x2 (the dryer speed), we will be able to develop methods for
estimating and forming confidence intervals for the value of E(Y ) when x1 and x2 take
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on specific values. Similarly, we can develop methods for predicting a future value of
Y when the independent variables assume values of practical interest. Sections 11.3
through 11.9 focus on the simple linear regression model whereas the later sections
deal with multiple linear regression models.

11.3 The Method of Least Squares
A procedure for estimating the parameters of any linear model—the method of least
squares—can be illustrated simply by fitting a straight line to a set of data points.
Suppose that we wish to fit the model

E(Y ) = β0 + β1x

to the set of data points shown in Figure 11.5. [The independent variable x could be
w2 or (w)1/2 or ln w , and so on, for some other independent variable w .] That is, we
postulate that Y = β0 +β1x +ε, where ε possesses some probability distribution with
E(ε) = 0. If β̂0 and β̂1 are estimators of the parameters β0 and β1, then Ŷ = β̂0 + β̂1x
is clearly an estimator of E(Y ).

The least-squares procedure for fitting a line through a set of n data points is
similar to the method that we might use if we fit a line by eye; that is, we want the
differences between the observed values and corresponding points on the fitted line to
be “small” in some overall sense. A convenient way to accomplish this, and one
that yields estimators with good properties, is to minimize the sum of squares of the
vertical deviations from the fitted line (see the deviations indicated in Figure 11.5).
Thus, if

ŷi = β̂0 + β̂1xi

is the predicted value of the i th y value (when x = xi ), then the deviation (sometimes
called the error) of the observed value of yi from ŷi = β̂0 + β̂1xi is the difference
yi − ŷi and the sum of squares of deviations to be minimized is

SSE =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

[yi − (β̂0 + β̂1xi )]
2.

yi

yiˆ

xi x

yF I G U R E 11.5
Fitting a straight

line through a
set of data points
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The quantity SSE is also called the sum of squares for error for reasons that will
subsequently become apparent.

If SSE possesses a minimum, it will occur for values of β0 and β1 that satisfy the
equations, ∂SSE/∂β̂0 = 0 and ∂SSE/∂β̂1 = 0. Taking the partial derivatives of SSE
with respect to β̂0 and β̂1 and setting them equal to zero, we obtain

∂SSE

∂β̂0
= ∂

{∑n
i=1[yi − (β̂0 + β̂1xi )]2

}
∂β̂0

= −
n∑

i=1

2[yi − (β̂0 + β̂1xi )]

= −2

(
n∑

i=1

yi − nβ̂0 − β̂1

n∑
i=1

xi

)
= 0

and

∂SSE

∂β̂1
= ∂

{∑n
i=1[yi − (β̂0 + β̂1xi )]2

}
∂β̂1

= −
n∑

i=1

2[yi − (β̂0 + β̂1xi )]xi

= −2

(
n∑

i=1

xi yi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2
i

)
= 0.

The equations ∂SSE/β̂0 = 0 and ∂SSE/β̂1 = 0 are called the least-squares equations
for estimating the parameters of a line.

The least-squares equations are linear in β̂0 and β̂1 and hence can be solved
simultaneously. You can verify that the solutions are

β̂1 =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2

=

n∑
i=1

xi yi − 1

n

n∑
i=1

xi

n∑
i=1

yi

n∑
i=1

x2
i − 1

n

(
n∑

i=1

xi

)2 ,

β̂0 = y − β̂1x .

Further, it can be shown that the simultaneous solution for the two least-squares
equations yields values of β̂0 and β̂1 that minimize SSE. We leave this for you to
prove.

The expressions

n∑
i=1

(xi − x)(yi − y) and
n∑

i=1

(xi − x)2

that are used to calculate β̂1 are often encountered in the development of simple linear
regression models. The first of these is calculated by summing products of x-values
minus their mean and y-values minus their mean. In all subsequent discussions, we
will denote this quantity by Sxy . Similarly, we will denote the second quantity by Sxx

because it is calculated by summing products that involve only the x-values.
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Least-Squares Estimators for the Simple Linear Regression Model

1. β̂1 = Sxy

Sxx
, where Sxy =

n∑
i=1

(xi − x)(yi − y) and Sxx = ∑n
i=1(xi − x)2.

2. β̂0 = y − β̂1x .

We illustrate the use of the preceding equations with a simple example.

EXAMPLE 11.1 Use the method of least squares to fit a straight line to the n = 5 data points given in
Table 11.1.

Table 11.1 Data for Example 11.1

x y

−2 0
−1 0

0 1
1 1
2 3

Solution We commence computation of the least-squares estimates for the slope and intecept
of the fitted line by constructing Table 11.2. Using the results from the table, we obtain

β̂1 = Sxy

Sxx
=

n∑
i=1

xi yi − 1

n

n∑
i=1

xi

n∑
i=1

yi

n∑
i=1

x2
i − 1

n

(
n∑

i=1

xi

)2 =
7 − 1

5
(0)(5)

10 − 1

5
(0)2

= .7,

β̂0 = y − β̂1x = 5

5
− (.7)(0) = 1,

and the fitted line is

ŷ = 1 + .7x .

Table 11.2 Calculations for finding the coefficients

xi yi xi yi x2
i

−2 0 0 4
−1 0 0 1

0 1 0 0
1 1 1 1
2 3 6 4∑n

i=1 xi = 0
∑n

i=1 yi = 5
∑n

i=1 xi yi = 7
∑n

i=1 x2
i = 10
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1

2

3

10 2–1–2

y

x

y = 1 + .7xˆ

F I G U R E 11.6
Plot of data points

and least-squares line
for Example 11.1

The five points and the fitted line are shown in Figure 11.6.

In this section, we have determined the least-squares estimators for the parameters
β0 and β1 in the model E(Y ) = β0 + β1x . The simple example used here will reappear
in future sections to illustrate other calculations. Exercises of a more realistic nature
are presented at the ends of the sections, and two examples involving data from actual
experiments are presented and analyzed in Section 11.9. In the next section, we de-
velop the statistical properties of the least-squares estimators β̂0 and β̂1. Subsequent
sections are devoted to using these estimators for a variety of inferential purposes.

Exercises
11.1 If β̂0 and β̂1 are the least-squares estimates for the intercept and slope in a simple linear

regression model, show that the least-squares equation ŷ = β̂0 + β̂1x always goes through
the point (x, y). [Hint: Substitute x for x in the least-squares equation and use the fact that
β̂0 = y − β̂1x .]

11.2 Applet Exercise How can you improve your understanding of what the method of least-squares
actually does? Access the applet Fitting a Line Using Least Squares (at academic.cengage.com/
statistics/wackerly). The data that appear on the first graph is from Example 11.1.

a What are the slope and intercept of the blue horizontal line? (See the equation above the
graph.) What is the sum of the squares of the vertical deviations between the points on
the horizontal line and the observed values of the y’s? Does the horizontal line fit the data
well? Click the button “Display/Hide Error Squares.” Notice that the areas of the yellow
boxes are equal to the squares of the associated deviations. How does SSE compare to the
sum of the areas of the yellow boxes?

b Click the button “Display/Hide Error Squares” so that the yellow boxes disappear. Place
the cursor on right end of the blue line. Click and hold the mouse button and drag the line
so that the slope of the blue line becomes negative. What do you notice about the lengths
of the vertical red lines? Did SSE increase of decrease? Does the line with negative slope
appear to fit the data well?

c Drag the line so that the slope is near 0.8. What happens as you move the slope closer to
0.7? Did SSE increase or decrease? When the blue line is moved, it is actually pivoting
around a fixed point. What are the coordinates of that pivot point? Are the coordinates of
the pivot point consistent with the result you derive in Exercise 11.1?
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d Drag the blue line until you obtain a line that visually fits the data well. What are the slope
and intercept of the line that you visually fit to the data? What is the value of SSE for
the line that you visually fit to the data? Click the button “Find Best Model” to obtain the
least-squares line. How does the value of SSE compare to the SSE associated with the line
that you visually fit to the data? How do the slope and intercept of the line that you visually
fit to the data compare to slope and intercept of the least-squares line?

11.3 Fit a straight line to the five data points in the accompanying table. Give the estimates of β0

and β1. Plot the points and sketch the fitted line as a check on the calculations.

y 3.0 2.0 1.0 1.0 0.5

x −2.0 −1.0 0.0 1.0 2.0

11.4 Auditors are often required to compare the audited (or current) value of an inventory item with
the book (or listed) value. If a company is keeping its inventory and books up to date, there
should be a strong linear relationship between the audited and book values. A company sampled
ten inventory items and obtained the audited and book values given in the accompanying table.
Fit the model Y = β0 + β1x + ε to these data.

Item Audit Value (yi ) Book Value (xi )

1 9 10
2 14 12
3 7 9
4 29 27
5 45 47
6 109 112
7 40 36
8 238 241
9 60 59

10 170 167

a What is your estimate for the expected change in audited value for a one-unit change in
book value?

b If the book value is x = 100, what would you use to estimate the audited value?

11.5 What did housing prices look like in the “good old days”? The median sale prices for new
single-family houses are given in the accompanying table for the years 1972 through 1979.1

Letting Y denote the median sales price and x the year (using integers 1, 2, . . . , 8), fit the model
Y = β0 + β1x + ε. What can you conclude from the results?

Year Median Sales Price (×1000)

1972 (1) $27.6
1973 (2) $32.5
1974 (3) $35.9
1975 (4) $39.3
1976 (5) $44.2
1977 (6) $48.8
1978 (7) $55.7
1979 (8) $62.9

1. Source: Adapted from Time, 23 July 1979, p. 67.
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11.6 Applet Exercise Refer to Exercises 11.2 and 11.5. The data from Exercise 11.5 appear in the
graph under the heading “Another Example” in the applet Fitting a Line Using Least Squares.
Again, the horizontal blue line that initially appears on the graph is a line with 0 slope.

a What is the intercept of the line with 0 slope? What is the value of SSE for the line with 0
slope?

b Do you think that a line with negative slope will fit the data well? If the line is dragged to
produce a negative slope, does SSE increase or decrease?

c Drag the line to obtain a line that visually fits the data well. What is the equation of the
line that you obtained? What is the value of SSE? What happens to SSE if the slope (and
intercept) of the line is changed from the one that you visually fit?

d Is the line that you visually fit the least-squares line? Click on the button “Find Best Model”
to obtain the line with smallest SSE. How do the slope and intercept of the least-squares
line compare to the slope and intercept of the line that you visually fit in part (c)? How do
the SSEs compare?

e Refer to part (a). What is the y-coordinate of the point around which the blue line pivots?

f Click on the button “Display/Hide Error Squares.” What do you observe about the size of the
yellow squares that appear on the graph? What is the sum of the areas of the yellow squares?

11.7 Applet Exercise Move down to the portion of the applet labeled “Curvilinear Relationship”
associated with the applet Fitting a Line Using Least Squares.

a Does it seem like a straight line will provide a good fit to the data in the graph? Does it
seem that there is likely to be some functional relationship between E(Y ) and x?

b Is there any straight line that fits the data better than the one with 0 slope?

c If you fit a line to a data set and obtain that the best fitting line has 0 slope, does that mean
that there is no functional relationship between E(Y ) and the independent variable? Why?

11.8 Laboratory experiments designed to measure LC50 (lethal concentration killing 50% of the test
species) values for the effect of certain toxicants on fish are run by two different methods. One
method has water continuously flowing through laboratory tanks, and the other method has
static water conditions. For purposes of establishing criteria for toxicants, the Environmental
Protection Agency (EPA) wants to adjust all results to the flow-through condition. Thus, a
model is needed to relate the two types of observations. Observations on toxicants examined
under both static and flow-through conditions yielded the data in the accompanying table
(measurements in parts per million, ppm). Fit the model Y = β0 + β1x + ε.

Toxicant LC50 Flow-Through (y) LC50 Static (x)

1 23.00 39.00
2 22.30 37.50
3 9.40 22.20
4 9.70 17.50
5 .15 .64
6 .28 .45
7 .75 2.62
8 .51 2.36
9 28.00 32.00

10 .39 .77

a What interpretation can you give to the results?

b Estimate the flow-through value for a toxicant with an LC50 static value of x = 12 ppm.
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11.9 Information about eight four-cylinder automobiles judged to be among the most fuel efficient
in 2006 is given in the following table. Engine sizes are in total cylinder volume, measured in
liters (L).

Car Cylinder Volume (x) Horsepower (y)

Honda Civic 1.8 51
Toyota Prius 1.5 51
VW Golf 2.0 115
VW Beetle 2.5 150
Toyota Corolla 1.8 126
VW Jetta 2.5 150
Mini Cooper 1.6 118
Toyota Yaris 1.5 106

a Plot the data points on graph paper.

b Find the least-squares line for the data.

c Graph the least-squares line to see how well it fits the data.

d Use the least-squares line to estimate the mean horsepower rating for a fuel-efficient auto-
mobile with cylinder volume 1.9 L.

11.10 Suppose that we have postulated the model

Yi = β1xi + εi i = 1, 2, . . . , n,

where the εi ’s are independent and identically distributed random variables with E(εi ) = 0.
Then ŷi = β̂1xi is the predicted value of y when x = xi and SSE = ∑n

i=1[yi − β̂1xi ]2. Find
the least-squares estimator of β1. (Notice that the equation y = βx describes a straight line
passing through the origin. The model just described often is called the no-intercept model.)

11.11 Some data obtained by C. E. Marcellari2 on the height x and diameter y of shells appear in the
following table. If we consider the model

E(Y ) = β1x,

then the slope β1 is the ratio of the mean diameter to the height. Use the following data and
the result of Exercise 11.10 to obtain the least-squares estimate of the mean diameter to height
ratio.

Specimen Diameter (y) Height (x)

OSU 36651 185 78
OSU 36652 194 65
OSU 36653 173 77
OSU 36654 200 76
OSU 36655 179 72
OSU 36656 213 76
OSU 36657 134 75
OSU 36658 191 77
OSU 36659 177 69
OSU 36660 199 65

2. Source: Carlos E. Marcellari, “Revision of Serpulids of the Genus Rotularia (Annelida) at Seymour
Island (Antarctic Peninsula) and Their Value in Stratigraphy,” Journal of Paleontology 58(4) (1984).
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11.12 Processors usually preserve cucumbers by fermenting them in a low-salt brine (6% to 9%
sodium chloride) and then storing them in a high-salt brine until they are used by processors to
produce various types of pickles. The high-salt brine is needed to retard softening of the pickles
and to prevent freezing when they are stored outside in northern climates. Data showing the
reduction in firmness of pickles stored over time in a low-salt brine (2% to 3%) are given in
the accompanying table.3

Weeks (x) in Storage at 72◦F

0 4 14 32 52

Firmness (y) in pounds 19.8 16.5 12.8 8.1 7.5

a Fit a least-squares line to the data.

b As a check on your calculations, plot the five data points and graph the line. Does the line
appear to provide a good fit to the data points?

c Use the least-squares line to estimate the mean firmness of pickles stored for 20 weeks.

11.14 J. H. Matis and T. E. Wehrly5 report the following table of data on the proportion of green
sunfish that survive a fixed level of thermal pollution for varying lengths of time.

Proportion of Survivors (y) Scaled Time (x)

1.00 .10
.95 .15
.95 .20
.90 .25
.85 .30
.70 .35
.65 .40
.60 .45
.55 .50
.40 .55

a Fit the linear model Y = β0 + β1x + ε. Give your interpretation.

b Plot the points and graph the result of part (a). Does the line fit through the points?

3. Source: R. W. Buescher, J. M. Hudson, J. R. Adams, and D. H. Wallace, “Calcium Makes It Possible
to Store Cucumber Pickles in Low-Salt Brine,” Arkansas Farm Research 30(4) (1981).

5. Source: J. H. Matis and T. E. Wehrly, “Stochastic Models of Compartmental Systems,” Biometrics 35(1)
(1979): 199–220.
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11.4 Properties of the Least-Squares Estimators:
Simple Linear Regression
We need to determine the statistical properties of least-squares estimators if we wish to
use them to make statistical inferences. In this section, we show that the least-squares
estimators β̂0 and β̂1 for the parameters in the simple linear model

Y = β0 + β1x + ε

are unbiased estimators of their respective parameter values. We also derive the vari-
ances of these estimators and, under the assumption that the error term ε is normally
distributed, show that β̂0 and β̂1 have normal sampling distributions. Corresponding
results applicable to the multiple linear regression model are presented without proof
in Section 11.11.

Recall that ε was previously assumed to be a random variable with E(ε) = 0. We
now add the assumption that V (ε) = σ 2. That is, we are assuming that the difference
between the random variable Y and E(Y ) = β0 + β1x is distributed about zero with
a variance that does not depend on x . Notice that V (Y ) = V (ε) = σ 2 because the
other terms in the linear model are constants. (An unbiased estimator for the variance
σ 2 of the error term in the model is also provided in this section.)

Assume that n independent observations are to be made on this model so that
before sampling we have n independent random variables of the form

Yi = β0 + β1xi + εi .

From Section 11.3, we know that

β̂1 = Sxy

Sxx
=

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
,

which can be written as

β̂1 =
∑n

i=1(xi − x)Yi − Y
∑n

i=1(xi − x)

Sxx
.

Then, because
∑n

i=1(xi − x) = 0, we have

β̂1 =
∑n

i=1(xi − x)Yi

Sxx
.

Because all summations in the following discussion will be summed from i = 1 to
n, we will simplify our notation by omitting the variable of summation and its index.
Now let us find the expected value and variance of β̂1.
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From the expectation theorems developed in Section 5.8, we have

E(β̂1) = E

[∑
(xi − x)Yi

Sxx

]
=

∑
(xi − x)E(Yi )

Sxx

=
∑

(xi − x)(β0 + β1xi )

Sxx

= β0

∑
(xi − x)

Sxx
+ β1

∑
(xi − x)xi

Sxx
.

Because
∑

(xi − x) = 0 and Sxx = ∑
(xi − x)2 = ∑

(xi − x)xi , we have

E(β̂1) = 0 + β1
Sxx

Sxx
= β1.

Thus, β̂1 is an unbiased estimator of β1.
To find V (β̂1), we use Theorem 5.12. Recall that Y1, Y2, . . . , Yn are independent

and, therefore,

V (β̂1) = V

[∑
(xi − x)Yi

Sxx

]
=

[
1

Sxx

]2 ∑
V [(xi − x)Yi ]

=
[

1

Sxx

]2 ∑
(xi − x)2V (Yi ).

Because V (Yi ) = σ 2, for i = 1, 2, . . . , n,

V (β̂1) = σ 2

Sxx
.

Now let us find the expected value and variance of β̂0, where β̂0 = Y − β̂1x . From
Theorem 5.12, we have

V (β̂0) = V (Y ) + x2V (β̂1) − 2xCov(Y , β̂1).

Consequently, we must find V (Y ) and Cov(Y , β̂1) in order to obtain V (β̂0). Because
Yi = β0 + β1xi + εi , we see that

Y = 1

n

∑
Yi = β0 + β1x + ε.

Thus,

E(Y ) = β0 + β1x + E(ε) = β0 + β1x,

and

V (Y ) = V (ε) =
(

1

n

)
V (ε1) = σ 2

n
.

To find Cov(Y , β̂1), rewrite the expression for β̂1 as

β̂1 =
∑

ci Yi ,

where

ci = xi − x

Sxx
.
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(Notice that
∑

ci = 0.) Then,

Cov(Y , β̂1) = Cov

[∑ (
1

n

)
Yi ,

∑
ci Yi

]
,

and using Theorem 5.12,

Cov(Y , β̂1) =
∑ (ci

n

)
V (Yi ) +

∑ ∑
i 7= j

(c j

n

)
Cov(Yi , Y j ).

Because Yi and Y j , where i 7= j , are independent, Cov(Yi , Y j ) = 0. Also, V (Yi ) = σ 2

and, hence,

Cov(Y , β̂1) = σ 2

n

∑
ci = σ 2

n

∑ (
xi − x

Sxx

)
= 0.

Returning to our original task of finding the expected value and variance of
β̂0 = Y − β̂1x , we apply expectation theorems to obtain

E(β̂0) = E(Y ) − E(β̂1)x = β0 + β1x − β1x = β0.

Thus, we have shown that both β̂0 and β̂1 are unbiased estimators of their respective
parameters.

Because we have derived V (Y ), V (β̂1), and Cov(Y , β̂1), we are ready to find
V (β̂0). As previously established by using Theorem 5.12,

V (β̂0) = V (Y ) + x2V (β̂1) − 2xCov(Y , β̂1).

Substituting the values for V (Y ), V (β̂1), and Cov(Y , β̂1), we obtain

V (β̂0) = σ 2

n
+ x2

(
σ 2

Sxx

)
− 0

= σ 2

(
1

n
+ x2

Sxx

)
= σ 2 ∑

x2
i

nSxx
.

Further (see Exercise 11.21), Theorem 5.12 can be employed to show that

Cov
(
β̂0, β̂1

) = −xσ 2

Sxx
.

Notice that β̂0 and β̂1 are correlated (and therefore dependent) unless x = 0.
All the quantities necessary to determine the values of the variances and covari-

ances above have already been calculated in the course of obtaining the values for β̂0

and β̂1.

EXAMPLE 11.2 Find the variances of the estimators β̂0 and β̂1 for Example 11.1.

Solution In Example 11.1 (see the calculations for the denominator of β̂1), we found that

n = 5,
∑

xi = 0,
∑

x2
i = 10, Sxx = 10.

It follows that x = 0,

V (β̂0) = σ 2 ∑
x2

i

nSxx
= σ 2(10)

5(10)
=

(
1

5

)
σ 2,
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580 Chapter 11 Linear Models and Estimation by Least Squares

and

V (β̂1) = σ 2

Sxx
=

(
1

10

)
σ 2.

Notice that Cov(β̂0, β̂1) = 0 in this case since
∑

xi = 0.

The preceding expressions give the variances for the least-squares estimators in
terms of σ 2, the variance of the error term ε. Usually the value of σ 2 is unknown, and
we will need to make use of the sample observations to estimate σ 2. If Y is used to
estimate the mean, we previously used(

1

n − 1

) n∑
i=1

(Yi − Y )2

to estimate the population variance σ 2. Because we are now using Ŷi to estimate
E(Yi ), it seems natural to base an estimate of σ 2 on SSE = ∑n

i=1(Yi − Ŷi )
2. Indeed,

we will show that

S2 =
(

1

n − 2

) n∑
i=1

(Yi − Ŷi )
2 =

(
1

n − 2

)
SSE

provides an unbiased estimator for σ 2. Notice that the 2 occurring in the denominator
of S2 corresponds to the number of β parameters estimated in the model.

Because

E(S2) = E

[(
1

n − 2

)
SSE

]
=

(
1

n − 2

)
E(SSE),

it is necessary to find E(SSE) in order to verify that E(S2) = σ 2.
Notice that

E(SSE) = E
[∑

(Yi − Ŷi )
2
]

= E
[∑

(Yi − β̂0 − β̂1xi )
2
]

= E
[∑

(Yi − Y + β̂1x − β̂1xi )
2
]

= E
[∑

[(Yi − Y ) − β̂1(xi − x)]2
]

= E
[∑

(Yi − Y )2 + β̂2
1

∑
(xi − x)2 − 2β̂1

∑
(xi − x)(Yi − Y )

]
.

Because
∑

(xi − x)(Yi − Y ) = ∑
(xi − x)2β̂1, the last two terms in the expectation

combine to give −β̂2
1

∑
(xi − x)2. Also,∑

(Yi − Y )2 =
∑

Y 2
i − nY

2
,

and, therefore,

E
[∑

(Yi − Ŷi )
2
]

= E
[∑

Y 2
i − nY

2 − β̂2
1Sxx

]
=

∑
E

(
Y 2

i

) − nE
(

Y
2) − Sxx E

(
β̂2

1

)
.
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Noting that, for any random variable U, E(U 2) = V (U ) + [E(U )]2, we see that

E
[∑

(Yi − Ŷi )
2
]

=
∑

{V (Yi ) + [E(Yi )]
2} − n{V (Y ) + [E(Y )]2}

−Sxx {V (β̂1) + [E(β̂1)]
2}

= nσ 2 +
∑

(β0 + β1xi )
2 − n

[
σ 2

n
+ (β0 + β1x)2

]
−Sxx

(
σ 2

Sxx
+ β2

1

)
.

This expression simplifies to (n − 2)σ 2. Thus, we find that an unbiased estimator of
σ 2 is given by

S2 =
(

1

n − 2

) ∑
(Yi − Ŷi )

2 =
(

1

n − 2

)
SSE.

One task remains, finding an easy way to calculate
∑

(yi − ŷi )
2 = SSE. In Exercise

11.15(a), you will show that a computing formula for SSE is given by

SSE =
n∑

i=1

(yi − y)2 − β̂1

n∑
i=1

(xi − x)(yi − y)

= Syy − β̂1Sxy, where Syy =
n∑

i=1

(yi − y)2.

EXAMPLE 11.3 Estimate σ 2 from the data given in Example 11.1.

Solution For these data, n = 5 and we have already determined that∑
yi = 5, Sxy = 7, β̂1 = .7.

It is easily determined that
∑

y2
i = 11 and that

Syy =
∑

(yi − y)2 =
∑

y2
i − n(y)2 = 11 − 5(1)2 = 6.0.

Therefore,

SSE = Syy − β̂1Sxy = 6.0 − (.7)(7) = 1.1,

and

s2 = SSE

n − 2
= 1.1

5 − 2
= 1.1

3
= .367.

These derivations establish the means and variances of the estimators β̂0 and β̂1

and show that S2 = SSE/(n − 2) is an unbiased estimator for the parameter σ 2. Thus
far, the only assumptions that we have made about the error term ε in the model
Y = β0 + β1x + ε is that E(ε) = 0 and that V (ε) = σ 2, independent of x . The form
of the sampling distributions for β̂0 and β̂1 depends on the distribution of the error
term ε. Because of the common occurrence of the normal distribution in nature, it is
often reasonable to assume that ε is normally distributed with mean 0 and variance σ 2.
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582 Chapter 11 Linear Models and Estimation by Least Squares

If this assumption of normality is warranted, it follows that Yi is normally distributed
with mean β0 +β1xi and variance σ 2. Because both β̂0 and β̂1 are linear functions of
Y1, Y2, . . . , Yn , the estimators are normally distributed, with means and variances as
previously derived. Further, if the assumption of normality is warranted, it follows that

(n − 2)S2

σ 2
= SSE

σ 2

has a χ2 distribution with n − 2 degrees of freedom (df). (The proof of this result is
omitted.)

As you will subsequently see, the assumption of normality of the distribution of
the error term ε and the resulting normal distributions for β̂0 and β̂1 will allow us to
develop tests and confidence intervals based on the t distribution. The results of this
section are summarized here because of their importance to discussions in subsequent
sections. Notice that V (β̂0), V (β̂1), and Cov(β̂0, β̂1) are all constant multiples of σ 2.
Because V (β̂ i ) = Cov(β̂ i , β̂ i ), we will unify notation and provide consistency with
the later sections of this chapter if we use the notation V (β̂0) = c00σ

2, V (β̂1) =
c11σ

2, and Cov(β̂0, β̂1) = c01σ
2.

Properties of the Least-Squares Estimators; Simple Linear Regression

1. The estimators β̂0 and β̂1 are unbiased—that is, E(β̂ i ) = βi , for i = 0, 1.

2. V (β̂0) = c00σ
2, where c00 = ∑

x2
i /(nSxx ).

3. V (β̂1) = c11σ
2, where c11 = 1

Sxx
.

4. Cov(β̂0, β̂1) = c01σ
2, where c01 = −x

Sxx
.

5. An unbiased estimator of σ 2 is S 2 = SSE/(n − 2), where SSE =
Syy − β̂1Sxy and Syy = ∑

(yi − y)2.

If, in addition, the εi , for i = 1, 2, . . . , n are normally distributed,

6. Both β̂0 and β̂1 are normally distributed.

7. The random variable
(n − 2)S2

σ 2
has a χ2 distribution with n − 2 df.

8. The statistic S2 is independent of both β̂0 and β̂1.

Exercises
11.15 a Derive the following identity:

SSE =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β̂0 − β̂1xi )
2

=
n∑

i=1

(yi − y)2 − β̂1

n∑
i=1

(xi − x)(yi − y) = Syy − β̂1 Sxy .

Notice that this provides an easier computational method of finding SSE.

b Use the computational formula for SSE derived in part (a) to prove that SSE ≤ Syy .
[Hint: β̂1 = Sxy/Sxx .]
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11.16 An experiment was conducted to observe the effect of an increase in temperature on the potency
of an antibiotic. Three 1-ounce portions of the antibiotic were stored for equal lengths of time
at each of the following Fahrenheit temperatures: 30◦, 50◦, 70◦, and 90◦. The potency readings
observed at the end of the experimental period were as shown in the following table.

Potency Readings (y) 38, 43, 29 32, 26, 33 19, 27, 23 14, 19, 21

Temperature (x) 30◦ 50◦ 70◦ 90◦

a Find the least-squares line appropriate for this data.

b Plot the points and graph the line as a check on your calculations.

c Calculate S2.

11.17 a Calculate SSE and S2 for Exercise 11.5.

b It is sometimes convenient, for computational purposes, to have x-values spaced symmet-
rically and equally about zero. The x-values can be rescaled (or coded) in any convenient
manner, with no loss of information in the statistical analysis. Refer to Exercise 11.5. Code
the x-values (originally given on a scale of 1 to 8) by using the formula

x∗ = x − 4.5

.5
.

Then fit the model Y = β∗
0 + β∗

1 x∗ + ε. Calculate SSE. (Notice that the x∗-values are
integers symmetrically spaced about zero.) Compare the SSE with the value obtained in
part (a).

11.18 a Calculate SSE and S2 for Exercise 11.8.

b Refer to Exercise 11.8. Code the x-values in a convenient manner and fit a simple linear
model to the LC50 measurements presented there. Compute SSE and compare your answer
to the result of part (a).

11.19 A study was conducted to determine the effects of sleep deprivation on subjects’ ability to
solve simple problems. The amount of sleep deprivation varied over 8, 12, 16, 20, and 24 hours
without sleep. A total of ten subjects participated in the study, two at each sleep-deprivation
level. After his or her specified sleep-deprivation period, each subject was administered a set
of simple addition problems, and the number of errors was recorded. The results shown in the
following table were obtained.

Number of Errors (y) 8, 6 6, 10 8, 14 14, 12 16, 12

Number of Hours without Sleep (x) 8 12 16 20 24

a Find the least-squares line appropriate to these data.

b Plot the points and graph the least-squares line as a check on your calculations.

c Calculate S2.

11.20 Suppose that Y1, Y2, . . . , Yn are independent normal random variables with E(Yi ) = β0 +β1xi

and V (Yi ) = σ 2, for i = 1, 2, . . . , n. Show that the maximum-likelihood estimators (MLEs)
of β0 and β1 are the same as the least-squares estimators of Section 11.3.

11.21 Under the assumptions of Exercise 11.20, find Cov(β̂0, β̂1). Use this answer to show that β̂0

and β̂1 are independent if
∑n

i=1 xi = 0. [Hint: Cov(β̂0, β̂1) = Cov(Y − β̂1x, β̂1). Use Theorem
5.12 and the results of this section.]

11.22 Under the assumptions of Exercise 11.20, find the MLE of σ 2.
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584 Chapter 11 Linear Models and Estimation by Least Squares

11.5 Inferences Concerning the Parameters βi

Suppose that an engineer has fit the model

Y = β0 + β1x + ε,

where Y is the strength of concrete after 28 days and x is the water/cement ratio
used in the concrete. If, in reality, the strength of concrete does not change with the
water/cement ratio, then β1 = 0. Thus the engineer may wish to test H0 : β1 = 0
versus Ha: β1 7= 0 in order to assess whether the independent variable has an influence
on the dependent variable. Or the engineer may wish to estimate the mean rate of
change β1 in E(Y ) for a 1-unit change in the water/cement ratio x .

In general, for any linear regression model, if the random error ε is normally
distributed, we have established that β̂ i is an unbiased, normally distributed estimator
of βi with

V (β̂0) = c00σ
2, where c00 =

∑
x2

i

nSxx

and

V (β̂1) = c11σ
2, where c11 = 1

Sxx
.

That is, the variances of both estimators are constant multiples of σ 2, the variance
of the error term in the model. Using this information, we can construct a test of the
hypothesis H0: βi = βi0 (βi0 is a specified value of βi ), using the test statistic

Z = β̂ i − βi0

σ
√

ci i
,

where

c00 =
∑

x2
i

nSxx
and c11 = 1

Sxx
.

The rejection region for a two-tailed test is given by

|z| ≥ zα/2.

As in the case of the simple Z tests studied in Chapter 10, to compute either of the
preceding Z statistics, we must either know σ or possess a good estimate based on an
adequate number of degrees of freedom. (What would be adequate is a debatable point.
We suggest that the estimate be based on 30 or more degrees of freedom.) When this
estimate is unavailable (which usually is the case), an estimate of σ may be calculated
from the experimental data (in accordance with the procedure of Section 11.4) and
substituted for σ in the Z statistic. If we estimate σ with S = √

SSE/(n − 2), the
resulting quantity

T = β̂ i − βi0

S
√

ci i

can be shown to possess a Student’s t distribution with n − 2 df (see Exercise 11.27).
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11.5 Inferences Concerning the Parameters βi 585

Test of Hypothesis for βi

H0 : βi = βi0.

Ha :

⎧⎪⎪⎨⎪⎪⎩
βi > βi0 (upper-tail rejection region),

βi < βi0 (lower-tail rejection region),

βi 7= βi0 (two-tailed rejection region).

Test statistic: T = β̂ i − βi0

S
√

ci i
.

Rejection region:

⎧⎪⎪⎨⎪⎪⎩
t > tα (upper-tail alternative),

t < −tα (lower-tail alternative),

|t | > tα/2 (two-tailed alternative),

where

c00 =
∑

x2
i

nSxx
and c11 = 1

Sxx
.

Notice that tα is based on (n − 2) df.

EXAMPLE 11.4 Do the data of Example 11.1 present sufficient evidence to indicate that the slope
differs from 0? Test using α = .05 and give bounds for the attained significance level.

Solution The preceding question assumes that the probabilistic model is a realistic description
of the true response and implies a test of hypothesis H0 : β1 = 0 versus Ha : β1 7= 0
in the linear model Y = β0 +β1x +ε. For these data, we determined in Example 11.1
that β̂1 = .7 and Sxx = 10. Example 11.3 yielded s2 = SSE/(n − 2) = .367 and
s = √

.367 = .606. (Note: SSE is based on n − 2 = 3 df.)
Because we are interested in the parameter β1, we need the value

c11 = 1

Sxx
= 1

10
= .1.

Then,

t = β̂1 − 0

s
√

c11
= .7 − 0

.606
√

.1
= 3.65.

If we take α = .05, the value of tα/2 = t.025 for 3 df is 3.182, and the rejection
region is

reject if |t | ≥ 3.182.

Because the absolute value of the calculated value of t is larger than 3.182, we reject
the null hypothesis that β1 = 0 at the α = .05 level of significance. Because the
test is two-tailed, p-value = 2P(t > 3.65), where t has a t distribution with 3 df.
Using Table 5, Appendix 3, we find that .01 < P(t > 3.65) < .025. Thus, we
conclude that .02 < p-value < .05. Hence, we would reject the null hypothesis
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586 Chapter 11 Linear Models and Estimation by Least Squares

for any value of α ≥ .05. For values of α ≤ .02, we would fail to reject the null
hypothesis. If we had chosen .02 < α < .05, more specific information about the
p-value is required. The applet Student’s t Probabilities and Quantiles yields that,
with 3 df, p-value = 2P(t > 3.65) = 2(.01775) = .0355. Again, we notice the
agreement between the conclusions reached by the formal (fixed α) test procedure
and the proper interpretation of the attained significance level.

As a further step in the analysis, we could look at the width of a confidence interval
for β1 to see whether it is short enough to detect a departure from zero that would
be of practical significance. We will show that the confidence interval for β1 is quite
wide, suggesting that the experimenter needs to collect more data before reaching a
decision.

Based on the t statistic given earlier, we can follow the procedures of Chapter 10 to
show that a confidence interval for βi , with confidence coefficient 1−α, is as follows.

A 100(1 −α)% Confidence Interval for βi

β̂ i ± tα/2S
√

ci i ,

where

c00 =
∑

x2
i

nSxx
and c11 = 1

Sxx
.

EXAMPLE 11.5 Calculate a 95% confidence interval for the parameter β1 of Example 11.4.

Solution The tabulated value for t.025, based on 3 df, is 3.182. Then the 95% confidence interval
for β1 is

β̂1 ± t.025s
√

c11.

Substituting, we get

.7 ± (3.182)(.606)
√

0.1, or .7 ± .610.

If we wish to estimate β1 correct to within .15 unit, it is obvious that the confidence
interval is too wide and that the sample size must be increased.

Exercises
11.23 Refer to Exercise 11.3.

a Do the data present sufficient evidence to indicate that the slope β1 differs from zero? (Test
at the 5% significance level.)

b What can be said about the attained significance level associated with the test implemented
in part (a) using a table in the appendix?
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c Applet Exercise What can be said about the attained significance level associated with
the test implemented in part (a) using the appropriate applet?

d Find a 95% confidence interval for β1.

11.24 Refer to Exercise 11.13. Do the data present sufficient evidence to indicate that the size x of
the anchovy catch contributes information for the prediction of the price y of the fish meal?

a Give bounds on the attained significance level.

b Applet Exercise What is the exact p-value?

c Based on your answers to parts (a) and/or (b), what would you conclude at the α = .10
level of significance?

11.25 Do the data in Exercise 11.19 present sufficient evidence to indicate that the number of errors
is linearly related to the number of hours without sleep?

a Give bounds on the attained significance level.

b Applet Exercise Determine the exact p-value.

c Based on your answers to parts (a) and/or (b), what would you conclude at the α = .05
level of significance?

d Would you expect the relationship between y and x to be linear if x were varied over a
wider range, say, from x = 4 to x = 48?

e Give a 95% confidence interval for the slope. Provide a practical interpretation for this
interval estimate.

11.26 Most sophomore physics students are required to conduct an experiment verifying Hooke’s
law. Hooke’s law states that when a force is applied to a body that is long in comparison to its
cross-sectional area, the change y in its length is proportional to the force x ; that is,

y = β1x,

where β1 is a constant of proportionality. The results of a physics student’s laboratory
experiment are shown in the following table. Six lengths of steel wire, .34 millimeter (mm) in
diameter and 2 meters (m) long, were used to obtain the six force-length change measurements.

Force Change in Length
x (kg) (y) (mm)

29.4 4.25
39.2 5.25
49.0 6.50
58.8 7.85
68.6 8.75
78.4 10.00

a Fit the model, Y = β0 + β1x + ε, to the data, using the method of least squares.

b Find a 95% confidence interval for the slope of the line.

c According to Hooke’s law, the line should pass through the point (0, 0); that is, β0 should
equal 0. Test the hypothesis that E(Y ) = 0 when x = 0. Give bounds for the attained
significance level.

d Applet Exercise What is the exact p-value?

e What would you conclude at the α = .05 level?

11.27 Use the properties of the least-squares estimators given in Section 11.4 to complete the fol-
lowing.
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588 Chapter 11 Linear Models and Estimation by Least Squares

a Show that under the null hypothesis H0 : βi = βi0

T = β̂ i − βi0

S
√

ci i

possesses a t distribution with n − 2 df, where i = 1, 2.

b Derive the confidence intervals for βi given in this section.

11.28 Suppose that Y1, Y2, . . . , Yn are independent, normally distributed random variables with
E(Yi ) = β0 + β1xi and V (Yi ) = σ 2, for i = 1, 2, . . . , n. Show that the likelihood ratio
test of H0 : β1 = 0 versus Ha : β1 7= 0 is equivalent to the t test given in this section.

*11.29 Let Y1, Y2, . . . , Yn be as given in Exercise 11.28. Suppose that we have an additional set
of independent random variables W1, W2, . . . , Wm , where Wi is normally distributed with
E(Wi ) = γ0 + γ1ci and V (Wi ) = σ 2, for i = 1, 2, . . . , m. Construct a test of H0 : β1 = γ1

against the Ha : β1 7= γ1.6

11.30 The octane number Y of refined petroleum is related to the temperature x of the refining process,
but it is also related to the particle size of the catalyst. An experiment with a small-particle
catalyst gave a fitted least-squares line of

ŷ = 9.360 + .155x,

with n = 31, V (β̂1) = (.0202)2, and SSE = 2.04. An independent experiment with a large-
particle catalyst gave

ŷ = 4.265 + .190x,

with n = 11, V (β̂1) = (.0193)2, and SSE = 1.86.7

a Test the hypotheses that the slopes are significantly different from zero, with each test at
the significance level of .05.

*b Test at the .05 significance level that the two types of catalyst produce the same slope in
the relationship between octane number and temperature. (Use the test that you developed
in Exercise 11.29.)

11.31 Using a chemical procedure called differential pulse polarography, a chemist measured the
peak current generated (in microamperes, μA) when solutions containing different amounts of
nickel (measured in parts per billion, ppb) are added to different portions of the same buffer.8

Is there sufficient evidence to indicate that peak current increases as nickel concentrations
increase? Use α = .05.

x = Ni (ppb) y = Peak Current (μA)

19.1 .095
38.2 .174
57.3 .256
76.2 .348
95 .429

114 .500
131 .580
150 .651
170 .722

6. Exercises preceded by an asterisk are optional.

7. Source: Gweyson and Cheasley, Petroleum Refiner (August 1959): 135.

8. Source: Daniel C. Harris, Quantitative Chemical Analysis, 3rd ed. (New York, Freeman, 1991).
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11.32 Refer to Exercises 11.5 and 11.17.

a Is there sufficient evidence to indicate that the median sales price for new single-family
houses increased over the period from 1972 through 1979 at the .01 level of significance?

b Estimate the expected yearly increase in median sale price by constructing a 99% confidence
interval.

11.33 Refer to Exercise 11.8 and 11.18. Is there evidence of a linear relationship between flow-through
and static LC50s? Test at the .05 significance level.

11.34 Refer to Exercise 11.33. Is there evidence of a linear relationship between flow-through and
static LC50s?

a Give bounds for the attained significance level.

b Applet Exercise What is the exact p-value?

11.6 Inferences Concerning Linear
Functions of the Model Parameters:
Simple Linear Regression
In addition to making inferences about a single βi , we frequently are interested in
making inferences about linear functions of the model parameters β0 and β1. For
example, we might wish to estimate E(Y ), given by

E(Y ) = β0 + β1x,

where E(Y ) represents the mean yield of a chemical process for the settings of
controlled process variable x or the mean mileage rating of four-cylinder gasoline
engines with cylinder volume x . Properties of estimators of such linear functions are
established in this section.

Suppose that we wish to make an inference about the linear function

θ = a0β0 + a1β1,

where a0 and a1 are constants (one of which may equal zero). Then, the same linear
function of the parameter estimators,

θ̂ = a0β̂0 + a1β̂1,

is an unbiased estimator of θ because, by Theorem 5.12,

E(θ̂) = a0 E(β̂0) + a1 E(β̂1) = a0β0 + a1β1 = θ.

Applying the same theorem, we determine that the variance of θ̂ is

V (θ̂) = a2
0 V (β̂0) + a2

1 V (β̂1) + 2a0a1Cov(β̂0, β̂1),

where V (β̂ i ) = ci iσ
2 and Cov(β̂0, β̂1) = c01σ

2, with

c00 =
∑

x2
i

nSxx
, c11 = 1

Sxx
, c01 = −x

Sxx
.
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590 Chapter 11 Linear Models and Estimation by Least Squares

Some routine algebraic manipulations yield

V (θ̂) =

⎛⎜⎜⎝a2
0

∑
x2

i

n
+ a2

1 − 2a0a1x

Sxx

⎞⎟⎟⎠ σ 2.

Finally, recalling that β̂0 and β̂1 are normally distributed in repeated sampling
(Section 11.4), it is clear that θ̂ is a linear function of normally distributed random
variables, implying that θ̂ is normally distributed.

Thus, we conclude that

Z = θ̂ − θ

σθ̂

has a standard normal distribution and could be employed to test the hypothesis

H0 : θ = θ0

when θ0 is some specified value of θ = a0β0 + a1β1. Likewise, a 100(1 − α)%
confidence interval for θ = a0β0 + a1β1 is

θ̂ ± zα/2σθ̂ .

We notice that, in both the Z statistic and the confidence interval above, σθ̂ =√
V (θ̂) is a constant (depending on the sample size n, the values of the x’s, and the

values of the a’s) multiple of σ . If we substitute S for σ in the expression for Z , the
resulting expression (which we identify as T ) possesses a Student’s t distribution in
repeated sampling, with n −2 df, and provides a test statistic to test hypotheses about
θ = a0β0 + a1β1.

Appropriate tests are summarized as follows.

A Test for θ= a0β0 + a1β1

H0 : θ = θ0,

Ha :

⎧⎪⎨⎪⎩
θ > θ0,

θ < θ0,

θ 7= θ0.

Test statistic: T = θ̂ − θ0

S

√√√√√√√√
⎛⎜⎜⎜⎝a2

0

∑
x2

i

n
+ a2

1 − 2a0a1x

Sxx

⎞⎟⎟⎟⎠
.

Rejection region:

⎧⎨⎩ t > tα,

t < −tα,

|t | > tα/2.

Here, tα and tα/2 are based on n − 2 df.
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11.6 Inferences Concerning Linear Functions of the Model Parameters: Simple Linear Regression 591

The corresponding 100(1 − α)% confidence interval for θ = a0β0 + a1θ1 is as
follows.

A 100(1 −α)% Confidence Interval for θ= a0β0 + a1β1

θ̂ ± tα/2S

√√√√√√√
⎛⎜⎜⎝a2

0

∑
x2

i

n
+ a2

1 − 2a0a1x

Sxx

⎞⎟⎟⎠,

where the tabulated tα/2 is based on n − 2 df.

One useful application of the hypothesis-testing and confidence interval techniques
just presented is to the problem of estimating E(Y ), the mean value of Y , for a fixed
value of the independent variable x . In particular, if x∗ denotes a specific value of x
that is of interest, then

E(Y ) = β0 + β1x∗.

Notice that E(Y ) is a special case of a0β0 + a1β1, with a0 = 1 and a1 = x∗. Thus, an
inference about E(Y ) when x = x∗ can be made by using the techniques developed
earlier for general linear combinations of the β’s.

In the context of estimating the mean value for Y, E(Y ) = β0 + β1x∗ when the
independent variable x takes on the value x∗, it can be shown (see Exercise 11.35)
that, with a0 = 1, a1 = x∗,⎛⎜⎜⎝a2

0

∑
x2

i

n
+ a2

1 − 2a0a1x

Sxx

⎞⎟⎟⎠ = 1

n
+ (x∗ − x)2

Sxx
.

A confidence interval for the mean value of Y when x = x∗, a particular value of x ,
is as follows.

A 100(1 −α)% Confidence Interval for E(Y) = β0 + β1 x∗

β̂0 + β̂1x∗ ± tα/2S

√
1

n
+ (x∗ − x)2

Sxx
,

where the tabulated tα/2 is based on n − 2 df.

This formula makes it easy to see that for a fixed value of n and for given x-values,
the shortest confidence interval for E(Y ) is obtained when x∗ = x , the average of the
x-values used in the experiment. If our objective is to plan an experiment that yields
short confidence intervals for E(Y ) when x = x∗, n should be large, Sxx should be
large (if possible), and x should be near x∗. The physical interpretation of a large Sxx

is that when possible the values of x used in the experiment should be spread out as
much as possible.
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592 Chapter 11 Linear Models and Estimation by Least Squares

EXAMPLE 11.6 For the data of Example 11.1, find a 90% confidence interval for E(Y ) when x = 1.

Solution For the model of Example 11.1,

E(Y ) = β0 + β1x .

To estimate E(Y ) for any fixed value x = x∗, we use the unbiased estimator Ê(Y ) =
β̂0 + β̂1x∗. Then,

β̂0 + β̂1x∗ = 1 + .7x∗.

For this case, x∗ = 1; and because n = 5, x = 0, and Sxx = 10, it follows that

1

n
+ (x∗ − x)2

Sxx
= 1

5
+ (1 − 0)2

10
= .3.

In Example 11.3, we found s2 to be .367, or s = .606, for these data. The value of
t.05 with n − 2 = 3 df is 2.353.

The confidence interval for E(Y ) when x = 1 is

β̂0 + β̂1x∗ ± tα/2S

√
1

n
+ (x∗ − x)2

Sxx

[(1 + (.7)(1)] ± (2.353)(.606)
√

.3

1.7 ± .781.

That is, we are 90% confident that, when the independent variable takes on the
value x = 1, the mean value E(Y ) of the dependent variable is between .919 and
2.481. This interval obviously is very wide, but remember that it is based on only five
data points and was used solely for purposes of illustration. We will show you some
practical applications of regression analyses in Section 11.9.

Exercises
11.35 For the simple linear regression model Y = β0 + β1x + ε with E(ε) = 0 and V (ε) = σ 2, use

the expression for V (a0β̂0 + a1β̂1) derived in this section to show that

V (β̂0 + β̂1x∗) =
[

1

n
+ (x∗ − x)2

Sxx

]
σ 2.

For what value of x∗ does the confidence interval for E(Y ) achieve its minimum length?

11.36 Refer to Exercise 11.13 and 11.24. Find the 90% confidence interval for the mean price per
ton of fish meal if the anchovy catch is 5 million metric tons.

11.37 Using the model fit to the data of Exercise 11.8, construct a 95% confidence interval for the
mean value of flow-through LC50 measurements for a toxicant that has a static LC50 of 12
parts per million. (Also see Exercise 11.18.)
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11.38 Refer to Exercise 11.3. Find a 90% confidence interval for E(Y ) when x∗ = 0. Then find 90%
confidence intervals for E(Y ) when x∗ = −2 and x∗ = +2. Compare the lengths of these
intervals. Plot these confidence limits on the graph you constructed for Exercise 11.3.

11.39 Refer to Exercise 11.16. Find a 95% confidence interval for the mean potency of a 1-ounce
portion of antibiotic stored at 65◦F.

11.40 Refer to Exercise 11.14. Find a 90% confidence interval for the expected proportion of survivors
at time period .30.

*11.41 Refer to Exercise 11.4. Suppose that the sample given there came from a large but finite
population of inventory items. We wish to estimate the population mean of the audited values,
using the fact that book values are known for every item on inventory. If the population contains
N items and

E(Yi ) = μi = β0 + β1xi ,

then the population mean is given by

μY = 1

N

N∑
i=1

μi = β0 + β1

(
1

N

) N∑
i=1

xi = β0 + β1μx .

a Using the least-squares estimators of β0 and β1, show that μY can be estimated by

μ̂Y = y + β̂1(μx − x).

(Notice that y is adjusted up or down, depending on whether x is larger or smaller than
μx .)

b Using the data of Exercise 11.4 and the fact that μx = 74.0, estimate μY , the mean of the
audited values, and place a 2-standard-deviation bound on the error of estimation. (Regard
the xi -values as constants when computing the variance of μ̂Y .)

11.7 Predicting a Particular Value of Y by
Using Simple Linear Regression
Suppose that for a fixed pressure the yield Y for a chemical experiment is a function
of the temperature x at which the experiment is run. Assume that a linear model of
the form

Y = β0 + β1x + ε

adequately represents the response function traced by Y over the experimental region
of interest. In Section 11.6, we discussed methods for estimating E(Y ) for a given
temperature, say, x∗. That is, we know how to estimate the mean yield E(Y ) of the
process at the setting x = x∗.

Now consider a different problem. Instead of estimating the mean yield at x∗, we
wish to predict the particular response Y that we will observe if the experiment is run
at some time in the future (such as next Monday). This situation would occur if, for
some reason, the response next Monday held a special significance to us. Prediction
problems frequently occur in business where we may be interested in next month’s
profit on a specific investment rather than the average gain per investment in a large
portfolio of similar stocks.
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594 Chapter 11 Linear Models and Estimation by Least Squares

Notice that Y is a random variable, not a parameter; predicting its value therefore
represents a departure from our previous objective of making inferences about pop-
ulation parameters. If it is reasonable to assume that ε is normally distributed with
mean 0 and variance σ 2, it follows that Y is normally distributed with mean β0 +β1x
and variance σ 2. If the distribution of a random variable Y is known and a single
value of Y is then selected, how would you predict the observed value? We contend
that you would select a value of Y near the center of the distribution—in particular,
a value near the expected value of Y . If we are interested in the value of Y when
x = x∗, call it Y ∗, we could employ Ŷ ∗ = β̂0 + β̂1x∗ as a predictor of a particular
value of Y ∗ and as an estimator of E(Y ) as well.

If x = x∗, the error of predicting a particular value of Y ∗, using Ŷ ∗ as the predictor,
is the difference between the actual value of Y ∗ and the predicted value:

error = Y ∗ − Ŷ ∗.
Let us now investigate the properties of this error in repeated sampling.

Because both Y ∗ and Ŷ ∗ are normally distributed random variables, their difference
(the error) is also normally distributed.

Applying Theorem 5.12, which gives the formulas for the expected value and
variance of a linear function of random variables, we obtain

E(error) = E(Y ∗ − Ŷ ∗) = E(Y ∗) − E(Ŷ ∗),
and because E(Ŷ ∗) = β0 + β1x∗ = E(Y ∗),

E(error) = 0.

Likewise,

V (error) = V (Y ∗ − Ŷ ∗) = V (Y ∗) + V (Ŷ ∗) − 2Cov(Y ∗, Ŷ ∗).
Because we are predicting a future value Y ∗ that is not employed in the computation

of Ŷ ∗, it follows that Y ∗ and Ŷ ∗ are independent and hence that Cov(Y ∗, Ŷ ∗) = 0.
Then,

V (error) = V (Y ∗) + V (Ŷ ∗) = σ 2 + V (β̂0 + β̂1x∗)

= σ 2 +
(

1

n
+ (x∗ − x)2

Sxx

)
σ 2

= σ 2

[
1 + 1

n
+ (x∗ − x)2

Sxx

]
.

We have shown that the error of predicting a particular value of Y is normally
distributed with mean 0 and variance as given in the preceding equation. It follows that

Z = Y ∗ − Ŷ ∗

σ

√
1 + 1

n
+ (x∗ − x)2

Sxx

has a standard normal distribution. Furthermore, if S is substituted for σ , it can be
shown that

T = Y ∗ − Ŷ ∗

S

√
1 + 1

n
+ (x∗ − x)2

Sxx
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11.7 Predicting a Particular Value of Y by Using Simple Linear Regression 595

possesses a Student’s t distribution with n − 2 df. We use this result to place a bound
on the error of prediction; in doing so, we construct a prediction interval for the
random variable Y ∗. The procedure employed is similar to that used to construct the
confidence intervals presented in the preceding chapters.

We begin by observing that

P(−tα/2 < T < tα/2) = 1 − α.

Substituting for T , we obtain

P

⎡⎢⎢⎢⎢⎣−tα/2 <
Y ∗ − Ŷ ∗

S

√
1 + 1

n
+ (x∗ − x)2

Sxx

< tα/2

⎤⎥⎥⎥⎥⎦ = 1 − α.

In other words, in repeated sampling the inequality within the brackets will hold with
a probability equal to (1 − α). Furthermore, the inequality will continue to hold with
the same probability if each term is multiplied by the same positive factor or if the
same quantity is added to each term of the inequality. Multiply each term by

S

√
1 + 1

n
+ (x∗ − x)2

Sxx

and then add Ŷ ∗ to each to obtain

P

⎡⎣Ŷ ∗ − tα/2S

√
1 + 1

n
+ (x∗ − x)2

Sxx
< Y ∗

< Ŷ ∗ + tα/2S

√
1 + 1

n
+ (x∗ − x)2

Sxx

⎤⎦ = 1 − α.

Thus, we have placed an interval about Ŷ ∗ that in repeated sampling will contain the
actual value of Y ∗ with probability 1 − α. That is, we have obtained a 100(1 − α)%
prediction interval for Y ∗.

A 100(1 −α)% Prediction Interval for Y when x = x∗

β̂0 + β̂1x∗ ± tα/2S

√
1 + 1

n
+ (x∗ − x)2

Sxx
.

In attempting to place a bound on the error of predicting Y , we would expect the
error to be less in absolute value than

tα/2S

√
1 + 1

n
+ (x∗ − x)2

Sxx

with probability equal to (1 − α).
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Notice that the length of a confidence interval for E(Y ) when x = x∗ is given by

2 × tα/2S

√
1

n
+ (x∗ − x)2

Sxx
,

whereas the length of a prediction interval for an actual value of Y when x = x∗ is
given by

2 × tα/2S

√
1 + 1

n
+ (x∗ − x)2

Sxx
.

Thus, we observe that prediction intervals for the actual value of Y are longer than
confidence intervals for E(Y ) if both are determined for the same value of x∗.

EXAMPLE 11.7 Suppose that the experiment that generated the data of Example 11.1 is to be run
again with x = 2. Predict the particular value of Y with 1 − α = .90.

Solution From Example 11.1, we have

β̂0 = 1 and β̂1 = .7,

so the predicted value of Y with x = 2 is

β̂0 + β̂1x∗ = 1 + (.7)(2) = 2.4.

Further, with x∗ = 2,

1

n
+ (x∗ − x)2

Sxx
= 1

5
+ (2 − 0)2

10
= .6.

From Example 11.3, we know that s = .606. The t.05 value with 3 df is 2.353. Thus,
the prediction interval is

β̂0 + β̂1x∗ ± tα/2s

√
1 + 1

n
+ (x∗ − x)2

Sxx

2.4 ± (2.353)(.606)
√

1 + .6

2.4 ± 1.804.

Figure 11.7 represents some hypothetical data and the estimated regression line
fitted to those data that indicates the estimated value of E(Y ) when x = 8. Also shown
on this graph are confidence bands for E(Y ). For each value of x , we computed

β̂0 + β̂1x ± tα/2S

√
1

n
+ (x − x)2

Sxx
.

Thus, for each value of x we obtain a confidence interval for E(Y ). The confidence
interval for E(Y ) when x = 7 is displayed on the y-axis in the figure. Notice that the
distance between the confidence bands is smallest when x = x , as expected. Using
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x = 4.75
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when x = 8

actual observed value of
Y when x = 8

F I G U R E 11.7
Some hypothetical

data and associated
confidence and

prediction bands

the same approach, we computed prediction bands for the prediction of an actual
Y -value for each setting of x . As discussed earlier, for each fixed value of x , the
prediction interval is wider than the corresponding confidence interval. The result is
that the prediction bands fall uniformly farther from the prediction line than do the
confidence bands. The prediction bands are also closest together when x = x .

Exercises
11.42 Suppose that the model Y = β0 + β1x + ε is fit to the n data points (y1, x1), . . . , (yn, xn). At

what value of x will the length of the prediction interval for Y be minimized?

11.43 Refer to Exercises 11.5 and 11.17. Use the data and model given there to construct a 95%
prediction interval for the median sale price in 1980.

11.44 Refer to Exercise 11.43. Find a 95% prediction interval for the median sale price for the year
1981. Repeat for 1982. Would you feel comfortable in using this model and the data of Exercise
11.5 to predict the median sale price for the year 1988?

11.45 Refer to Exercises 11.8 and 11.18. Find a 95% prediction interval for a flow-through LC50 if
the static LC50 is observed to be 12 parts per million. Compare the length of this interval to
that of the interval found in Exercise 11.37.

11.46 Refer to Exercise 11.16. Find a 95% prediction interval for the potency of a 1-ounce portion
of antibiotic stored at 65◦F. Compare this interval to that calculated in Exercise 11.39.

11.47 Refer to Exercise 11.14. Find a 95% prediction interval for the proportion of survivors at time
x = .60.
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598 Chapter 11 Linear Models and Estimation by Least Squares

11.8 Correlation
The previous sections of this chapter dealt with modeling a response Y as a linear
function of a nonrandom variable x so that appropriate inferences could be made
concerning the expected value of Y , or a future value of Y , for a given value of x .
These models are useful in two quite different practical situations.

First, the variable x may be completely controlled by the experimenter. This occurs,
for example, if x is the temperature setting and Y is the yield in a chemical experiment.
Then, x is merely the point at which the temperature dial is set when the experiment
is run. Of course, x could vary from experiment to experiment, but it is under the
complete control, practically speaking, of the experimenter. The linear model

Y = β0 + β1x + ε

then implies that

E(Y ) = β0 + β1x

or that the average yield is a linear function of the temperature setting.
Second, the variable x may be an observed value of a random variable X . For

example, we may want to relate the volume of usable timber Y in a tree to the
circumference X of the base. If a functional relationship could be established, then
in the future we could predict the amount of timber in any tree simply by measuring
the circumference of the base. For this situation, we use the model

Y = β0 + β1x + ε

to imply that

E(Y |X = x) = β0 + β1x .

That is, we are assuming that the conditional expectation of Y for a fixed value of X is
a linear function of the x-value. We generally assume that the vector random variable
(X, Y ) has a bivariate normal distribution with E(X) = μX , E(Y ) = μY , V (X) =
σ 2

X , V (Y ) = σ 2
Y , and correlation coefficient ρ (see Section 5.10), in which case it can

be shown that

E(Y |X = x) = β0 + β1x, where β1 = σY

σX
ρ.

The statistical theory for making inferences about the parameters β0 and β1 is
exactly the same for both of these cases, but the differences in model interpretation
should be kept in mind.

For the case where (X, Y ) has a bivariate distribution, the experimenter may not
always be interested in the linear relationship defining E(Y |X). He or she may want
to know only whether the random variables X and Y are independent. If (X, Y ) has
a bivariate normal distribution (see Section 5.10), then testing for independence is
equivalent to testing whether the correlation coefficient ρ is equal to zero. Recall from
Section 5.7 that ρ is positive if X and Y tend to increase together and ρ is negative if
Y decreases as X increases.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote a random sample from a bivariate
normal distribution. The maximum-likelihood estimator of ρ is given by the sample
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11.8 Correlation 599

correlation coefficient:

r =
∑n

i=1(X i − X)(Yi − Y )√∑n
i=1(X i − X)2

∑n
i=1(Yi − Y )2

.

Notice that we can express r in terms of familiar quantities:

r = Sxy√
Sxx Syy

= β̂1

√
Sxx

Syy
.

It follows that r and β̂1 have the same sign.
In the case where (X, Y ) has a bivariate normal distribution, we have indicated

that

E(Y |X = x) = β0 + β1x, where β1 = σY

σX
ρ.

Thus, for example, testing H0 : ρ = 0 versus Ha : ρ > 0 is equivalent to testing
H0: β1 = 0 versus Ha : β1 > 0. Similarly, Ha : ρ < 0 is equivalent to Ha : β1 < 0,
and Ha: ρ 7= 0 is equivalent to Ha: β1 7= 0. Tests for each of these sets of hypotheses
involving β1 can be based (see Section 11.5) on the statistic

t = β̂1 − 0

S/
√

Sxx
,

which possesses a t distribution with n−2 df. In fact (see Exercise 11.55), this statistic
can be rewritten in terms of r as follows:

t = r
√

n − 2√
1 − r2

.

Because the preceding two t statistics are algebraic equivalents, both possess the same
distribution: the t distribution with n − 2 df.

It would seem natural to use r as a test statistic to test more general hypotheses
about ρ, but the probability distribution for r is difficult to obtain. The difficulty can
be overcome, for moderately large samples, by using the fact that (1/2) ln[(1 + r)/

(1 − r)] is approximately normally distributed with mean (1/2) ln[(1 + ρ)/(1 − ρ)]
and variance 1/(n − 3). Thus, for testing the hypothesis H0 : ρ = ρ0, we can employ
a Z test in which

Z =

(
1

2

)
ln

(
1 + r

1 − r

)
−

(
1

2

)
ln

(
1 + ρ0

1 − ρ0

)
1√

n − 3

.

If α is the desired probability of a type I error, the form of the rejection region
depends on the alternative hypothesis. The various alternatives of most frequent
interest and the corresponding rejection regions are as follows:

Ha : ρ > ρ0, RR: z > zα,

Ha : ρ < ρ0, RR: z < −zα,

Ha : ρ 7= ρ0, RR: |z| > zα/2.

We illustrate with an example.
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600 Chapter 11 Linear Models and Estimation by Least Squares

EXAMPLE 11.8 The data in Table 11.3 represent a sample of mathematics achievement test scores and
calculus grades for ten independently selected college freshmen. From this evidence,
would you say that the achievement test scores and calculus grades are independent?
Use α = .05. Identify the corresponding attained significance level.

Solution We state as the null hypothesis that X and Y are independent; or, assuming that (X, Y )

has a bivariate normal distribution, we test H0 : ρ = 0 versus Ha : ρ 7= 0. Because we
are focusing on ρ = 0, the test can be based on the statistic t = (r

√
n − 2)/

√
1 − r2.

Denoting achievement test scores by x and calculus grades by y, we calculate∑
xi = 460,

∑
x2

i = 23,634, Sxx = 2,474,∑
yi = 760,

∑
y2

i = 59,816, Syy = 2,056,∑
xi yi = 36,854, Sxy = 1,894.

Thus,

r = Sxy√
Sxx Syy

= 1894√
(2474)(2056)

= .8398.

The value of the test statistic is

t = r
√

n − 2√
1 − r2

= (.8398)
√

8√
1 − .7053

= 4.375.

Because t is based on n − 2 = 8 df, tα/2 = t.025 = 2.306; the observed value of
our test statistic lies in the rejection region. Thus, the evidence strongly suggests that
achievement test scores and calculus grades are dependent. Notice that α = .05 is
the probability that our test statistic will fall in the rejection region when H0 is true.
Hence, we are fairly confident that we have made a correct decision.

Because we are implementing a two-tailed test, p-value = 2P(t > 4.375).
From the values contained in Table 5, Appendix 3, it follows that P(t > 4.375) <

.005. Thus, p-value < 2(.005) = .010, and for any value of α greater than .01

Table 11.3 Data for Example 11.8

Mathematics
Achievement Final Calculus

Student Test Score Grade

1 39 65
2 43 78
3 21 52
4 64 82
5 57 92
6 47 89
7 28 73
8 75 98
9 34 56

10 52 75
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11.8 Correlation 601

(including α = .05, as used in the initial part of this analysis), we would conclude
that ρ 7= 0. The applet Students t Probabilities and Quantiles, used with 8 df, yields
that p-value = 2P(t > 4.375) = 2(.00118) = .00236, a value considerably smaller
than the upper bound for the p-value that was obtained by using the Table 5.

Notice that the square of the correlation coefficient occurs in the denominator of
the t statistic used to implement the test of hypotheses in Exercise 11.8. The statistic
r2 is called the coefficient of determination and has an interesting and useful inter-
pretation. Originally (Section 11.3), we defined SSE as the sum of the squares of the
differences between the observed and predicted values of the yi ’s,

SSE =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

[yi − (β̂0 + β̂1xi )]
2.

If the simple linear regression model fits the data well, the differences between the
observed and predicted values are small, leading to a small value for SSE. Analo-
gously, if the regression model fits poorly, SSE will be large. In Exercise 11.15, you
showed that a computationally convenient equation for SSE is

SSE = Syy − β̂1Sxy, where β̂1 = Sxy

Sxx
.

Using this expression it was easy to show (Exercise 11.15(b)) that SSE ≤ Syy . The
quantity Syy = ∑

(yi − y)2 provides a measure of the total variation among the
y-values, ignoring the x’s. Alternatively, SSE measures the variation in the y-values
that remains unexplained after using the x’s to fit the simple linear regression model.
Thus, the ratio SSE/Syy gives the proportion of the total variation in the yi ’s that is
unexplained by the linear regression model.

Notice that the coefficient of determination may be written as

r2 =
(

Sxy√
Sxx Syy

)2

=
(

Sxy

Sxx

) (
Sxy

Syy

)
=

(
β̂1Sxy

Syy

)
= Syy − SSE

Syy
= 1 − SSE

Syy
.

Thus, r2 can be interpreted as the proportion of the total variation in the yi ’s that is
explained by the variable x in a simple linear regression model.

EXAMPLE 11.9 Refer to Example 11.8 where we calculated the correlation coefficient between mathe-
matics achievement test scores and final calculus grades for ten independently selected
college freshmen. Interpret the values of the correlation coefficient and the coefficient
of determination.

Solution In Example 11.8, we obtained r = .8398. Since r is positive, we conclude that
freshmen with higher achievement test scores tend to earn higher calculus grades.
The coefficient of determination is r2 = (.8398)2 = .7053. Thus, 70.53% of the
variation in the final calculus grades is explained by fitting the simple linear model
using math achievement scores as the independent variable. The regression model
works very well.
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602 Chapter 11 Linear Models and Estimation by Least Squares

Exercises
11.48 The accompanying table gives the peak power load for a power plant and the daily high

temperature for a random sample of 10 days. Test the hypothesis that the population correlation
coefficient ρ between peak power load and high temperature is zero versus the alternative that
it is positive. Use α = .05. Bound or determine the attained significance level.

Day High Temperature (◦F) Peak Load

1 95 214
2 82 152
3 90 156
4 81 129
5 99 254
6 100 266
7 93 210
8 95 204
9 93 213

10 87 150

11.49 Applet Exercise Refer to Example 11.1 and Exercise 11.2. Access the applet Fitting a Line
Using Least Squares. The data that appear on the first graph is from Example 11.1.

a Drag the blue line to obtain an equation that visually fits the data well. What do you notice
about the values of SSE and r 2 as the fit of the line improves? Why does r 2 increase as
SSE decreases?

b Click the button “Find Best Model” to obtain the least-squares line. What is the value of
r 2? What is the value of the correlation coefficient?

11.50 Applet Exercise Refer to Exercises 11.5 and 11.6. The data from Exercise 11.5 appear in the
graph under the heading “Another Example” in the applet Fitting a Line Using Least Squares.

a Drag the blue line to obtain an equation that visually fits the data well. What do you notice
about the value of r 2 as the fit of the line improves?

b Click the button “Find Best Model” to obtain the least-squares line. What is the value of
r 2? What is the value of the correlation coefficient?

c Why is the value of r 2 so much larger than the value of r 2 that you obtained in Exercise
11.49(b) that used the data from Example 11.1?

11.51 In Exercise 11.8 both the flow-through and static LC50 values could be considered random
variables. Using the data of Exercise 11.8, test to see whether the correlation between static
and flow-through values significantly differs from zero. Use α = .01. Bound or determine the
associated p-value.

11.52 Is the plant density of a species related to the altitude at which data are collected? Let Y denote
the species density and X denote the altitude. A fit of a simple linear regression model using
14 observations yielded ŷ = 21.6 − 7.79x and r 2 = .61.

a What is the value of the correlation coefficient r?

b What proportion of the variation in densities is explained by the linear model using altitude
as the independent variable?

c Is there sufficient evidence at the α = .05 to indicate that plant densities decrease with an
increase in altitude?
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11.53 The correlation coefficient for the heights and weights of ten offensive backfield football
players was determined to be r = .8261.

a What percentage of the variation in weights was explained by the heights of the players?

b What percentage of the variation in heights was explained by the weights of the players?

c Is there sufficient evidence at the α = .01 level to claim that heights and weights are
positively correlated?

d Applet Exercise What is the attained significance level associated with the test performed
in part (c)?

11.54 Suppose that we seek an intuitive estimator for

ρ = Cov(X, Y )

σXσY
.

a The method-of-moments estimator of Cov(X, Y ) = E[(X − μX )(Y − μY )] is

Ĉov(X, Y ) = 1

n

n∑
i=1

(X i − X)(Yi − Y ).

Show that the method-of-moments estimators for the standard deviations of X and Y are

σ̂X =
√

1

n

n∑
i=1

(X i − X)2 and σ̂Y =
√

1

n

n∑
i=1

(Yi − Y )2.

b Substitute the estimators for their respective parameters in the definition of ρ and obtain
the method-of-moments estimator for ρ. Compare your estimator to r , the maximum-
likelihood estimator for ρ presented in this section.

11.55 Consider the simple linear regression model based on normal theory. If we are interested in
testing H0 : β1 = 0 versus various alternatives, the statistic

T = β̂1 − 0

S/
√

Sxx

possesses a t distribution with n − 2 df if the null hypothesis is true. Show that the equation
for T can also be written as

T = r
√

n − 2√
1 − r 2

.

11.56 Refer to Exercise 11.55. Is r = .8 big enough to claim ρ > 0 at the α = .05 significance level?

a Assume n = 5 and implement the test.

b Assume n = 12 and implement the test.

c Applet Exercise Determine the p-values for the tests implemented in parts (a) and (b).

d Did you reach the same conclusions in parts (a) and (b)? Why or why not?

e Why is the p-value associated with the test in part (b) so much smaller that the p-value
associated with the test performed in part (a)?

11.57 Refer to Exercises 11.55 and 11.56.

a What term in the T statistic determines whether the value of t is positive or negative?

b What quantities determine the size of |t |?
11.58 Refer to Exercise 11.55. If n = 4, what is the smallest value of r that will allow you to conclude

that ρ > 0 at the α = .05 level of significance?
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604 Chapter 11 Linear Models and Estimation by Least Squares

11.59 Refer to Exercises 11.55 and 11.58. If n = 20, what is the largest value r that will allow you
to conclude that ρ < 0 at the α = .05 level of significance?

*11.60 Refer to Exercises 11.8 and 11.51. Suppose that independent tests, with the same toxicants and
species but in a different laboratory, showed r = .85 with n = 20. Test the hypothesis that the
two correlation coefficients between static and flow-through LC50 measurements are equal.
Use α = .05.

11.9 Some Practical Examples
In this section, we present two examples illustrating the applicability of previously
developed techniques to real data. Most of the methods are illustrated somewhere in
the course of the discussions. We make no attempt to implement every method for
each example.

EXAMPLE 11.10 In his Ph.D. thesis, H. Behbahani examined the effect of varying the water/cement
ratio on the strength of concrete that had been aged 28 days. For concrete with a
cement content of 200 pounds per cubic yard, he obtained the data presented in
Table 11.4.9 Let Y denote the strength and x denote the water/cement ratio.

a Fit the model E(Y ) = β0 + β1x .
b Test H0 : β1 = 0 versus Ha : β1 < 0 with α = .05. (Notice that if H0 is rejected

we conclude that β1 < 0 and that the strength tends to decrease with an increase
in water/cement ratio.) Identify the corresponding attained significance level.

c Find a 90% confidence interval for the expected strength of concrete when the
water/cement ratio is 1.5. What will happen to the confidence interval if we try to
estimate mean strengths for water/cement ratios of .3 or 2.7?

Solution a Using the formulas developed in Section 11.3, we obtain

Sxy =
n∑

i=1

xi yi − 1

n

n∑
i=1

xi

n∑
i=1

yi = 8.709 − 1

6
(8.74)(6.148) = −.247,

Sxx =
n∑

i=1

x2
i − 1

n

(
n∑

i=1

xi

)2

= 12.965 − 1

6
(8.74)2 = .234,

Syy =
n∑

i=1

y2
i − 1

n

(
n∑

i=1

yi

)2

= 6.569 − 1

6
(6.148)2 = .269,

β̂1 = Sxy

Sxx
= −0.247

0.234
= −1.056,

β̂0 = y − β̂1x = 6.148

6
− (−1.056)

(
8.74

6

)
= 2.563.

(Throughout this example, all calculations are carried out to three decimal places.)

9. Source: Data adapted from Hamid Behbahani, “Econocrete—Design and Properties” (Ph.D. thesis,
University of Florida, 1977), p. 95.
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Table 11.4 Data for Example 11.10

Water/Cement Ratio Strength (100 ft/lb)

1.21 1.302
1.29 1.231
1.37 1.061
1.46 1.040
1.62 .803
1.79 .711

Thus, the straight-line model that best fits the data is

ŷ = 2.563 − 1.056x .

b Because we desire to test whether there is evidence that β1 < 0 with α = .05, the
appropriate test statistic is

t = β̂1 − 0

S
√

c11
, or t = β̂1 − 0

S

√
1

Sxx

.

For this simple linear regression model,

SSE = Syy − β̂1Sxy = .269 − (−1.056)(−.247) = .008,

and, hence,

s =
√

s2 =
√

SSE

n − 2
=

√
.008

4
= .045.

Thus, the value of the appropriate test statistic for testing H0 : β1 = 0 versus
Ha : β1 < 0 is

t = −1.056 − 0

.045
√

1/(.234)
= −11.355.

Because this statistic is based on n − 2 = 4 df and the appropriate rejection
region is t < −t.05 = −2.132, we reject H0 in favor of Ha at the α = .05
level of significance. The appropriate test is a lower-tail test, and p-value =
P(t < −11.355), where t has a t distribution with 4 df. Table 5, Appendix
3, applies to give p-value < .005. In fact, the applet Student’s t Probabili-
ties and Quantiles gives p-value = P(t < −11.355) = P(t > 11.355) =
.00017, a value considerably smaller than .005. Hence, for most commonly used
values of α, we conclude that there is evidence to indicate that strength de-
creases with an increase in the water/cement ratio on the region where the ex-
periment was conducted. From a practical point of view, the water/cement ratio
must be large enough to moisten the cement, sand, and other components that
make up concrete. But if the water/cement ratio gets too large, the concrete will
be useless.

c Because the model that we are using is a simple linear regression model, the
confidence interval can be obtained from the formula

β̂0 + β̂1x∗ ± tα/2S

√
1

n
+ (x∗ − x)2

Sxx
.
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606 Chapter 11 Linear Models and Estimation by Least Squares

We want a confidence interval when x = 1.5; therefore, x∗ = 1.5 and

β̂0 + β̂1x∗ = 2.563 − (1.056)(1.5) = .979.

Using calculations from parts (a) and (b), we obtain the desired 90% confidence
interval:

.979 ± (2.132)(.045)

√
1

6
+ (1.5 − 1.457)2

.234
, or (.938, 1.020).

Thus, we would estimate that the mean strength of concrete with a water/cement
ratio of 1.5 to be between .938 and 1.020.

We can see from the variance expression that the confidence interval gets wider
as x∗ gets farther from x = 1.457. Also, the values x∗ = .3 and x∗ = 2.7 are
far from the values that were used in the experiment. Considerable caution should
be used before constructing a confidence interval for E(Y ) when the values of x∗

are far removed from the experimental region. Water/cement ratios of .3 and 2.7
would probably yield concrete that is utterly useless!

In many real-world situations, the most appropriate deterministic component of
a model is not linear. For example, many populations of plants or animals tend to
grow at exponential rates. If Yt denotes the size of the population at time t , we might
employ the model

E(Yt ) = α0eα1t .

Although this expression is not linear in the parameters α0 and α1, it can be linearized
by taking natural logarithms. If Yt can be observed for various values of t , we can
write the model as

ln Yt = ln α0 + α1t + ε

and estimate ln α0 and α1 by the method of least squares.
Other basic models can also be linearized. In the biological sciences, it is sometimes

possible to relate the weight (or volume) of an organism to some linear measurement
such as length (or weight). If W denotes weight and l length, the model

E(W ) = α0lα1

for unknown α0 and α1 is often applicable. (This model is known as an allometric
equation.) If we want to relate the weight of randomly selected organisms to observ-
able fixed lengths, we can take logarithms and obtain the linear model

ln W = ln α0 + α1 ln l + ε = β0 + β1x + ε

with x = ln l. Then, β0 = ln α0 and β1 = α1 can be estimated by the method of least
squares. The following example illustrates such a model.

EXAMPLE 11.11 In the data set of Table 11.5, W denotes the weight (in pounds) and l the length (in
inches) for 15 alligators captured in central Florida. Because l is easier to observe
(perhaps from a photograph) than W for alligators in their natural habitat, we want to
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Table 11.5 Data for Example 11.11

Alligator x = ln l y = ln W

1 3.87 4.87
2 3.61 3.93
3 4.33 6.46
4 3.43 3.33
5 3.81 4.38
6 3.83 4.70
7 3.46 3.50
8 3.76 4.50
9 3.50 3.58

10 3.58 3.64
11 4.19 5.90
12 3.78 4.43
13 3.71 4.38
14 3.73 4.42
15 3.78 4.25

construct a model relating weight to length. Such a model can then be used to predict
the weights of alligators of specified lengths. Fit the model

ln W = ln α0 + α1 ln l + ε = β0 + β1x + ε

to the data. Find a 90% prediction interval for W if ln l is observed to be 4.00.

Solution We begin by calculating the quantities that have routine application throughout our
solution:

Sxy =
n∑

i=1

xi yi − 1

n

n∑
i=1

xi

n∑
i=1

yi = 251.9757 − 1

15
(56.37)(66.27) = 2.933,

Sxx =
n∑

i=1

x2
i − 1

n

(
n∑

i=1

xi

)2

= 212.6933 − 1

15
(56.37)2 = 0.8548,

Syy =
n∑

i=1

y2
i − 1

n

(
n∑

i=1

yi

)2

= 303.0409 − 1

15
(66.27)2 = 10.26,

β̂1 = Sxy

Sxx
= 2.933

0.8548
= 3.4312,

β̂0 = y − β̂1x = 66.27

15
− (3.4312)

(
56.37

15

)
= −8.476.

We can now estimate α0 by

α̂0 = eβ̂0 = e−8.476 = .0002

and α1 by α̂1 = β̂1 to arrive at the estimated model

ŵ = α̂0l α̂1 = (.0002)l3.4312.

(In many cases, α1 will be close to 3 because weight or volume is often roughly
proportional to the cube of a linear measurement.)
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608 Chapter 11 Linear Models and Estimation by Least Squares

For these data, SSE = .1963, n = 15, and s = √
SSE/(n − 2) = .123. The calcu-

lations leading to these numerical values are completely analogous to the calculations
of Example 11.10.

To find a prediction interval for W , where x = ln l = 4, we must first form a
prediction interval for Y = ln W . As before, the prediction interval is

β̂0 + β̂1x∗ ± t.05S

√
1 + 1

n
+ (x∗ − x)2

Sxx
,

where t.05 is based on n − 2 = 13 df. Therefore, t.05 = 1.771 and the 90% prediction
interval for Y = ln W is

−8.476 + 3.4312(4) ± 1.771(.123)

√
1 + 1

15
+ (4 − 3.758)2

.8548
5.2488 ± .2321,

or

(5.0167, 5.4809).

Because Ŷ = ln Ŵ , we can predict W by eŶ = e5.2488 = 190.3377. The observed
90% prediction interval for W is(

e5.0167, e5.4809
)
, or (150.9125, 240.0627).

When x = ln l = 4, then l = e4 = 54.598. Thus, for an alligator of length 54.598
inches, we predict that its weight will fall between 150.91 and 240.06 pounds. The
relatively narrow interval on the natural logarithm scale becomes a rather wide interval
when transformed to the original scale.

The data presented and analyzed in this section are examples from real experi-
ments; methods developed in previous sections of this chapter were applied to produce
answers of actual interest to experimenters. Through Example 11.11, we have demon-
strated how the theory of linear models sometimes can be applied after transformation
of the scale of the original variables. Of course, not all models can be linearized, but
numerous techniques for nonlinear least-squares estimation are available.

Exercises
11.61 Refer to Example 11.10. Find a 90% prediction interval for the strength of concrete when the

water/cement ratio is 1.5.

11.62 Refer to Example 11.11. Calculate the correlation coefficient r between the variables ln W and
ln l. What proportion of the variation in y = ln w is explained by x = ln l?

*11.63 It is well known that large bodies of water have a mitigating effect on the temperature of the
surrounding land masses. On a cold night in central Florida, temperatures were recorded at
equal distances along a transect running downwind from a large lake. The resulting data are
given in the accompanying table.
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11.10 Fitting the Linear Model by Using Matrices 609

Site (x) Temperature ◦F, (y)

1 37.00
2 36.25
3 35.41
4 34.92
5 34.52
6 34.45
7 34.40
8 34.00
9 33.62

10 33.90

Notice that the temperatures drop rapidly and then level off as we move away from the lake.
The suggested model for these data is

E(Y ) = α0e−α1x .

a Linearize the model and estimate the parameters by the method of least squares.

b Find a 90% confidence interval for α0. Give an interpretation of the result.

*11.64 Refer to Exercise 11.14. One model proposed for these data on the proportion of survivors of
thermal pollution is

E(Y ) = exp(−α0xα1).

Linearize this model and estimate the parameters by using the method of least squares and the
data of Exercise 11.14. (Omit the observation with y = 1.00.)

*11.65 In the biological and physical sciences, a common model for proportional growth over time is

E(Y ) = 1 − e−βt ,

where Y denotes a proportion and t denotes time. Y might represent the proportion of eggs
that hatch, the proportion of an organism filled with diseased cells, the proportion of patients
reacting to a drug, or the proportion of a liquid that has passed through a porous medium. With
n observations of the form (yi , ti ), outline how you would estimate and then form a confidence
interval for β.

11.10 Fitting the Linear Model by Using Matrices
Thus far in this chapter, we have dealt almost exclusively with simple linear regression
models that have enabled us to express our derivations and results by using ordinary
algebraic expressions. The only practical way to handle analogous derivations and
results for multiple linear regression models is through the use of matrix algebra. In
this section, we use matrices to re-express some of our previous results and to extend
these results to the multiple linear regression model.

Suppose that we have the linear model

Y = β0 + β1x1 + · · · + βk xk + ε
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610 Chapter 11 Linear Models and Estimation by Least Squares

and we make n independent observations, y1, y2, . . . , yn , on Y . We can write the
observation yi as

yi = β0 + β1xi1 + β2xi2 + · · · + βk xik + εi ,

where xi j is the setting of the j th independent variable for the i th observation,
i = 1, 2, . . . , n. We now define the following matrices, with x0 = 1:

Y =

⎡⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎦, X =

⎡⎢⎢⎣
x0 x11 x12 · · · x1k

x0 x21 x22 · · · x2k
...

...
...

...

x0 xn1 xn2 · · · xnk

⎤⎥⎥⎦,

β =

⎡⎢⎢⎣
β0

β1
...

βk

⎤⎥⎥⎦, ε =

⎡⎢⎢⎣
ε1

ε2
...

εn

⎤⎥⎥⎦.

Thus, the n equations representing yi as a function of the x’s, β’s, and ε’s can be
simultaneously written as

Y = Xβ + ε.

(See Appendix 1 for a discussion of matrix operations.)
For n observations from a simple linear model of the form

Y = β0 + β1x + ε,

we have

Y =

⎡⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎦, X =

⎡⎢⎢⎣
1 x1

1 x2
...

...

1 xn

⎤⎥⎥⎦, ε =

⎡⎢⎢⎣
ε1

ε2
...

εn

⎤⎥⎥⎦, β =
[

β0

β1

]
.

(We suppress the second subscript on x because only one x variable is involved.) The
least-squares equations for β0 and β1 were given in Section 11.3 as

nβ̂0 + β̂1

n∑
i=1

xi =
n∑

i=1

yi ,

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

xi yi .

Because

X′X =
[

1 1 · · · 1
x1 x2 . . . xn

] ⎡⎢⎢⎣
1 x1

1 x2
...

...

1 xn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
n

n∑
i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎤⎥⎥⎦
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11.10 Fitting the Linear Model by Using Matrices 611

and

X′Y =

⎡⎢⎢⎢⎣
n∑

i=1
yi

n∑
i=1

xi yi

⎤⎥⎥⎥⎦ ,

if

β̂ =
[

β̂0

β̂1

]
we see that the least-squares equations are given by

(X′X)β̂ = X′Y.

Hence,

β̂ = (X′X)
−1X′Y.

Although we have shown that this result holds only for a simple case, it can be shown
that in general the least-squares equations and solutions presented in matrix notation
are as follows.

Least-Squares Equations and Solutions for a General Linear Model

Equations: (X′X)β̂ = X′Y.

Solutions: β̂ = (X′X)
−1X′Y.

EXAMPLE 11.12 Solve Example 11.1 by using matrix operations.

Solution From the data given in Example 11.1, we see that
x0 x1

Y =

⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦, and X =

⎡⎢⎢⎢⎣
1 −2
1 −1
1 0
1 1
1 2

⎤⎥⎥⎥⎦.

It follows that

X′X =
[

5 0
0 10

]
, X′Y =

[
5
7

]
, (X′X)

−1 =
[

1/5 0
0 1/10

]
.

Thus,

β̂ = (X′X)
−1X′Y =

[
1/5 0
0 1/10

] [
5
7

]
=

[
1
.7

]
,

or β̂0 = 1 and β̂1 = .7. Thus,

ŷ = 1 + .7x,

just as in Example 11.1.
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612 Chapter 11 Linear Models and Estimation by Least Squares

EXAMPLE 11.13 Fit a parabola to the data of Example 11.1, using the model

Y = β0 + β1x + β2x2 + ε.

Solution The X matrix for this example differs from that of Example 11.12 only by the addition
of a third column corresponding to x2. (Notice that x1 = x, x2 = x2, and k = 2 in
the notation of the general linear model.) Thus,

x0 x x2

Y =

⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎦ .

(The three variables, x0, x , and x2, are shown above their respective columns in the
X matrix.) Thus, for the first measurement, y = 0, x0 = 1, x = −2, and x2 = 4; and
for the second measurement, y = 0, x0 = 1, x = −1, and x2 = 1. Succeeding rows
of the Y and X matrices are obtained in a similar manner.

The matrix products X′X and X′Y are

X′X =
[ 1 1 1 1 1

−2 −1 0 1 2
4 1 0 1 4

] ⎡⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎦ =
[ 5 0 10

0 10 0
10 0 34

]
,

X′Y =
[ 1 1 1 1 1

−2 −1 0 1 2
4 1 0 1 4

] ⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦ =
[ 5

7
13

]
.

We omit the process of inverting X′X and simply state that the inverse matrix is equal to

(X′X)
−1 =

[ 17/35 0 −1/7
0 1/10 0

−1/7 0 1/14

]
.

[You may verify that (X′X)
−1X′X = I.]

Finally,

β̂ = (X′X)
−1X′Y

=
[ 17/35 0 −1/7

0 1/10 0
−1/7 0 1/14

] [ 5
7

13

]
=

[ 4/7
7/10
3/14

]
≈

[
.571
.700
.214

]
.

Hence, β̂0 = .571, β̂1 = .7, and β̂2 = .214, and the prediction equation is

ŷ = .571 + .7x + .214x2.

A graph of this parabola on Figure 11.6 will indicate a good fit to the data points.
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11.10 Fitting the Linear Model by Using Matrices 613

The expressions for V (β̂0), V (β̂1), Cov(β̂0, β̂1), and SSE that we derived in
Section 11.4 for the simple linear regression model can be expressed conveniently
in terms of matrices. We have seen that for the linear model Y = β0 + β1x + ε, X′X
is given by

X′X =
[

n
∑

xi∑
xi

∑
x2

i

]
.

It can be shown that

(X′X)
−1 =

⎡⎢⎢⎣
∑

x2
i

nSxx
− x

Sxx

− x

Sxx

1

Sxx

⎤⎥⎥⎦ =
[

c00 c01

c10 c11

]
.

By checking the variances and covariances derived in Section 11.4, you can see that

V (β̂ i ) = ci iσ
2, i = 0, 1

and

Cov(β̂0, β̂1) = c01σ
2 = c10σ

2.

Recall that an unbiased estimator for σ 2, the variance of the error term ε, is given
by S2 = SSE/(n − 2). A bit of matrix algebra will show that SSE = ∑

(yi − ŷi )
2 can

be expressed as

SSE = Y′Y − β̂′X′Y.

(
Notice that Y′Y = ∑

Y 2
i .

)
EXAMPLE 11.14 Find the variances of the estimators β̂0 and β̂1 for Example 11.12 and provide an

estimator for σ 2.

Solution In Example 11.12, we found that

(X′X)
−1 =

[
1/5 0
0 1/10

]
.

Hence,

V (β̂0) = c00σ
2 = (1/5)σ 2,

V (β̂1) = c11σ
2 = (1/10)σ 2.

As before, Cov(β̂0, β̂1) = 0 in this case because
∑

xi = 0. For these data,

Y =

⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦, X =

⎡⎢⎢⎢⎣
1 −2
1 −1
1 0
1 1
1 2

⎤⎥⎥⎥⎦, β̂ =
[

1
.7

]
.
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614 Chapter 11 Linear Models and Estimation by Least Squares

Hence,

SSE = Y′Y − β̂′X′Y

= [ 0 0 1 1 3 ]

⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦ − [ 1 .7 ]

[
1 1 1 1 1

−2 −1 0 1 2

] ⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦
= 11 − [ 1 .7 ]

[
5
7

]
= 11 − 9.9 = 1.1.

Then,

s2 = SSE

n − 2
= 1.1

5 − 2
= 1.1

3
= .367.

Notice the agreement with the results that were obtained in Examples 11.2 and 11.3.

Exercises
11.66 Refer to Exercise 11.3. Fit the model suggested there by use of matrices.

11.67 Use the matrix approach to fit a straight line to the data in the accompanying table, plot the
points, and then sketch the fitted line as a check on the calculations. The data points are the
same as for Exercises 11.3 and 11.66 except that they are translated 1 unit in the positive
direction along the x-axis. What effect does symmetric spacing of the x-values about x = 0
have on the form of the (X′X) matrix and the resulting calculations?

y x

3 −1
2 0
1 1
1 2

.5 3

11.68 Fit the quadratic model Y = β0 +β1x +β2x2 + ε to the data points in the following table. Plot
the points and sketch the fitted parabola as a check on the calculations.

y x

1 −3
0 −2
0 −1

−1 0
−1 1

0 2
0 3
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11.69 The manufacturer of Lexus automobiles has steadily increased sales since the 1989 launch of
that brand in the United States. However, the rate of increase changed in 1996 when Lexus
introduced a line of trucks. The sales of Lexus vehicles from 1996 to 2003 are shown in the
accompanying table.10

x y

1996 18.5
1997 22.6
1998 27.2
1999 31.2
2000 33.0
2001 44.9
2002 49.4
2003 35.0

a Letting Y denote sales and x denote the coded year (−7 for 1996, −5 for 1997, through 7
for 2003), fit the model Y = β0 + β1x + ε.

b For the same data, fit the model Y = β0 + β1x + β2x2 + ε.

11.70 a Calculate SSE and S2 for Exercise 11.4. Use the matrix approach.

b Fit the model suggested in Exercise 11.4 for the relationship between audited values and
book values by using matrices. We can simplify the computations by defining

x∗
i = xi − x

and fitting the model Y = β∗
0 +β∗

1 x∗ + ε. Fit this latter model and calculate SSE. Compare
your answer with the SSE calculation in part (a).

11.11 Linear Functions of the Model Parameters:
Multiple Linear Regression
All of the theoretical results of Section 11.4 can be extended to the multiple linear
regression model,

Yi = β0 + β1xi1 + · · · + βk xik + εi , i = 1, 2, . . . , n.

Suppose that ε1, ε2, . . . , εn are independent random variables with E(εi ) = 0 and
V (εi ) = σ 2. Then the least-squares estimators are given by

β̂ = (X′X)
−1X′Y,

provided that (X′X)
−1 exists. The properties of these estimators are as follows (proof

omitted).

10. Source: Adapted from Automotive News, 26 January 2004.
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616 Chapter 11 Linear Models and Estimation by Least Squares

Properties of the Least-Squares Estimators: Multiple Linear Regression

1. E(β̂ i ) = βi , i = 0, 1, . . . , k.
2. V (β̂ i ) = ci iσ

2, where ci i is the element in row i and column i of
(X′X)

−1. (Recall that this matrix has a row and column numbered 0.)
3. Cov(β̂ i , β̂ j ) = ci jσ

2, where ci j is the element in row i and column j
of (X′X)

−1.
4. An unbiased estimator of σ 2 is S2 = SSE/[n − (k + 1)], where

SSE = Y′Y − β̂
′
X′Y. (Notice that there are k + 1 unknown βi values

in the model.)

If, in addition, the εi , for i = 1, 2, . . . , n are normally distributed,

5. Each β̂ i is normally distributed.
6. The random variable

[n − (k + 1)]S2

σ 2

has a χ2 distribution with n − (k + 1) df.
7. The statistic S2 and β̂ i are independent for each i = 0, 1, 2, . . . , k.

11.12 Inferences Concerning Linear Functions
of the Model Parameters: Multiple
Linear Regression
As discussed in Sections 11.5 and 11.6, we might be interested in making inferences
about a single βi or about linear combinations of the model parameters β0, β1, . . . , βk .
For example, we might wish to estimate E(Y ), given by

E(Y ) = β0 + β1x1 + · · · + βk xk,

where E(Y ) represents the mean yield of a chemical process for settings of controlled
process variables x1, x2, . . . , xk ; or the mean profit of a corporation for various invest-
ment expenditures x1, x2, . . . , xk . Properties of estimators of such linear functions are
given in this section.

Suppose that we wish to make an inference about the linear function

a0β0 + a1β1 + a2β2 + · · · + akβk,

where a0, a1, a2, . . . , ak are constants (some of which may equal zero). Defining the
(k + 1) × 1 matrix,

a =

⎡⎢⎢⎢⎢⎣
a0

a1

a2
...

ak

⎤⎥⎥⎥⎥⎦ ,
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11.12 Model Parameters: Multiple Linear Regression 617

it follows that a linear combination of the β0, β1, . . . , βk corresponding to a0, a1, . . . ,
ak may be expressed as

a′β = a0β0 + a1β1 + a2β2 + · · · + akβk .

From now on, we will refer to such linear combinations in their matrix form. Because
a′β is a linear combination of the model parameters, an unbiased estimator for a′β is
given by the same linear combination of the parameter estimators. That is, by Theorem
5.12, if

â′β = a0β̂0 + a1β̂1 + a2β̂2 + · · · + ak β̂k = a′β̂,

then

E(a′β̂) = E(a0β̂0 + a1β̂1 + a2β̂2 + · · · + ak β̂k)

= a0β0 + a1β1 + a2β2 + · · · + akβk = a′β.

Applying the same theorem, we find the variance of a′β̂:

V (a′β̂) = V (a0β̂0 + a1β̂1 + a2β̂2 + · · · + ak β̂k)

= a2
0 V (β̂0) + a2

1 V (β̂1) + a2
2 V (β̂2) + · · · + a2

k V (β̂k)

+ 2a0a1Cov(β̂0, β̂1) + 2a0a2Cov(β̂0, β̂2)

+ · · · + 2a1a2Cov(β̂1, β̂2) + · · · + 2ak−1akCov(β̂k−1, β̂k),

where V (β̂ i ) = ci iσ
2 and Cov(β̂ i , β̂ j ) = ci jσ

2. You may verify that V (a′β̂) is
given by

V (a′β̂) = [a′(X′X)−1a]σ 2.

Finally, recalling that β̂0, β̂1, β̂2, . . . , β̂k are normally distributed in repeated sam-
pling (Section 11.11), it is clear that a′β̂ is a linear function of normally distributed
random variables and hence itself is normally distributed in repeated sampling.

Because a′β̂ is normally distributed with

E(a′β̂) = a′β

and V (a′β̂) = [a′(X′X)−1a]σ 2, we conclude that

Z = a′β̂ − a′β√
V (a′β̂)

= a′β̂ − a′β

σ
√

a′(X′X)−1a

has a standard normal distribution and could be employed to test a hypothesis

H0 : a′β = (a′β)0

when (a′β)0 is some specified value. Likewise, a 100(1 − α)% confidence interval
for a′β is

a′β̂ ± zα/2σ
√

a′(X′X)−1a.

Furthermore, as we might suspect, if we substitute S for σ , the quantity

T = a′β̂ − a′β

S
√

a′(X′X)−1a
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618 Chapter 11 Linear Models and Estimation by Least Squares

possesses a Student’s t distribution in repeated sampling, with [n − (k + 1)] df, and
provides a test statistic to test the hypothesis

H0 : a′β = (a′β)0.

A Test for a′β

H0 : a′β = (a′β)0.

Ha :

⎧⎪⎪⎨⎪⎪⎩
a′β > (a′β)0,

a′β < (a′β)0,

a′β 7= (a′β)0.

Test statistic: T = a′β̂ − (a′β)0

S
√

a′(X′X)−1a
.

Rejection region:

⎧⎪⎪⎨⎪⎪⎩
t > tα,

t < −tα,

|t | > tα/2.

Here, tα is based on [n − (k + 1)] df.

The corresponding 100(1 − α)% confidence interval for a′β is as follows.

A 100(1 −α)% Confidence Interval for a′β

a′β̂ ± tα/2S
√

a′(X′X)−1a.

As earlier, the tabulated tα/2 in this formula is based on [n − (k + 1)] df.
Although we usually do not think of a single βi as a linear combination of

β0, β1, . . . , βk , if we choose

a j =
{

1, if j = i,

0, if j 7= i ,

then βi = a′β for this choice of a. In Exercise 11.71, you will show that with this
choice of a, a′(X′X)−1a = ci i , where ci i is the element in row i and column i of
(X′X)−1. This fact greatly simplifies the form of both the test statistic and confidence
intervals that can be used to make inferences about an individual βi .

As previously indicated, one useful application of the hypothesis-testing and con-
fidence interval techniques just presented is to the problem of estimating the mean
value of Y, E(Y ), for fixed values of the independent variables x1, x2, . . . , xk . In
particular, if x∗

i denotes a specific value of xi , for i = 1, 2, . . . , k, then

E(Y ) = β0 + β1x∗
1 + β2x∗

2 + · · · + βk x∗
k .

Notice that E(Y ) is a special case of a0β0 + a1β1 + · · · + akβk = a′β with a0 = 1
and ai = x∗

i , for i = 1, 2, . . . , k. Thus, an inference about E(Y ) when xi = x∗
i , for

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.12 Model Parameters: Multiple Linear Regression 619

i = 1, 2, . . . , k, can be made by using the techniques developed earlier for general
linear combinations of the β’s.

We illustrate with two examples.

EXAMPLE 11.15 Do the data of Example 11.1 present sufficient evidence to indicate curvature in the
response function? Test using α = .05 and give bounds to the attained significance
level.

Solution The preceding question assumes that the probabilistic model is a realistic description
of the true response and implies a test of the hypothesis H0 : β2 = 0 versus Ha : β2 7= 0
in the linear model Y = β0 + β1x + β2x2 + ε that was fit to the data in Example
11.13. (If β2 = 0, the quadratic term will not appear and the expected value of Y will
represent a straight-line function of x .) The first step in the solution is to calculate
SSE and s2:

SSE = Y′Y − β̂′X′Y = 11 − [.571 .700 .214]

[ 5
7

13

]
= 11 − 10.537 = .463,

so then

s2 = SSE

n − 3
= .463

2
= .232 and s = .48.

(Notice that the model contains three parameters and, hence, SSE is based on n −3 =
2 df.) The parameter β2 is a linear combination of β0, β1 and β2 with a0 = 0, a1 = 0,

and a2 = 1. For this choice of a, we have β2 = a′β and a′(X′X)−1a = c22.
The calculations in Example 11.13 yielded β̂2 = 3/14 ≈ .214 and c22 = 1/14.

The appropriate test statistic can therefore be written as

t = β̂2 − 0

s
√

c22
= .214

.48
√

1/14
= 1.67.

If we take α = .05, the value of tα/2 = t.025 for 2 df is 4.303, and the rejection
region is

reject if |t | ≥ 4.303.

Because the absolute value of the calculated value of t is less than 4.303, we cannot
reject the null hypothesis that β2 = 0. We do not accept H0 : β2 = 0 because we
would need to know the probability of making a type II error—that is, the probability
of falsely accepting H0 for a specified alternative value of β2—before we could make
a statistically sound decision to accept. Because the test is two-tailed, p-value =
2P(t > 1.67), where t has a t distribution with 2 df. Using Table 5, Appendix 3, we
find that P(t > 1.67) > .10. Thus, we conclude that p-value > .2. More precisely,
the applet Student’s t Probabilities and Quantiles can be used to establish that p-
value = 2P(t > 1.67) = 2(.11843) = .23686. Unless we are willing to work with a
relatively large value of α (at least .23686), we cannot reject H0. Again we notice the
agreement between the conclusions reached by the formal (fixed α) test procedure
and the proper interpretation of the attained significance level.
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620 Chapter 11 Linear Models and Estimation by Least Squares

As a further step in the analysis, we could look at the width of a confidence interval
for β2 to see whether it is short enough to detect a departure from zero that would be
of practical significance. The resulting 95% confidence interval for β2 is

β̂2 ± t.025S
√

c22.

Substituting, we get

.214 ± (4.303)(.48)
√

1/14, or .214 ± .552.

Thus, the confidence interval for β2 is quite wide, suggesting that the experimenter
needs to collect more data before reaching a decision.

EXAMPLE 11.16 For the data of Example 11.1, find a 90% confidence interval for E(Y ) when x = 1.

Solution For the model of Example 11.1,

E(Y ) = β0 + β1x = a′β, with a =
[

a0

a1

]
=

[
1
x

]
.

The desired confidence interval is given by

a′β̂ ± tα/2S
√

a′(X′X)−1a.

In Example 11.12, we determined that

β̂ =
[

1
.7

]
and (X′X)

−1 =
[

1/5 0
0 1/10

]
.

Because we are interested in x = 1,

a =
[

1
1

]
, a′β̂ = [1 1]

[
1
.7

]
= 1.7,

a′(X′X)−1a = [1 1]

[
1/5 0
0 1/10

] [
1
1

]
= .3.

In Example 11.14, we found s2 to be .367, or s = .606 for these data. The value
of t.05 with n − 2 = 3 df is 2.353, and the required 90% confidence interval for E(Y )

is given by

1.7 ± (2.353)(.606)
√

.3, or 1.7 ± .781.

Our answer here is the same as that obtained in Example 11.6 without the use of
matrices.
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Exercises
11.71 Consider the general linear model

Y = β0 + β1x1 + β2x2 + · · · + βk xk + ε,

where E(ε) = 0 and V (ε) = σ 2. Notice that β̂ i = a′β̂, where the vector a is defined by

a j =
{

1, if j = i ,

0, if j 7= i .

Use this to verify that E(β̂ i ) = βi and V (β̂ i ) = ci iσ
2, where ci i is the element in row i and

column i of (X′X)−1.

11.72 Refer to Exercise 11.69.

a Is there evidence of a quadratic effect in the relationship between Y and x? (Test H0 :
β2 = 0.) Use α = .10.

b Find a 90% confidence interval for β2.

11.73 The experimenter who collected the data in Exercise 11.68 claims that the minimum value of
E(Y ) occurs at x = 1. Test this claim at the 5% significance level. [Hint: E(Y ) = β0 + β1x +
β2x2 has its minimum at the point x0, which satisfies the equation β1 + 2β2x0 = 0.]

11.74 An experiment was conducted to investigate the effect of four factors—temperature T1, pressure
P , catalyst C , and temperature T2—on the yield Y of a chemical.

a The values (or levels) of the four factors used in the experiment are shown in the accompa-
nying table. If each of the four factors is coded to produce the four variables x1, x2, x3, and
x4, respectively, give the transformation relating each coded variable to its corresponding
original.

T1 x1 P x2 C x3 T2 x4

50 −1 10 −1 1 −1 100 −1
70 1 20 1 2 1 200 1

b Fit the linear model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

to the following table of data.

x4

+1 −1
x3 x3

−1 1 −1 1
−1 x2 −1 22.2 24.5 24.4 25.9

x1 1 19.4 24.1 25.2 28.4
−1 22.1 19.6 23.5 16.5

+1 x2 1 14.2 12.7 19.3 16.0

c Do the data present sufficient evidence to indicate that T1 contributes information for the
estimation of Y ? Does P? Does C? Does T2? (Test the hypotheses, respectively, that β1 = 0,
β2 = 0, β3 = 0, and β4 = 0.) Give bounds for the p-value associated with each test. What
would you conclude if you used α = .01 in each case?
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622 Chapter 11 Linear Models and Estimation by Least Squares

11.75 Refer to Exercise 11.74. Find a 90% confidence interval for the expected yield, given that
T1 = 50, P = 20, C = 1, and T2 = 200.

11.76 The results that follow were obtained from an analysis of data obtained in a study to assess
the relationship between percent increase in yield (Y ) and base saturation (x1, pounds/acre),
phosphate saturation (x2, BEC%), and soil pH (x3). Fifteen responses were analyzed in the
study. The least-squares equation and other useful information follow.

ŷ = 38.83 − 0.0092x1 − 0.92x2 + 11.56x3, Syy = 10965.46, SSE = 1107.01,

104(X′X)
−1 =

⎡⎢⎣
151401.8 2.6 100.5 −28082.9

2.6 1.0 0.0 0.4
100.5 0.0 8.1 5.2

−28082.9 0.4 5.2 6038.2

⎤⎥⎦ .

a Is there sufficient evidence that, with all independent variables in the model, β2 < 0? Test
at the α = .05 level of significance.

b Give a 95% confidence interval for the mean percent increase in yield if x1 = 914, x2 = 65
and x3 = 6.

11.13 Predicting a Particular Value of Y
by Using Multiple Regression
In Section 11.7, we considered predicting an actual observed value of Y in the simple
linear regression, setting the single independent variable x = x∗. The solution was
based heavily on the properties of

error = Y ∗ − Ŷ ∗,

where Ŷ ∗ = β̂0 +β1x∗ was observed to be a predictor of the actual value of Y and an
estimator for E(Y ) as well. The same method will be used in this section to provide
the corresponding solution in the multiple linear regression case. Suppose that we
have fit a multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · · + βk xk + ε

and that we are interested in predicting the value of Y ∗ when x1 = x∗
1 , x2 = x∗

2 , . . . ,

xk = x∗
k . We predict the value of Y ∗ with

Ŷ ∗ = β̂0 + β̂1x∗
1 + β̂2x∗

2 + · · · + β̂k x∗
k = a′β̂,

where

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

x∗
1

x∗
2

...

x∗
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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11.13 Predicting a Particular Value of Y by Using Multiple Regression 623

As in Section 11.7, we focus on the difference between the variable Y ∗ and the
predicted value:

error = Y ∗ − Ŷ ∗.

Because both Y ∗ and Ŷ ∗ are normally distributed, the error is normally distributed;
and using Theorem 5.12 and the results of Section 11.11, we find that

E(error) = 0 and V (error) = σ 2[1 + a′(X′X)
−1a]

and that

Z = Y ∗ − Ŷ ∗

σ
√

1 + a′(X′X)−1a
x

has a standard normal distribution. Furthermore, if S is substituted for σ , it can be
shown that

T = Y ∗ − Ŷ ∗

S
√

1 + a′(X′X)−1a

possesses a Student’s t distribution with [n − (k + 1)] df.
Proceeding as in Section 11.7, we obtain the following 100(1 − α)% prediction

interval for Y .

A 100(1 −α)% Prediction Interval for Y when x1 = x ∗
1 ,

x2 = x∗
2 , . . . , xk = x∗

k

a′β̂ ± tα/2S
√

1 + a′(X′X)−1a,

where a′ = [1, x∗
1 , x∗

2 , . . . , x∗
k ].

EXAMPLE 11.17 Suppose that the experiment that generated the data of Example 11.12 is to be run
again with x = 2. Predict the particular value of Y with 1 − α = .90.

Solution In Example 11.12, we determined that

β̂ =
[

1
.7

]
and (X′X)

−1 =
[

1/5 0
0 1/10

]
.

Because we are interested in x = 2, the desired prediction interval is given by

a′β̂ ± tα/2S
√

1 + a′(X′X)−1a

with

a =
[

1
2

]
, a′β̂ = [1 2]

[
1
.7

]
= 2.4,

a′(X′X)−1a = [1 2]

[
1/5 0
0 1/10

] [
1
2

]
= .6.
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624 Chapter 11 Linear Models and Estimation by Least Squares

As before, s = .606 for these data, and the value of t.05 with n − 2 = 3 df is 2.353.
The 90% prediction interval for a future observation on Y when x = 2 is, therefore,

2.4 ± (2.353)(.606)
√

1 + .6, or 2.4 ± 1.804.

Notice the agreement with the answer provided in Example 11.7 where we used
ordinary algebra rather than the matrix approach in the solution.

Exercises
11.77 Refer to Exercise 11.76. Give a 95% prediction interval for the percent increase in yield in a

field with base saturation = 914 pounds/acre, phosphate saturation = 65%, and soil pH = 6.

11.78 Refer to Exercise 11.69. Find a 98% prediction interval for Lexus sales in 2004. Use the
quadratic model.

11.79 Refer to Exercises 11.74 and 11.75. Find a 90% prediction interval for Y if T1 = 50, P = 20,
C = 1, and T2 = 200.

11.14 A Test for H0: βg+1 = βg+2 = · · · = βk = 0
In seeking an intuitively appealing test statistic to test a hypothesis concerning a set
of parameters of the linear model, we are led to a consideration of the sum of squares
of deviations SSE. Suppose, for example, that we were to fit a model involving only a
subset of the independent variables under consideration—that is, fit a reduced model
of the form

model R: Y = β0 + β1x1 + β2x2 + · · · + βgxg + ε

to the data—and then were to calculate the sum of squares of deviations between the
observed and predicted values of Y , SSER . Having done this, we might fit the linear
model with all candidate independent variables present (the complete model):

model C: Y = β0 + β1x1 + β2x2 + · · · + βgxg + βg+1xg+1 + · · · + βk xk + ε

and determine the sum of squares of deviations for this model, SSEC . Notice that
the complete model contains all the terms of the reduced model, model R, plus the
extra terms xg+1, xg+2, . . . , xk (notice that k > g). If xg+1, xg+2, . . . , xk contribute
a substantial quantity of information for the prediction of Y that is not contained in
the variables x1, x2, . . . , xg (that is, at least one of the parameters βg+1, βg+2, . . . , βk

differs from zero), what would be the relationship between SSER and SSEC ? Intu-
itively, we see that, if xg+1, xg+2, . . . , xk are important information-contributing vari-
ables, model C, the complete model should predict with a smaller error of prediction
than model R. That is, SSEC should be less than SSER . The greater the difference
(SSE R− SSEC ), the stronger will be the evidence to support the alternative hypothesis
that xg+1, xg+2, . . . , xk contribute information for the prediction of Y and to reject the
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11.14 A Test for H0: βg+1 = βg+2 = · · · = βk = 0 625

null hypothesis

H0 : βg+1 = βg+2 = · · · = βk = 0.

The decrease in the sum of squares of deviations (SSE R− SSEC ) is called the sum
of squares associated with the variables xg+1, xg+2, . . . , xk , adjusted for the variables
x1, x2, x3, . . . , xg .

We indicated that large values of (SSER − SSEC ) would lead us to reject the
hypothesis

H0 : βg+1 = βg+2 = · · · = βk = 0.

How large is “large”? We will develop a test statistic that is a function of (SSER −
SSEC ) for which we know the distribution when H0 is true.

To acquire this test statistic, let us assume that the null hypothesis is true and then
examine the quantities that we have calculated. Particularly, notice that

SSER = SSEC + (SSER − SSEC).

In other words, as indicated in Figure 11.8, we have partitioned SSER into two parts:
SSEC and the difference (SSER − SSEC ). Although we omit the proof, if H0 is true,
then

χ2
3 = SSER

σ 2
,

χ2
2 = SSEC

σ 2
,

χ2
1 = SSER − SSEC

σ 2

possess χ2 probability distributions in repeated sampling, with (n − [g + 1]),
(n − [k + 1]), and (k − g) df, respectively. Further, it can be shown that χ2

2 and
χ2

1 are statistically independent.
The definition of a random variable with an F distribution is given in Definition

7.3. Consider the ratio

F = χ2
1 /(k − g)

χ2
2 /(n − [k + 1])

= (SSER − SSEC)/(k − g)

(SSEC)/(n − [k + 1])
.

SSER

SSEC SSER – SSEC

F I G U R E 11.8
Partitioning SSER
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626 Chapter 11 Linear Models and Estimation by Least Squares

If H0 : βg+1 = βg+2 = · · · = βk = 0 is true, then F possesses an F distribution with
ν1 = k − g numerator degrees of freedom and ν2 = n − (k + 1) denominator degrees
of freedom. We have previously argued that large values of (SSER − SSEC ) lead us
to reject the null hypothesis. Thus, we see that large values of F favor rejection of
H0; if we desire a test with a type I error probability equal to α, it follows that

F > Fα

is the appropriate rejection region. (See Table 7, Appendix 3.)

EXAMPLE 11.18 Do the data of Example 11.13 provide sufficient evidence to indicate that the second-
order model

Y = β0 + β1x + β2x2 + ε

contributes information for the prediction of Y ? That is, test the hypothesis H0 : β1 =
β2 = 0 against the alternative hypothesis Ha : at least one of the parameters β1, β2,
differs from 0. Use α = .05. Give bounds for the attained significance level.

Solution For the complete model, we determined in Example 11.15 that SSEC = .463. Because
we want to test H0 : β1 = β2 = 0, the appropriate reduced model is

Y = β0 + ε

for which
x0

Y =

⎡⎢⎢⎢⎣
0
0
1
1
3

⎤⎥⎥⎥⎦ and X =

⎡⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎦ .

Because X′X = 5, (X′X)−1 = 1/5 and β̂ = (X′X)−1X′Y = (1/5)
∑5

i=1 yi = y =
5/5 = 1. Thus,

SSER = Y′Y − β̂ ′X′Y

=
5∑

i=1

y2
i − y

(
n∑

i=1

yi

)
=

5∑
i=1

y2
i − 1

n

(
5∑

i=1

yi

)2

= 11 − (1/5)(5)2 = 11 − 5 = 6.

In this example, the number of independent variables in the complete model is k = 2,
and the number of independent variables in the reduced model is g = 0. Thus,

F = (SSER − SSEC)/(k − g)

(SSEC)/(n − [k + 1])
= (6 − .463)/(2 − 0)

.463/(5 − 3)
= 11.959.

The tabulated F-value for α = .05 with ν1 = k − g = 2 numerator degrees of
freedom and ν2 = n − (k + 1) = 2 denominator degrees of freedom is 19.00. Hence,
the observed value of the test statistic does not fall in the rejection region, and we
conclude that at the α = .05 level there is not enough evidence to support a claim
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that either β1 or β2 differs from zero. Because the proper form of the rejection region
is F > Fα , the p-value is given by P(F > 11.959) when F is based on 2 numerator
and 2 denominator degrees of freedom. Using Table 7, Appendix 3, you can see
that .05 < p-value < .10. Further, the applet F-Ratio Probabilities and Quantiles
gives P(F > 11.959) = .07717. Thus, if we chose α = .05 (in agreement with the
previous discussion), there is not enough evidence to support a claim that either β1

or β2 differs from zero. However, if any α value equal to or greater than .0772 were
selected, we could claim that either β1 7= 0 or β2 7= 0. Notice that the little additional
effort required to determine the p-value provides a considerable amount of additional
information.

Consider the situation where we have fit a model with k independent variables and
wish to test the null hypothesis

H0 : β1 = β2 = · · · = βk = 0

that none of the independent variables in the model contribute substantial information
for the prediction of Y . This is exactly what was done in Example 11.18. An exami-
nation of the solution of that example will convince you that the appropriate reduced
model is of the form

Y = β0 + ε.

This reduced model contains g = 0 independent variables and is such that SSER = Syy

(see Example 11.18). Thus, a test for

H0 : β1 = β2 = · · · = βk = 0

can be based on the statistic

F = (SSER − SSEC)/(k − g)

(SSEC)/(n − [k + 1])
= (Syy − SSEC)/k

(SSEC)/(n − [k + 1])
,

which possesses an F distribution with ν1 = k and ν2 = n − (k + 1) numerator and
denominator degrees of freedom, respectively.

What proportion of the variation in the observed values of the response variable,
Y , is explained by the entire set of independent variables x1, x2, . . . , xk? The answer
is provided by the multiple coefficient of determination R2, where

R2 = Syy − SSEC

Syy
.

As with the simple coefficient of determination r2, the denominator of R2 quantifies
the variation in the y-values, and the numerator quantifies the amount of variation in
the y’s that is explained by the complete set of independent variables x1, x2, . . . , xk .
In Exercise 11.84(a), you will show that the F statistic for testing

H0 : β1 = β2 = · · · = βk = 0

can be calculated using R2 through the formula

F = n − (k + 1)

k

(
R2

1 − R2

)
.
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628 Chapter 11 Linear Models and Estimation by Least Squares

As before, this statistic possesses an F distribution with ν1 = k and ν2 = n − (k + 1)

numerator and denominator degrees of freedom, respectively.
Another application of the general method for comparing complete and reduced

models is given in the following example.

EXAMPLE 11.19 It is desired to relate abrasion resistance of rubber (Y ) to the amount of silica filler x ′
1

and the amount of coupling agent x ′
2. Fine-particle silica fibers are added to rubber to

increase strength and resistance to abrasion. The coupling agent chemically bonds the
filler to the rubber polymer chains and thus increases the efficiency of the filler. The
unit of measurement for x ′

1 and x ′
2 is parts per 100 parts of rubber, which is denoted

phr. For computational simplicity, the actual amounts of silica filler and coupling
agent are rescaled by the equations

x1 = x ′
1 − 50

6.7
and x2 = x ′

2 − 4

2
.

(Such rescaling of the independent variables does not affect the analysis or conclu-
sions, but it does simplify computations.)

The data11 are given in Table 11.6. Notice that five levels of both x1 and x2 are
used, with the (x1 = 0, x2 = 0) point repeated three times. Let us fit the second-order
model

Y = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 + ε

to these data. This model represents a conic surface over the (x1, x2) plane. Fit the
second-order model and test H0 : β3 = β4 = β5 = 0. (We are testing that the surface
is actually a plane versus the alternative that it is a conic surface.) Give bounds for the
attained significance level and indicate the proper conclusion if we choose α = .05.

Solution We will first use matrix equations to fit the complete model, as indicated earlier.
(With models of this size, it is best to use a computer to do the computations.) For the

Table 11.6 Data for Example 11.19

y x1 x2

83 1 −1
113 1 1

92 −1 1
82 −1 −1

100 0 0
96 0 0
98 0 0
95 0 1.5
80 0 −1.5

100 1.5 0
92 −1.5 0

11. Source: Ronald Suich and G. C. Derringer, Technometrics 19(2) (1977): 214.
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data in Table 11.6, we have

x1 x2 x2
1 x2

2 x1x2

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

83
113
92
82

100
96
98
95
80

100
92

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 1 1 −1
1 1 1 1 1 1
1 −1 1 1 1 −1
1 −1 −1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 1.5 0 2.25 0
1 0 −1.5 0 2.25 0
1 1.5 0 2.25 0 0
1 −1.5 0 2.25 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(X′X)
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.33 0 0 −.15 −.15 0
0 0.12 0 0 0 0
0 0 0.12 0 0 0

−.15 0 0 .15 .05 0
−.15 0 0 .05 .15 0

0 0 0 0 0 .25

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

These matrices yield

β̂ = (X′X)
−1X′Y =

⎡⎢⎢⎢⎢⎢⎢⎣
98.00
4.00
7.35
−.88

−4.66
5.00

⎤⎥⎥⎥⎥⎥⎥⎦,

or the fitted second-order model,

ŷ = 98.00 + 4.00x + 7.35x2 − .88x2
1 − 4.66x2

2 + 5.00x1x2.

For this model, SSEC = Y′Y − β̂′X′Y = 77.948.
To test the hypothesis of interest (H0 : β3 = β4 = β5 = 0), we must fit the reduced

model

Y = β0 + β1x1 + β2x2 + ε.

By deleting the columns for x2
1 , x2

2 , and x1x2 in the X matrix, we have

β̂ = (X′X)
−1X′Y =

[ 93.73
4.00
7.35

]
,

and the fitted planar model is

ŷ = 93.73 + 4.00x1 + 7.35x2.

(Notice that we cannot simply set β̂3, β̂4, and β̂5 equal to zero to produce the fitted
model in the reduced case.) For the reduced model, SSER = 326.623.
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630 Chapter 11 Linear Models and Estimation by Least Squares

We now test the hypothesis H0 : β3 = β4 = β5 = 0 by calculating F (notice that
k = 5, g = 2, and n = 11):

F = (SSER − SSEC)/(k − g)

SSEC/[n − (k + 1)]
= (326.623 − 77.948)/3

77.948/5
= 5.32.

Because this statistic is based on ν1 = (k − g) = 3 numerator degrees of freedom
and ν2 = n − (k + 1) = 5 denominator degrees of freedom, the p-value is given by
P(F > 5.32). Thus, using Table 7, Appendix 3, .05 < p-value < .10. The applet
F-Ratio Probabilities and Quantiles gives the exact p-value = P(F > 5.32) =
.05155. If we choose α = .05, there is insufficient evidence to support a claim that
the second-order model fits the data significantly better than does the planar model. Is
the exact p-value = .05155 small enough to convince you that the second-order model
fits better than the planar model? Only you can answer that question. Notice that we
have tested whether the group of variables x2

1 , x2
2 , x1x2 contributed to a significantly

better fit of the model to the data.

Exercises
11.80 Refer to Exercise 11.31. Answer the question on the increase in peak current by constructing

an F test.

11.81 In Exercise 11.80, you used an F test to test the same hypothesis that was tested in Exercise
11.31 via a t test. Consider the general simple linear regression case and the F and t statistics
that can be used to implement the test of H0 : β1 = 0 versus Ha : β1 7= 0. Show that in general
F = t2. Compare the value of F obtained in Exercise 11.80 to the corresponding value of t
obtained in Exercise 11.31.

11.82 Refer to Exercise 11.76 where we obtained the following information when fitting a multiple
regression model to 15 responses;

ŷ = 38.83 − 0.0092x1 − 0.92x2 + 11.56x3, Syy = 10965.46, SSE = 1107.01.

a Is there sufficient evidence to conclude that at least one of the independent variables
contributes significant information for the prediction of Y ?

b Calculate the value of the multiple coefficient of determination. Interpret the value of R2.

11.83 Refer to Exercises 11.76 and 11.82. Does including the variables phosphate saturation x2 and
pH x3 contribute to a significantly better fit of the model to the data? The reduced linear
regression model, Y = β0 + β1x1 + ε was fit and we observed SSER = 5470.07.

a Implement the appropriate test of hypothesis at the α = .05 level of significance.

b What is the smallest value of SSER that would have allowed you to conclude that at least
one of the variables (phosphate saturation and/or pH) contributed to a better fit of the model
to the data?

11.84 We have fit a model with k independent variables, and wish to test the null hypothesis H0 :
β1 = β2 = · · · = βk = 0.
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Exercises 631

a Show that the appropriate F-distributed test statistic can be expressed as

F = n − (k + 1)

k

(
R2

1 − R2

)
.

b If k = 1 how does the value of F from part (a) compare to the expression for the T statistic
derived in Exercise 11.55?

11.85 A real estate agent’s computer data listed the selling price Y (in thousands of dollars), the
living area x1 (in hundreds of square feet), the number of floors x2, number of bedrooms x3,
and number of bathrooms x4 for newly listed condominiums. The multiple regression model
E(Y ) = β0 + β1x1 + β2x2 + β3x3 + β4x4 was fit to the data obtained by randomly selecting
15 condos currently on the market.

a If R2 = .942, is there sufficient evidence that at least one of the independent variables
contributes significant information for the prediction of selling price?

b If Syy = 16382.2, what is SSE?

11.86 Refer to Exercise 11.85. A realtor suspects that square footage x1 might be the most important
predictor variable and that the other variables can be eliminated from the model without much
loss in prediction information. The simple linear regression model for selling price versus
square footage was fit to the 15 data points that were used in Exercise 11.85, and the realtor
observed that SSE = 1553. Can the additional independent variables used to fit the model in
Exercise 11.85 be dropped from the model without losing predictive information? Test at the
α = .05 significance level.

11.87 Does a large value of R2 always imply that at least one of the independent variables should be
retained in the regression model? Does a small value of R2 always indicate that none of the
independent variables are useful for prediction of the response?

a Suppose that a model with k = 4 independent variables is fit using n = 7 data points and
that R2 = .9. How many numerator and denominator degrees of freedom are associated
with the F statistic for testing H0 : β1 = β2 = β3 = β4 = 0? Use the result in Exercise
11.84(a) to compute the value of the appropriate F statistic. Can H0 be rejected at the
α = .10 significance level?

b Refer to part (a). What do you observe about the relative sizes of n and k? What impact
does this have on the value of F?

c A model with k = 3 independent variables is fit to n = 44 data points resulting in
R2 = .15. How many numerator and denominator degrees of freedom are associated with
the F statistic for testing H0 : β1 = β2 = β3 = 0? Use the result in Exercise 11.84(a)
to compute the value of the appropriate F statistic. Can H0 be rejected at the α = .10
significance level?

d Refer to part (c). What do you observe about the relative sizes of n and k? What impact
does this have on the value of F?

11.88 Television advertising would ideally be aimed at exactly the audience that observes the ads.
A study was conducted to determine the amount of time that individuals spend watching TV
during evening prime-time hours. Twenty individuals were observed for a 1-week period, and
the average time spent watching TV per evening, Y , was recorded for each. Four other bits
of information were also recorded for each individual: x1 = age, x2 = education level, x3 =
disposable income, and x4 = IQ. Consider the three models given below:

Model I: Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

Model II: Y = β0 + β1x1 + β2x2 + ε

Model III: Y = β0 + β1x1 + β2x2 + β3x1x2 + ε
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632 Chapter 11 Linear Models and Estimation by Least Squares

Are the following statements true or false?

a If Model I is fit, the estimate for σ 2 is based on 16 df.

b If Model II is fit, we can perform a t test to determine whether x2 contributes to a better fit
of the model to the data.

c If Models I and II are both fit, then SSEI ≤ SSEII.

d If Models I and II are fit, then σ̂ 2
I ≤ σ̂ 2

II.

e Model II is a reduction of model I.

f Models I and III can be compared using the complete/reduced model technique presented
in Section 11.14.

11.89 Refer to the three models given in Exercise 11.88. Let R2
I , R2

II, and R2
III denote the coefficients

of determination for models I, II, and III. Are the following statements true or false?

a R2
I ≥ R2

II.

b R2
I ≥ R2

III.

c R2
II ≤ R2

III

11.90 Refer to Exercise 11.69.

a For the quadratic model, carry out an F test of H0 : β2 = 0, using α = .05. Compare the
result to the result of the test in Exercise 11.72.

b Test H0 : β1 = β2 = 0 at the 5% significance level.

11.91 Refer to Exercise 11.74. Test the hypothesis at the 5% level of significance that neither T1 nor
T2 affects the yield.

11.92 Utility companies, which must plan the operation and expansion of electricity generation, are
vitally interested in predicting customer demand over both short and long periods of time. A
short-term study was conducted to investigate the effect of each month’s mean daily temperature
x1 and of cost per kilowatt-hour, x2 on the mean daily consumption (in kWh) per household. The
company officials expected the demand for electricity to rise in cold weather (due to heating),
fall when the weather was moderate, and rise again when the temperature rose and there was
a need for air conditioning. They expected demand to decrease as the cost per kilowatt-hour
increased, reflecting greater attention to conservation. Data were available for 2 years, a period
during which the cost per kilowatt-hour x2 increased due to the increasing costs of fuel. The
company officials fitted the model

Y = β0 + β1x1 + β2x2
1 + β3x2 + β4x1x2 + β5x2

1 x2 + ε

to the data in the following table and obtained ŷ = 325.606−11.383x1 + .113x2
1 −21.699x2 +

.873x1x2 − .009x2
1 x2 with SSE = 152.177.

Mean Daily Consumption
Price per kWh ( x2) (kWh) per Household

8¢ Mean daily ◦F temperature (x1) 31 34 39 42 47 56
Mean daily consumption (y) 55 49 46 47 40 43

10¢ Mean daily ◦F temperature (x1) 32 36 39 42 48 56
Mean daily consumption (y) 50 44 42 42 38 40

8¢ Mean daily ◦F temperature (x1) 62 66 68 71 75 78
Mean daily consumption (y) 41 46 44 51 62 73

10¢ Mean daily ◦F temperature (x1) 62 66 68 72 75 79
Mean daily consumption (y) 39 44 40 44 50 55
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11.15 Summary and Concluding Remarks 633

When the model Y = β0 −β1x1 +β2x2
1 +ε was fit, the prediction equation was ŷ = 130.009−

3.302x1 + .033x2
1 with SSE = 465.134. Test whether the terms involving x2(x2, x1x2, x2

1 x2)

contribute to a significantly better fit of the model to the data. Give bounds for the attained
significance level.

11.93 Refer to Example 11.19. Using the reduced model, construct a 95% confidence interval for the
expected abrasion resistance of rubber when x1 = 1 and x2 = −1.

11.94 Refer to Example 11.19. Construct individual tests of the three hypotheses H0 : β3 = 0,
H0 : β4 = 0, and H0 : β5 = 0. Use a 1% level of significance on each test. (If multiple tests are
to be conducted on the same set of data, it is wise to use a very small α level on each test.)

11.15 Summary and Concluding Remarks
In this chapter, we have used the method of least squares to fit a linear model to
an experimental response. We assumed that the expected value of Y is a function
of a set of variables x1, x2, . . . , xk , where the function is linear in a set of unknown
parameters. We used the expression

Y = β0 + β1x1 + β2x2 + · · · + βk xk + ε

to denote a linear statistical model.
Inferential problems associated with the linear statistical model include estima-

tion and tests of hypotheses relating to the model parameters β0, β1, . . . , βk and—
even more important—estimation of E(Y ), the expected response for a particular
setting, and the prediction of some future value of Y . Experiments for which the
least-squares theory is appropriate include both controlled experiments and those
where x1, x2, . . . , xk are observed values of random variables.

Why use the method of least squares to fit a linear model to a set of data? Where the
assumptions about the random errors ε hold [normality, independence, V (ε) = σ 2

for all values of x1, x2, . . . , xk], it can be shown that the least-squares procedure gives
the best linear unbiased estimators for β0, β1, . . . , βk . That is, if we estimate the
parameters β0, β1, . . . , βk , using linear functions of y1, y2, . . . , yk , the least-squares
estimators have minimum variance. Some other nonlinear estimators for the param-
eters may possess a smaller variance than the least-squares estimators, but if such
estimators exist, they are not known at this time. Again, why use least-squares esti-
mators? They are easy to use, and we know they possess good properties for many
situations.

As you might imagine, the methodology presented in this chapter is employed
widely in business and in all the sciences for exploring the relationship between a
response and a set of independent variables. Estimation of E(Y ) or prediction of Y
usually is the experimental objective.

Whole textbooks are devoted to the topic of regression. Our purpose has been to
introduce many of the theoretical considerations associated with simple and multiple
linear regression. Although the method of least squares can be used to estimate model
parameters in general situations, the formal inference-making techniques that we pre-
sented (based on the t and F distributions) are valid only under the extra assumptions
that we presented. Key assumptions include that the error terms in the model are nor-
mally distributed and that the variance of the error terms does not depend on the value
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634 Chapter 11 Linear Models and Estimation by Least Squares

of any independent variable(s). In practical applications, these assumptions may not
be valid. Generally, assessments of the validity of model assumptions are based on
analyses of the residuals, the differences between the observed and predicted (using
the model) values of the response variable. Examination of the residuals, including
plots of the residuals versus the independent variable(s) and plots of the residuals
against their normal theory expected values, permits assessments of whether the
assumptions are reasonable for a particular data set. Data points with unusually large
residuals may be outliers that indicate that something went wrong when the corre-
sponding observation was made. Some individual data points may have an unusu-
ally large impact on the fitted regression model in the sense that the model fitted
with these data points included differs considerably from the model fitted with them
excluded (such points are often called high-influence points—see Exercise 11.108).
A regression model might suffer from lack of fit, indicating that the selected model
is not adequate to model the response. In such cases, it might be necessary to fit a
more complicated model to obtain sufficient predictive precision. An important con-
sideration in multiple regression models is that of multicollinearity where some of
the independent variables in the model are highly correlated with one another. We
cannot do justice to these topics in a single introductory chapter on linear and multiple
regression. We have focused on the general concept of least squares as a method for
estimating model parameters and have provided the theoretical foundations for anal-
yses based on the classical normal theory. The other issues described in this section
are discussed in the supplemental references.
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Supplementary Exercises
11.95 At temperatures approaching absolute zero (−273◦C), helium exhibits traits that defy many

laws of conventional physics. An experiment has been conducted with helium in solid form at
various temperatures near absolute zero. The solid helium is placed in a dilution refrigerator
along with a solid impure substance, and the fraction (in weight) of the impurity passing
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through the solid helium is recorded. (The phenomenon of solids passing directly through
solids is known as quantum tunneling.) The data are given in the following table.

Proportion of Impurity Passing
◦C Temperature (x) Through Helium (y)

−262.0 .315
−265.0 .202
−256.0 .204
−267.0 .620
−270.0 .715
−272.0 .935
−272.4 .957
−272.7 .906
−272.8 .985
−272.9 .987

a Fit a least-squares line to the data.

b Test the null hypothesis H0: β1 = 0 against the alternative hypothesis Ha : β1 < 0, at the
α = .01 level of significance.

c Find a 95% prediction interval for the percentage of the solid impurity passing through
solid helium at −273◦C. (This value of x is outside the experimental region where use of
the model for prediction may be dangerous.)

11.96 A study was conducted to determine whether a linear relationship exists between the breaking
strength y of wooden beams and the specific gravity x of the wood. Ten randomly selected
beams of the same cross-sectional dimensions were stressed until they broke. The breaking
strengths and the density of the wood are shown in the accompanying table for each of the
ten beams.

Beam Specific Gravity (x) Strength (y)

1 .499 11.14
2 .558 12.74
3 .604 13.13
4 .441 11.51
5 .550 12.38
6 .528 12.60
7 .418 11.13
8 .480 11.70
9 .406 11.02

10 .467 11.41

a Fit the model Y = β0 + β1x + ε.

b Test H0: β1 = 0 against the alternative hypothesis, Ha: β1 7= 0.

c Estimate the mean strength for beams with specific gravity .590, using a 90% confidence
interval.

11.97 A response Y is a function of three independent variables x1, x2, and x3 that are related as
follows:

Y = β0 + β1x1 + β2x2 + β3x3 + ε.
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636 Chapter 11 Linear Models and Estimation by Least Squares

a Fit this model to the n = 7 data points shown in the accompanying table.

y x1 x2 x3

1 −3 5 −1
0 −2 0 1
0 −1 −3 1
1 0 −4 0
2 1 −3 −1
3 2 0 −1
3 3 5 1

b Predict Y when x1 = 1, x2 = −3, x3 = −1. Compare with the observed response in the
original data. Why are these two not equal?

c Do the data present sufficient evidence to indicate that x3 contributes information for the
prediction of Y ? (Test the hypothesis H0: β3 = 0, using α = .05.)

d Find a 95% confidence interval for the expected value of Y , given x1 = 1, x2 = −3, and
x3 = −1.

e Find a 95% prediction interval for Y , given x1 = 1, x2 = −3, and x3 = −1.

11.98 If values of independent variables are equally spaced, what is the advantage of coding to new
variables that represent symmetric spacing about the origin?

11.99 Suppose that you wish to fit a straight line to a set of n data points, where n is an even integer,
and that you can select the n values of x in the interval −9 ≤ x ≤ 9. How should you select
the values of x so as to minimize V (β̂1)?

11.100 Refer to Exercise 11.99. It is common to employ equal spacing in selecting the values of x .
Suppose that n = 10. Find the relative efficiency of the estimator β̂1 based on equal spacing
versus the same estimator based on the spacing of Exercise 11.99. Assume that −9 ≤ x ≤ 9.

11.101 The data in the accompanying table come from the comparison of the growth rates for bacteria
types A and B. The growth Y recorded at five equally spaced (and coded) points of time is
shown in the table.

Time

Bacteria Type −2 −1 0 1 2

A 8.0 9.0 9.1 10.2 10.4
B 10.0 10.3 12.2 12.6 13.9

a Fit the linear model

Y = β0 + β1x1 + β2x2 + β3x1x2 + ε

to the n = 10 data points. Let x1 = 1 if the point refers to bacteria type B and let x1 = 0
if the point refers to type A. Let x2 = coded time.

b Plot the data points and graph the two growth lines. Notice that β3 is the difference between
the slopes of the two lines and represents time–bacteria interaction.

c Predict the growth of type A at time x2 = 0 and compare the answer with the graph. Repeat
the process for type B.

d Do the data present sufficient evidence to indicate a difference in the rates of growth for
the two types of bacteria?
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e Find a 90% confidence interval for the expected growth for type B at time x2 = 1.

f Find a 90% prediction interval for the growth Y of type B at time x2 = 1.

11.102 The following model was proposed for testing whether there was evidence of salary discrimi-
nation against women in a state university system:

Y = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
2 + ε,

where

Y = annual salary (in thousands of dollars),

x1 =
{

1, if female,

0, if male,

x2 = amount of experience (in years).

When this model was fit to data obtained from the records of 200 faculty members, SSE =
783.90. The reduced model Y = β0 + β1x2 + β2x2

2 + ε was also fit and produced a value
of SSE = 795.23. Do the data provide sufficient evidence to support the claim that the mean
salary depends on the gender of the faculty members? Use α = .05.

11.103 Show that the least-squares prediction equation

ŷ = β̂0 + β̂1x1 + · · · + β̂k xk

passes through the point (x1, x2, . . . , x k, y).

11.104 An experiment was conducted to determine the effect of pressure and temperature on the yield
of a chemical. Two levels of pressure (in pounds per square inch, psi) and three of temperature
were used:

Pressure (psi) Temperature (◦F)

50 100
80 200

300

One run of the experiment at each temperature–pressure combination gave the data listed in
the following table.

Yield Pressure (psi) Temperature (◦F)

21 50 100
23 50 200
26 50 300
22 80 100
23 80 200
28 80 300

a Fit the model Y = β0 +β1x1 +β2x2 +β3x2
2 +ε, where x1 = pressure and x2 = temperature.

b Test to see whether β3 differs significantly from zero, with α = .05.

c Test the hypothesis that temperature does not affect the yield, with α = .05.

*11.105 Let (X, Y ) have a bivariate normal distribution. A test of H0: ρ = 0 against Ha: ρ 7= 0 can be
derived as follows.
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a Let Syy = ∑n
i=1(yi − y)2 and Sxx = ∑n

i=1(xi − x)2. Show that

β̂1 = r

√
Syy

Sxx
.

b Conditional on X i = xi , for i = 1, 2, . . . , n, show that under H0 : ρ = 0

β̂1
√

(n − 2)Sxx√
Syy(1 − r 2)

has a t distribution with (n − 2) df.

c Conditional on X i = xi , for i = 1, 2, . . . , n, conclude that

T = r
√

n − 2√
1 − r 2

has a t distribution with (n −2) df, under H0 : ρ = 0. Hence, conclude that T has the same
distribution unconditionally.

11.106 Labor and material costs are two basic components in the cost of construction. Changes in the
component costs of course lead to changes in total construction costs. The accompanying table
tracks changes in construction cost and cost of all construction materials for 8 consecutive
months.

Index of All
Construction Construction

Month Cost (y) Materials (x)

January 193.2 180.0
February 193.1 181.7
March 193.6 184.1
April 195.1 185.3
May 195.6 185.7
June 198.1 185.9
July 200.9 187.7
August 202.7 189.6

Do the data provide sufficient evidence to indicate a nonzero correlation between the monthly
construction costs and indexes of all construction materials? Give the attained significance
level.

11.107 The data in the following table give the miles per gallon obtained by a test automobile when
using gasolines of varying octane levels.

Miles per Gallon (y) Octane (x)

13.0 89
13.2 93
13.0 87
13.6 90
13.3 89
13.8 95
14.1 100
14.0 98
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a Calculate the value of r .

b Do the data provide sufficient evidence to indicate that octane level and miles per gallon
are dependent? Give the attained significance level, and indicate your conclusion if you
wish to implement an α = .05 level test.

11.108 Applet Exercise Access the applet Removing Points from Regression. Sometimes removing a
point from those used to fit a regression model produces a fitted model substantially different
that the one obtained using all of the data (such a point is called a high-influence point).

a The top graph gives a data set and fitted regression line useful for predicting a student’s
weight given his or her height. Click on any data points to remove them and refit the
regression model. Can you find a high influence data point in this data set?

b Scroll down to the second graph that relates quantitative SAT score to high school rank.
Does the slope of the fitted regression line surprise you? Can you find a high-influence
data point? Does removing that data point produce a regression line that better meets your
expectation regarding the relationship between quantitative SAT scores and class rank?

c Scroll down to the remainder of the data sets and explore what happens when different
data points are removed.
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CHAPTER 12

Considerations in
Designing Experiments
12.1 The Elements Affecting the Information in a Sample

12.2 Designing Experiments to Increase Accuracy

12.3 The Matched-Pairs Experiment

12.4 Some Elementary Experimental Designs

12.5 Summary

References and Further Readings

12.1 The Elements Affecting the Information
in a Sample
A meaningful measure of the information available in a sample to make an inference
about a population parameter is provided by the width (or half-width) of the confidence
interval that could be constructed from the sample data. Recall that a 95% large-sample
confidence interval for a population mean is

Y ± 1.96

(
σ√
n

)
.

The widths of many of the commonly employed confidence intervals, like the confi-
dence interval for a population mean, depend on the population variance σ 2 and the
sample size n. The less variation in the population, measured by σ 2, the shorter the
confidence interval will be. Similarly, the width of the confidence interval decreases
as n increases. This interesting phenomenon would lead us to believe that two factors
affect the quantity of information in a sample pertinent to a parameter: namely, the
variation of the data and the sample size n. We will find this deduction to be slightly
oversimplified but essentially true.

In previous chapters, when we were interested in comparing two population means
or fitting a simple linear regression, we assumed that independent random samples
were taken from the populations of interest. If we wish to compare two populations
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12.2 Designing Experiments to Increase Accuracy 641

based on a total of n observations, how many observations should be taken from each
population? If we have decided to fit a simple linear regression model and wish to
maximize the information in the resulting data, how should we choose the values of
the independent variable? These questions are addressed in the next section.

Generally, the design of experiments is a very broad subject concerned with meth-
ods of sampling to reduce the variation in an experiment and thereby to acquire a
specified quantity of information at minimum cost. If the objective is to make a com-
parison of two population means, the matched-pairs experiment often suffices. After
considering the matched-pairs experiment in Section 12.3, the remainder of the chap-
ter presents some of the important considerations in the design of good experiments.

12.2 Designing Experiments
to Increase Accuracy
As we will see, for the same total number of observations, some methods of data
collection (designs) provide more information concerning specific population param-
eters than others. No single design is best in acquiring information concerning all
types of population parameters. Indeed, the problem of finding the best design for
focusing information on a specific population parameter has been solved in only a
few specific cases. The purpose of this section is not to present a general theory but
rather to present two examples that illustrate the principles involved.

Consider the problem of estimating the difference between a pair of population
means, μ1 − μ2, based on independent random samples. If the experimenter has
resources sufficient to sample a total of n observations, how many observations should
she select from populations 1 and 2—say, n1 and n2 (n1 + n2 = n), respectively—to
maximize the information in the data pertinent to μ1 − μ2? If n = 10, should she
select n1 = n2 = 5 observations from each population, or would an allocation of
n1 = 4 and n2 = 6 be better?

If the random samples are independently drawn, we estimate μ1−μ2 with Y 1−Y 2,
which has standard error

σ(Y 1−Y 2)
=

√
σ 2

1

n1
+ σ 2

2

n2
.

The smaller σ(Y 1−Y 2)
is, the smaller will be the corresponding error of estimation, and

the greater will be the quantity of information in the sample pertinent to μ1 − μ2. If,
as we frequently assume, σ 2

1 = σ 2
2 = σ 2, then

σ(Y 1−Y 2)
= σ

√
1

n1
+ 1

n2
.

You can verify that this quantity is a minimum when n1 = n2 and, consequently,
that the sample contains a maximum of information about μ1 − μ2 when the n
experimental units are equally divided between the two treatments. A more general
case is considered in Example 12.1.
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642 Chapter 12 Considerations in Designing Experiments

EXAMPLE 12.1 If n observations are to be used to estimate μ1 − μ2, based on independent random
samples from the two populations of interest, find n1 and n2 so that V (Y 1 − Y 2) is
minimized (assume that n1 + n2 = n).

Solution Let b denote the fraction of the n observations assigned to the sample from population
1; that is, n1 = bn and n2 = (1 − b)n. Then,

V (Y 1 − Y 2) = σ 2
1

bn
+ σ 2

2

(1 − b)n
.

To find the fraction b that minimizes this variance, we set the first derivative, with
respect to b, equal to zero. This process yields

−σ 2
1

n

(
1

b2

)
+ σ 2

2

n

(
1

1 − b

)2

= 0.

Solving for b, we obtain

b = σ1

σ1 + σ2
and 1 − b = σ2

σ1 + σ2
.

Thus, V (Y 1 − Y 2) is minimized when

n1 =
( σ1

σ1 + σ2

)
n and n2 =

( σ2

σ1 + σ2

)
n,

that is, when sample sizes are allocated proportionally to sizes of the standard devia-
tions. Notice that n1 = n/2 = n2 if σ1 = σ2.

As a second example, consider the problem of fitting a straight line through a set of
n points by using the least-squares method of Chapter 11 (see Figure 12.1). Further,
suppose that we are primarily interested in the slope β1 of the line in the linear model

Y = β0 + β1x + ε.

y

x

F I G U R E 12.1
Fitting a straight line

by the method
of least squares
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12.2 Designing Experiments to Increase Accuracy 643

If we have the option of selecting the n-values of x for which y will be observed, which
values of x will maximize the quantity of information on β1? We have one quantitative
independent variable x , and our problem is to decide on the values x1, x2, . . . , xn to
employ, as well as the number of observations to take at each of these values.

The best design for estimating the slope β1 can be determined by considering the
standard deviation of β̂1:

σβ̂1
= σ√

Sxx
= σ√

n∑
i=1

(xi − x)2

.

The larger Sxx , the sum of squares of deviations of x1, x2, . . . , xn about their mean,
the smaller the standard deviation of β̂1 will be. That is, we obtain a better estimator
for the slope if the values of x are spread farther apart. In some cases, the experimenter
has some experimental region—say, x1 < x < x2—over which he or she wishes to
observe Y , and this range is frequently selected prior to experimentation. Then the
smallest value for σβ̂1

occurs when the n data points are equally divided, with half
located at the lower boundary x1 of the region and half at the upper boundary x2.
(The proof is omitted.) An experimenter who wished to fit a line by using n = 10
data points in the interval 2 ≤ x ≤ 6 would select five data points at x = 2 and five
at x = 6. Before concluding the discussion of this example, you should notice that
observing all values of Y at only two values of x will not provide information on
curvature of the response curve in case the assumption of linearity in the relation of
E(Y ) and x is incorrect. It is frequently safer to select a few points (as few as one
or two) somewhere near the middle of the experimental region to detect curvature
if it should be present (see Figure 12.2). A further comment is in order. One of the
assumptions that we have made regarding the simple linear regression model is that
the variance of the error term ε does not depend on the value of the independent
variable x . If the x values are more spread out, the validity of this assumption may
become more questionable.

To summarize, we have given good designs (allocation of experimental units per
population and selection of settings for the independent variable x) for comparing
a pair of means and fitting a straight line. These two simple designs illustrate how
information in an experiment can be increased or decreased, depending on where

y

x

4 Points

2 Points

4 PointsF I G U R E 12.2
A good design for

fitting a straight
line (n = 10)
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644 Chapter 12 Considerations in Designing Experiments

observations are made and on the allocation of sample sizes. In the next section, we
consider a method for controlling the amount of inherent variability in an experiment.

Exercises
12.1 Suppose that you wish to compare the means for two populations and that σ 2

1 = 9, σ 2
2 = 25,

and n = 90. What allocation of n = 90 to the two samples will result in the maximum amount
of information about (μ1 − μ2)?

12.2 Refer to Exercise 12.1. Suppose that you allocate n1 = n2 observations to each sample. How
large must n1 and n2 be in order to obtain the same amount of information as that implied by
the solution to Exercise 12.1?

12.3 Suppose, as in Exercise 12.1, that two populations have respective variances σ 2
1 = 9 and

σ 2
2 = 25. Find the smallest sample size and the corresponding sample allocation that will yield

a 95% confidence interval for μ1 − μ2 that is 2 units in length.

12.4 Refer to Exercise 12.3. How many observations are needed for a 95% confidence interval to
be 2 units in length if n1 = n2?

12.5 Suppose that we wish to study the effect of the stimulant digitalis on the blood pressure Y of
rats over a dosage range of x = 2 to x = 5 units. The response is expected to be linear over
the region; that is, Y = β0 + β1x + ε. Six rats are available for the experiment, and each rat
can receive only one dose. What dosages of digitalis should be employed in the experiment,
and how many rats should be run at each dosage to maximize the quantity of information in
the experiment relative to the slope β1?

12.6 Refer to Exercise 12.5. Consider two methods for selecting the dosages. Method 1 assigns
three rats to the dosage x = 2 and three rats to x = 5. Method 2 equally spaces the dosages
between x = 2 and x = 5 (x = 2, 2.6, 3.2, 3.8, 4.4, and 5.0). Suppose that σ is known and that
the relationship between E(Y ) and x is truly linear (see Chapter 11). If we use the data from
both methods to construct confidence intervals for the slope β1, which method will yield the
longer interval? How much longer is the longer interval? If we use method 2, approximately
how many observations will be required to obtain an interval the same length as that obtained
by the optimal assignment of method 1?

12.7 Refer to Exercise 12.5. Why might it be advisable to assign one or two points at x = 3.5?

12.8 The standard error of the estimator β̂1 in a simple linear regression model gets smaller as Sxx

increases, that is, as the x-values become more spread out. Why don’t we always spread the
x-values out as much as possible?

12.3 The Matched-Pairs Experiment
In Chapters 8 and 10, we considered methods for comparing the means of two popula-
tions based on independent samples from each. In the previous section, we examined
how to determine the sizes of the samples from the two populations so that the stan-
dard error of the estimator Y 1 − Y 2 is minimized. In many experiments, the samples
are paired rather than independent. A commonly occurring situation is one where
repeated observations are made on the same sampling unit, such as weighing the
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12.3 The Matched-Pairs Experiment 645

same individual before and after he or she participated in a weight-loss program. In a
medical experiment, we might pair individuals who are of the same gender and have
of similar weights and ages. One individual from each pair is randomly selected to
receive one of two competing medications to control hypertension whereas the other
individual from the same pair receives the other medication.

Comparing two populations on the basis of paired data can be a very effective
experimental design that can control for extraneous sources of variability and result
in decreasing the standard error of the estimator Y 1 − Y 2 for the difference in the
population means μ1−μ2. Let (Y1i , Y2i ), for i = 1, 2, . . . , n, denote a random sample
of paired observations. Assume that

E(Y1i ) = μ1, Var(Y1i ) = σ 2
1 , E(Y2i ) = μ2,

Var(Y2i ) = σ 2
2 , Cov(Y1i , Y2i ) = ρσ1σ2,

where ρ is the common correlation coefficient of the variables within each pair (see
Section 5.7). Define Di = Y1i − Y2i , for i = 1, 2, . . . , n, the differences between
the observations within each pair. Because the pairs of observations were assumed
to be independent and identically distributed, the Di -values, for i = 1, 2, . . . , n, are
independent and identically distributed; using Theorem 5.12, we see that

μD = E(Di ) = E(Y1i ) − E(Y2i ) = μ1 − μ2,

σ 2
D = Var(Di ) = Var(Y1i ) + Var(Y2i ) − 2Cov(Y1i , Y2i )

= σ 2
1 + σ 2

2 − 2ρσ1σ2.

From these considerations, a natural estimator for μ1 − μ2 is the average of the
differences D = Y 1 − Y 2, and

E(D) = μD = μ1 − μ2,

σ 2
D

= Var(D) = σ 2
D

n
= 1

n

[
σ 2

1 + σ 2
2 − 2ρσ1σ2

]
.

If the data had been obtained from an independent samples experiment and n1 =
n2 = n,

E(Y 1 − Y 2) = μ1 − μ2,

σ 2
(Y 1−Y 2)

= 1

n

[
σ 2

1 + σ 2
2

]
.

If it is reasonable to believe that within the pairs (Y1i , Y2i ), for i = 1, 2, . . . , n,
the values of Y1i and Y2i will tend to increase or decrease together (ρ > 0), then
an examination of the preceding expressions for σ 2

D
in the matched-pairs experiment

and σ 2
(Y 1−Y 2)

in the independent samples experiment shows that the matched-pairs
experiment provides an estimator with smaller variance than does the independent
samples experiment. In Exercise 12.11, you are asked to decide when the two experi-
ments will yield estimators with the same variance and when the independent samples
experiment will give the estimator with the smaller variance.

Because pairing samples makes the observations within each pair dependent, we
cannot use the methods that were previously developed to compare populations based
on independent samples from each. The analysis of a matched-pairs experiment uses
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the n paired differences, Di , for i = 1, 2, . . . , n. Inferences regarding the differences
in the means μ1 − μ2 are made by making inferences regarding the mean of the
differences, μD . Define

D = 1

n

n∑
i=1

Di and S2
D = 1

n − 1

n∑
i=1

(Di − D)2

and employ the appropriate one-sample procedure to complete the inference. If the
number of pairs, and hence the number of differences, is large—say, n > 30—the
large-sample inferential methods developed in Chapters 8 and 10 can be used. If
the number of differences n is small and it is reasonable to assume that the differences
are approximately normally distributed, we can use inferential methods based on the
t distribution. We illustrate with the following example.

EXAMPLE 12.2 We wish to compare two methods for determining the percentage of iron ore in
ore samples. Because inherent differences in the ore samples would be likely to
contribute unwanted variability in the measurements that we observe, a matched-
pairs experiment was created by splitting each of 12 ore samples into two parts.
One-half of each sample was randomly selected and subjected to method 1; the other
half was subjected to method 2. The results are presented in Table 12.1. Do the data
provide sufficient evidence that method 2 yields a higher average percentage than
method 1? Test using α = .05.

Solution We have formed the differences in Table 12.1 by taking the method 1 measurement
and subtracting the corresponding method 2 measurement. If the mean percentage
for method 2 is larger, then μD = μ1 − μ2 < 0. Thus, we test

H0 : μD = 0 versus Ha : μD < 0.

Table 12.1 Data for the matched-pairs experiment in Example 12.2

Ore Sample Method 1 Method 2 di

1 38.25 38.27 −.02
2 31.68 31.71 −.03
3 26.24 26.22 +.02
4 41.29 41.33 −.04
5 44.81 44.80 +.01
6 46.37 46.39 −.02
7 35.42 35.46 −.04
8 38.41 38.39 +.02
9 42.68 42.72 −.04

10 46.71 46.76 −.05
11 29.20 29.18 +.02
12 30.76 30.79 −.03

d = −.0167
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For these data,

s2
D =

n∑
i=1

d2
i − 1

n

(
n∑

i=1

di

)2

n − 1
=

.0112 − 1

12
(−.20)2

11
= .0007.

If it is reasonable to assume that the differences are normally distributed, it follows
that

t = d − 0

sD/
√

n
= −.0167√

.0007/
√

12
= −2.1865

is the observed value of a statistic that under the null hypothesis has a t distribution
with n − 1 = 11 degrees of freedom (df ). Using Table 5, Appendix 3, with α = .05,
we reject H0 if t < −1.796. Hence, we conclude that sufficient evidence exists to
permit us to conclude that method 2 yields a higher average percentage than does
method 1. Again, using Table 5, Appendix 3, it follows that .025 < p-value < .05.
The applet Student’s t Probabilities and Quantiles gives the exact p-value = P(t <

−2.1865) = P(t > 2.1856) = .02564.

Although the results in Example 12.2 imply that the results of the experiment
are statistically significant, we can assess the practical significance of the result by
forming a confidence interval for μD . If it is reasonable to assume that the differences
within each pair are approximately normally distributed, a 100(1 − α)% confidence
interval for μD = μ1 − μ2 is given by

D ± tα/2

(
SD√

n

)
,

where tα/2 is based on n − 1 df (recall that n is the number of pairs of observations).

EXAMPLE 12.3 Use the data from Example 12.2 to form a 95% confidence interval for the difference
in mean percentage readings using methods 1 and 2.

Solution From Example 12.2, we observe that

d = −.0167, s2
D = .0007, n − 1 = 11.

Because, with 11 df, t0.025 = 2.201, the desired interval is

−.0167 ± (2.201)

√
.0007√

12
, or (−.0335, +.0001).

The preceding methods based on the t distribution can be validly employed if it
is reasonable to assume that the differences are normally distributed. When we com-
pared two population means based on small independent samples, we required that
the population variances be equal. The validity of the matched-pair analysis does not
require the assumption of equal population variances. The quantity S2

D provides an
unbiased estimator for the variance of the differences, σ 2

D , regardless of the values of
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σ 2
1 , σ 2

2 , and ρ. The independent samples t test also required that both samples were
taken from normally distributed populations. One way that the differences within pairs
can be normally distributed is if Y1i , for i = 1, 2, . . . , n, and Y2i , for i = 1, 2, . . . , n,
are themselves normally distributed. However, it is possible that the pairwise differ-
ences will be normally distributed even if the Y1’s and Y2’s are not. Exercise 12.17
presents an example of such a situation. Thus, the assumption that the differences be
normally distributed is less restrictive than the assumption that both populations are
normally distributed.

We have seen that the matched-pairs experiment can be used to decrease the inher-
ent variability present in the data. Further, in many situations, the assumptions required
to validly employ a matched-pairs analysis are less restrictive than the corresponding
independent samples methods. Why do statistical analysts encounter matched-pairs
data? Sometimes the matched-pairs experiment was performed by design, taking into
account the considerations previously discussed. Other times, data were obtained via
the matched-pair experiment because of convenience. Whatever the reason for con-
ducting a matched-pairs experiment, the resulting data should not be analyzed using
a method appropriate for data obtained using independent samples.

Recall that the data from a matched-pairs experiment are analyzed by focusing on
the differences of the observations within each pair. Thus, some statisticians prefer to
refer to the matched-pairs experiment as a paired-difference experiment. In the next
section, we present some common terminology associated with experimental designs
and consider extensions of the independent samples experiment and the matched-pairs
experiment.

Exercises
12.9 Consider the data analyzed in Examples 12.2 and 12.3.

a Assuming that both the methods used to analyze the samples worked reasonably well, why
do you think that the observations on the two halves of each ore sample will be positively
correlated?

b Do you think that we should have taken independent observations using the two methods,
or should we have conducted the paired analysis contained in the text? Why?

12.10 Two computers often are compared by running a collection of various “benchmark” programs
and recording the difference in CPU time required to complete the same program. Six bench-
mark programs, run on two computers, produced the following table of CPU times (in minutes).

Benchmark Program

Computer 1 2 3 4 5 6

1 1.12 1.73 1.04 1.86 1.47 2.10
2 1.15 1.72 1.10 1.87 1.46 2.15

a Do the data provide sufficient evidence to indicate a difference in mean CPU times required
for the two computers to complete a job? Test using α = .05.

b Give bounds for the associated p-value.

c Find a 95% confidence interval for the difference in mean CPU time required for the two
computers to complete a job.
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12.11 When Y1i , for i = 1, 2, . . . , n, and Y2i , for i = 1, 2, . . . , n, represent independent samples from
two populations with means μ1 and μ2 and variances σ 2

1 and σ 2
2 , respectively, we determined

that σ 2
(Y 1−Y 2)

= (1/n)(σ 2
1 + σ 2

2 ). If the samples were paired and we computed the differences,
Di , for i = 1, 2, . . . , n, we determined that σ(2/D) = (1/n)(σ 2

1 + σ 2
2 − 2ρσ1σ2).

a When is σ 2
(Y 1−Y 2)

greater than σ(2/D)?

b When is σ 2
(Y 1−Y 2)

equal to σ(2/D)?

c When is σ 2
(Y 1−Y 2)

less than σ(2/D)?

d Based on the discussion in the text and your answers to parts (a)–(c), when would it be better
to implement the matched-pairs experiment and when would it be better to implement the
independent samples experiment?

12.12 Refer to Exercise 12.11. Assume that σ 2
1 = σ 2

2 = σ 2. The table values used to implement a
test of hypothesis or construct a confidence interval depend, for small samples, on the number
of degrees of freedom associated with the estimates for σ 2 or σ 2

D .

a Assuming two independent samples, each of size n, and that σ 2
1 = σ 2

2 = σ 2, how many
degrees of freedom are associated with the estimator for the common variance σ 2?

b Assuming a matched-pairs experiment consisting of n pairs of observations, how many
degrees of freedom are associated with the estimator of σ 2

D?

c Assume that all of the assumptions necessary to implement the independent samples t
procedures are satisfied and that we want to find a 95% confidence interval for the difference
in means. What are the values of t.025 used to construct confidence intervals for the difference
in means based on the independent samples and matched-pairs experiments if n = 5?
If n = 10? If n = 30?

d If all of the assumptions necessary to implement the independent samples t procedures
are satisfied, identify a possible disadvantage to implementing a matched-pairs experiment
rather than taking independent samples.

12.13 Exercise 10.76 describes a dental experiment conducted to investigate the effectiveness of an
oral rinse used to inhibit the growth of plaque on teeth. Subjects were divided into two groups:
One group used a rinse containing the antiplaque agent, and the control group used a rinse
with only inactive ingredients. Another experiment has been performed to assess the growth of
plaque for individuals who have used the rinse with the antiplaque agent. For each person in the
study, plaque buildup was measured 4 hours after using the rinse and again after 8 hours. If you
wanted to compare the mean plaque buildup for the two different times, would you implement
an analysis based on a matched-pairs or independent samples procedure? Why?

12.14 Two procedures for sintering copper are to be compared by testing each procedure on six
different types of powder. The measurement of interest is the porosity (volume percentage due
to voids) of each test specimen. The results of the tests are as shown in the accompanying table.

Powder Procedure I Procedure II

1 21 23
2 27 26
3 18 21
4 22 24
5 26 25
6 19 16

Is there sufficient evidence to claim that procedure II produces higher mean porosity values?
Give bounds for the p-value. What would you conclude at the α = .05 level?
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650 Chapter 12 Considerations in Designing Experiments

12.15 A plant manager, in deciding whether to purchase a machine of design A or design B, checks
the times for completing a certain task on each machine. Eight technicians were used in the
experiment, with each technician using both machine A and machine B in a randomized order.
The times (in seconds) required to complete the task are given in the accompanying table.

Technician A B

1 32 30
2 40 39
3 42 42
4 26 23
5 35 36
6 29 27
7 45 41
8 22 21

a Test to see if there is a significant difference between mean completion times, at the 5%
significance level.

b Do you think pairing on technicians was worthwhile in this case? Explain.

c What assumptions are necessary for the test in part (a)?

12.16 “Muck” is the rich, highly organic type of soil that serves as the primary growth medium for
vegetation in the Florida Everglades. Because of the high concentration of organic material,
muck can be destroyed over time by a variety of natural and human-made causes. Members of
the Florida Game and Fresh Water Fish Commission staked out several plots in the Everglades.
The depth of muck at each location was measured when each plot was marked and again
6 years later. The following table identifies a portion of the data (given in inches) obtained.

Plot Initial Reading Later Reading Plot Initial Reading Later Reading

1 34.5 31.5 9 44.0 35.2
2 44.0 37.9 10 40.5 37.2
3 37.5 35.5 11 27.0 24.7
4 27.0 23.0 12 29.5 25.8
5 37.0 34.5 13 31.5 29.0
6 40.0 31.1 14 35.0 36.8
7 47.2 46.0 15 44.0 36.5
8 35.2 31.0

a Test to see if there is sufficient evidence to indicate a decrease in average muck depth during
the study period. Give bounds on the associated p-value. What would you conclude if you
desired to implement an α = .01 level test? (Although you are free to take the necessary
differences in any order that you prefer, the answer provided at the back of the book assumes
that the differences were formed by taking later readings minus initial readings.)

b Give a 95% confidence interval for the difference in mean muck depths at the end and
beginning of the study. Interpret this interval. [See the remark following part (a).]

c Give a 95% confidence interval for the initial mean muck depth in the portion of the
Everglades in which the study was conducted.

d Repeat the instructions of part (c) for later readings.

e What assumptions are necessary to apply the techniques you used in answering parts (a)
and (b)? Parts (c) and (d)?
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12.17 Refer to the matched-pairs experiment and assume that the i th measurement (i = 1, 2), in the
j th pair, where j = 1, 2, . . . , n, is

Yi j = μi + U j + εi j ,

where μi = expected response for population i , where i = 1, 2,

U j = a random variable that is uniformly distributed on the interval (−1, +1),

εi j = random error associated with the i th measurement in the j th pair.

Assume that the εi j ’s are independent normal random variables with E(εi j ) = 0 and
V (εi j ) = σ 2, and that U j and εi j are independent.

a Find E(Yi j ).

b Argue that the Y1 j ’s, for j = 1, 2, . . . , n, are not normally distributed. (There is no need
to actually find the distribution of the Y1-values.)

c Show that Cov(Y1 j , Y2 j ) = 1/3, for j = 1, 2, . . . , n.

d Show that D j = Y1 j − Y2 j are independent, normally distributed random variables.

e In parts (a)–(d), you verified that the differences within each pair can be normally distributed
even though the individual measurements within the pairs are not. Can you come up with
another example that illustrates this same phenomenon?

12.4 Some Elementary Experimental Designs
In Chapters 8 and 10, we considered methods to compare the means of two pop-
ulations based on independent random samples obtained from each. Section 12.3
dealt with a comparison of two population means through the matched-pairs exper-
iment. In this section, we present general considerations associated with designing
experiments. Specifically, we consider extensions of the independent samples and
matched-pairs methodologies when the objective is to compare the means of more
than two populations.

Suppose that we wish to compare five teaching techniques, A, B, C, D, and E, and
that we use 125 students in the study. The objective is to compare the mean scores
on a standardized test for students taught by each of the five methods. How would
we proceed? Even though the 125 students are in some sense representative of the
students that these teaching methods target, are the students all identical? The answer
is obviously no.

There are likely to be boys and girls in the group, and the methods might not be
equally effective for both genders. There are likely to be differences in the native
abilities of the students in the group, resulting in some students performing better
regardless of the teaching method used. Different students may come from families
that place different emphases on education, and this could have an impact on the
scores on the standardized test. In addition, there may be other differences among the
125 students that would have an unanticipated effect on the test scores.

Based on these considerations, we decide that it might be wise to randomly as-
sign 25 students to each of five groups. Each group will be taught using one of the
techniques under study. The random division of the students into the five groups
achieves two objectives. First, we eliminate the possible biasing effect of individual
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652 Chapter 12 Considerations in Designing Experiments

characteristics of the students on the measurements that we make. Second, it provides
a probabilistic basis for the selection of the sample that permits the statistician to
calculate probabilities associated with the observations in the sample and to use these
probabilities in making inferences.

The preceding experiment illustrates the basic components of a designed experi-
ment. The experimental units in this study are the individual students.

DEFINITION 12.1 Experimental units are the objects upon which measurements are taken.

This experiment involves a single factor—namely, method of teaching. In this
experiment, the factor has five levels: A, B, C, D, and E.

DEFINITION 12.2 Factors are variables completely controlled by the experimenter. The intensity
level (distinct subcategory) of a factor is called its level.

In a single-factor experiment like the preceding one, each level of the single factor
represents a treatment. Thus, in our education example, there are five treatments,
one corresponding to each of the teaching methods. As another example, consider
an experiment conducted to investigate the effect of various amounts of nitrogen and
phosphate on the yield of a variety of corn. An experimental unit would be a specified
acreage—say, 1 acre—of corn. A treatment would be a fixed number of pounds of
nitrogen x1 and of phosphate x2 applied to a given acre of corn. For example, one
treatment might be to use x1 = 100 pounds of nitrogen per acre and x2 = 200 pounds
of phosphate. A second treatment might correspond to x1 = 150 and x2 = 100. Notice
that the experimenter could use different amounts (x1, x2) of nitrogen and phosphate
and that each combination would represent a different treatment.

DEFINITION 12.3 A treatment is a specific combination of factor levels.

The preceding experiment for comparing teaching methods A, B, C, D, and E
entailed randomly dividing the 125 students into five groups, each of size 25. Each
group received exactly one of the treatments. This is an example of a completely
randomized design.

DEFINITION 12.4 A completely randomized design to compare k treatments is one in which a
group of n relatively homogeneous experimental units are randomly divided
into k subgroups of sizes n1, n2, . . . , nk (where n1 + n2 + · · · + nk = n).
All experimental units in each subgroup receive the same treatment, with each
treatment applied to exactly one subgroup.
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Associated with each treatment is a population (often conceptual) consisting of
all observations that would have resulted if the treatment were repeatedly applied. In
the teaching example, we could envision a population of all possible test scores if
all students were taught using method A. Corresponding conceptual populations are
associated with each of the other teaching methods. Thus, each treatment has a corre-
sponding population of measurements. The observations obtained from a completely
randomized design are typically viewed as being independent random samples taken
from the populations corresponding to each of the treatments.

Suppose that we wish to compare five brands of aspirin, A, B, C, D, and E, re-
garding the mean amount of active ingredient per tablet for each of the brands. We
decide to select 100 tablets randomly from the production of each manufacturer and
use the results to implement the comparison. In this case, we physically sampled
five distinct populations. Although we did not “apply” the different treatments to
a homogeneous batch of blank tablets, it is common to refer to this experiment as
involving a single factor (manufacturer) and five treatments (corresponding to the
different manufacturers). Thus, in this example, for each population, we identify a
corresponding treatment. Regardless of whether we have implemented a completely
randomized design or taken independent samples from each of several existing
populations, a one-to-one correspondence is established between the populations and
the treatments. Both of these scenarios, in which independent samples are taken from
each of k populations, are examples of a one-way layout.

DEFINITION 12.5 A one-way layout to compare k populations is an arrangement in which inde-
pendent random samples are obtained from each of the populations of interest.

Thus, a one-way layout, whether it corresponds to data obtained by using a com-
pletely randomized design or by taking independent samples from each of several
existing populations, is the extension of the independent samples experiments that
we considered in Chapters 8 and 10. Methods of analyzing data obtained from a
one-way layout are presented in Sections 13.3–13.7.

In Section 12.3, we saw that a matched-pairs design often yields a superior method
for comparing the means of two populations or treatments. When we were interested in
comparing the effectiveness of two drugs for controlling hypertension, we suggested
forming matched pairs of individuals who were of the same sex and of similar age and
weight. One randomly selected member of each pair received treatment 1 whereas
the other received treatment 2. The objective was to control for extraneous sources
of variability and thus to obtain a more precise analysis. Suppose that we wanted to
compare three different medications instead of two. How would we proceed? Instead
of forming several pairs of matched individuals, we could form several groups, each
containing three members matched on sex, weight, and age. Within each group of
three, we would randomly select one individual to receive treatment 1 and another
to receive treatment 2, and then we would administer treatment 3 to the remaining
member of each group. The objective of this design is identical to that of the matched-
pairs design—namely, to eliminate unwanted sources of variability that might creep
into the observations in our experiment. This extension of the matched-pairs design
is called a randomized block design.
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654 Chapter 12 Considerations in Designing Experiments

DEFINITION 12.6 A randomized block design containing b blocks and k treatments consists of b
blocks of k experimental units each. The treatments are randomly assigned to the
units in each block, with each treatment appearing exactly once in every block.

The difference between a randomized block design and the completely randomized
design can be demonstrated by considering an experiment designed to compare subject
reaction to a set of four stimuli (treatments) in a stimulus–response psychological
experiment. We will denote the treatments as T1, T2, T3, and T4.

Suppose that eight subjects are to be randomly assigned to each of the four treat-
ments. Random assignment of subjects to treatments (or vice versa) randomly dis-
tributes errors due to person-to-person variability in response to the four treatments
and yields four samples that, for all practical purposes, are random and independent.
This is a completely randomized experimental design.

The experimental error associated with a completely randomized design has a
number of components. Some of these are due to the differences between subjects,
to the failure of repeated measurements within a subject to be identical (due to the
variations in physical and psychological conditions), to the failure of the experimenter
to administer a given stimulus with exactly the same intensity in repeated measure-
ments, and to errors of measurement. Reduction of any of these causes of error will
increase the information in the experiment.

The subject-to-subject variation in the foregoing experiment can be eliminated by
using subjects as blocks. Each subject would receive each of the four treatments as-
signed in a random sequence. The resulting randomized block design would appear as
in Figure 12.3. Now only eight subjects are needed to obtain eight response measure-
ments per treatment. Notice that each treatment occurs exactly once in each block.

The word randomized in the name of the design implies that the treatments are
randomly assigned within a block. For our experiment, position in the block refers
to the position in the sequence of stimuli assigned to a given subject over time. The
purpose of the randomization (that is, position in the block) is to eliminate bias caused
by fatigue or learning.

Blocks may represent time, location, or experimental material. If three treatments
are to be compared and there is a suspected trend in the mean response over time,
a substantial part of the time-trend variation may be removed by blocking. All three
treatments would be randomly applied to experimental units in one small block of
time. This procedure would be repeated in succeeding blocks of time until the required
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amount of data is collected. A comparison of the sale of competitive products in
supermarkets should be made within supermarkets, thus using the supermarkets as
blocks and removing store-to-store variability. Animal experiments in agriculture
and medicine often use animal litters as blocks, applying all the treatments, one
each, to animals within a litter. Because of heredity, animals within a litter are more
homogeneous than those between litters. This type of blocking removes litter-to-litter
variation. The analysis of data generated by a randomized block design is discussed
in Sections 13.8–13.10.

The randomized block design is only one of many types of block designs. Blocking
in two directions can be accomplished by using a Latin square design. Suppose that
the subjects of the preceding example became fatigued as the stimuli were applied,
so the last stimulus always produced a lower response than the first. If this trend (and
consequent lack of homogeneity of the experimental units within a block) were true
for all subjects, a Latin square design would be appropriate. The design would be
constructed as shown in Figure 12.4. Each stimulus is applied once to each subject
and occurs exactly once in each position of the order of presentation. All four stimuli
occur in each row and in each column of the 4×4 configuration. The resulting design
is a 4 × 4 Latin square. A Latin square design for three treatments requires a 3 × 3
configuration; in general, p treatments require a p × p array of experimental units.
If more observations are desired per treatment, the experimenter should use several
Latin square configurations in one experiment. In the preceding example, it would
be necessary to run two Latin squares to obtain eight observations per treatment. The
experiment would then contain the same number of observations per treatment as the
randomized block design (Figure 12.3).

A comparison of means for any pair of stimuli would eliminate the effect of subject-
to-subject variation, but it would also eliminate the effect of the fatigue trend within
each stimulus because each treatment was applied in each position of the stimuli-time
administering sequence. Consequently, the effect of the trend would be canceled in
comparing the means. A more extensive discussion of block designs and their analyses
is contained in the texts listed in the references at the end of the chapter.

The objective of this section has been to present some of the basic considerations
in designing experiments. We have discussed the role of randomization in all well-
designed experiments and have focused on extensions of the independent samples
and matched-pairs experiments to situations in which we wish to compare more than
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two treatments. Particularly, we pointed out the existence of block designs, how they
work, and how they can produce substantial increases in the quantity of information
obtained from an experiment by reducing nuisance variation.

Exercises
12.18 Two drugs, A and B, are to be applied to five rats each. Suppose that the rats are numbered

from 1 to 10. Use the random number table to assign the rats randomly to the two treatments.

12.19 Refer to Exercise 12.18. Suppose that the experiment involved three drugs, A, B, and C, with 5
rats assigned to each. Use the random number table to assign the 15 rats randomly to the three
treatments.

12.20 A chemical engineer has two catalysts and three temperature settings that she wishes to use in
a series of experiments.

a How many treatments (factor-level combinations) are there in this experiment? Carefully
describe one of these treatments.

b Each experiment makes use of one catalyst–temperature combination. Show how you
would use a random number table to randomize the order of the experiments.

12.21 Give two reasons for utilizing randomization in an experiment.

12.22 What is a factor?

12.23 What is a treatment?

12.24 Could a variable be a factor in one experiment and a nuisance variable (source of extraneous
variation) in another?

12.25 If you were to design an experiment, what part of the design procedure would increase the
accuracy of the experiment? What part of the design procedure would decrease the impact of
extraneous sources of variability?

12.26 An experiment is to be conducted to compare the effect of digitalis on the contraction of the heart
muscles of rats. The experiment is conducted by removing the heart from a live rat, slicing the
heart into thin layers, and treating the layers with dosages of digitalis. The muscle contraction
is then measured. If four dosages, A, B, C, and D, are to be employed, what advantage might
be derived by applying A, B, C, and D to a slice of tissue from the heart of each rat? What
principle of design is illustrated by this example?

12.27 Complete the assignment of treatments for the following 3 × 3 Latin square design.

C

A
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12.5 Summary
The objective of this chapter has been to identify the factors that affect the quantity of
information in an experiment and to use this knowledge to design better experiments.
The design of experiments is a very broad subject and certainly one not susceptible to
condensation into a single chapter in an introductory text. However, the philosophy
underlying design, some methods for varying information in an experiment, and some
desirable strategies for design are easily explained.

We have seen that the amount of information pertinent to a parameter of interest
depends on the selection of factor-level combinations (treatments) to be included
in the experiment and on the allocation of the total number of experimental units to the
treatments. Randomization is an important component of any designed experiment.
The use of randomization helps eliminate biases in experimental results and provides
the theoretical basis for computing the probabilities that are key to the inference-
making process. Blocking—comparing treatments within relatively homogeneous
blocks of experimental material—can be used to eliminate block-to-block variation
when comparing treatments. As such, it serves as a filter to reduce the effect of
unwanted sources of variability.

The analysis of some elementary experimental designs is given in Chapter 13. A
more extensive treatment of the design and analysis of experiments is a course in
itself. If you are interested in exploring this subject, consult the texts listed in the
references that follow.
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Supplementary Exercises
12.28 How can one measure the information in a sample pertinent to a specific population parameter?

12.29 What is a random sample?
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12.30 What factors affect the quantity of information in an experiment? What design procedures
control these factors?

12.31 Refer to the matched-pairs experiment of Section 12.3 and assume that the measurement
receiving treatment i , where i = 1, 2, in the j th pair, where j = 1, 2, . . . , n, is

Yi j = μi + Pj + εi j ,

where μi = expected response for treatment i , for i = 1, 2,

Pj = additive random effect (positive or negative) contribution by the j th
pair of experimental units, for j = 1, 2, . . . , n,

εi j = random error associated with the experimental unit in the j th pair that
receives treatment i .

Assume that the εi j ’s are independent normal random variables with E(εi j ) = 0, V (εi j ) = σ 2;
and assume that the Pj ’s are independent normal random variables with E(Pj ) = 0, V (Pj ) =
σ 2

p . Also, assume that the Pj ’s and εi j ’s are independent.

a Find E(Yi j ).

b Find E(Y i ) and V (Y i ), where Y i is the mean of the n observations receiving treatment i ,
where i = 1, 2.

c Let D = Y 1 − Y 2. Find E(D), V (D), and the probability distribution for D.

12.32 Refer to Exercise 12.31. Prove that

D
√

n

SD

possesses a t distribution, under H0 : (μ1 − μ2) = 0.

*12.33 Refer to Exercise 12.31. Suppose that a completely randomized design is employed for
the comparison of the two treatment means. Then, a response could be modeled by the
expression

Yi j = μi + Pi j + εi j ,

but the “pair effect” Pi j (which will still affect an experimental unit) will be randomly se-
lected and will likely differ from one of the 2n observations to another. Further, in contrast to
the matched-pairs experiment, the pair effects will not cancel when you calculate (Y 1 − Y 2).
Compare V (Y 1 −Y 2) = V (D) for this design with the matched-pairs design of Exercise 12.31.
Why is the variance for the completely randomized design usually larger?1

12.34 Persons submitting computing jobs to a computer center usually are required to estimate the
amount of computer time required to complete the job. This time is measured in CPUs, the
amount of time that a job will occupy a portion of the computer’s central processing unit’s
memory. A computer center decided to perform a comparison of the estimated versus actual
CPU times for a particular customer. The corresponding times were available for 11 jobs. The
sample data are given in the accompanying table.

1. Exercises preceded by an asterisk are optional.
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Job Number
CPU Time
(minutes) 1 2 3 4 5 6 7 8 9 10 11

Estimated .50 1.40 .95 .45 .75 1.20 1.60 2.6 1.30 .85 .60
Actual .46 1.52 .99 .53 .71 1.31 1.49 2.9 1.41 .83 .74

a Why would you expect that the observations within each of these pairs of data to be
correlated?

b Do the data provide sufficient evidence to indicate that, on the average, the customer tends
to underestimate the CPU time required for computing jobs? Test using α = .10.

c Find the observed significance level for the test and interpret its value.

d Find a 90% confidence interval for the difference in mean estimated CPU time versus mean
actual CPU time.

12.35 The earth’s temperature affects seed germination, crop survival in inclement weather, and many
other aspects of agricultural production. Temperature at various locations can be measured
using ground-based sensors or infrared-sensing devices mounted on aircraft or space satellites.
Ground-based sensoring is tedious and requires many replications to obtain accurate estimates
of ground temperature. On the other hand, airplane- or satellite-mounted sensors appear to
introduce a bias in temperature readings. To estimate the amount of bias, both methods were
used to measure ground temperature at five locations. The readings, measured in degrees
Celsius, are given in the following table.

Temperature (◦C)

Location Ground Air

1 46.9 47.3
2 45.4 48.1
3 36.3 37.9
4 31.0 32.7
5 24.7 26.2

a Do the data present sufficient evidence to claim a difference in average ground-temperature
readings using ground- and air-based sensors?

b Construct a 95% confidence interval for the difference in mean ground-temperature read-
ings using ground- and air-based sensors.

c We want to estimate the difference between mean temperature readings for ground- and
air-based sensors to within .2◦C at the 95% confidence level. Approximately how many
paired observations (measurements at different locations) are required?

12.36 An experiment was conducted to compare mean reaction time to two types of traffic signs:
prohibitive (no left turn) and permissive (left turn only). Ten subjects were included in the
experiment. Each subject was presented 40 traffic signs, 20 prohibitive and 20 permissive, in
random order. The mean time to reaction and the number of correct actions were recorded for
each subject. The mean reaction times to the 20 prohibitive and 20 permissive traffic signs for
each of the ten subjects are reproduced in the following table.
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Mean Reaction Times (ms)
for 20 Traffic Signs

Subject Prohibitive Permissive

1 824 702
2 866 725
3 841 744
4 770 663
5 829 792
6 764 708
7 857 747
8 831 685
9 846 742

10 759 610

a Explain why this is a matched-pairs experiment and give reasons why the pairing should
be useful in increasing information on the difference between the mean reaction times to
prohibitive and permissive traffic signs.

b Do the data present sufficient evidence to indicate a difference in mean reaction times to
prohibitive and permissive traffic signs? Test using α = .05.

c Find and interpret the approximate p-value for the test in part (b).

d Find a 95% confidence interval for the difference in mean reaction times to prohibitive and
permissive traffic signs.

*12.37 Suppose that you wish to fit the model

Y = β0 + β1x + β2x2 + ε

to a set of n data points. If the n points are to be allocated at the design points x = −1, 0, and
1, what fraction should be assigned to each value of x so as to minimize V (β̂2)? (Assume that
n is large and that k1, k2, and k3, k1 + k2 + k3 = 1, are the fractions of the total number of
observations to be assigned at x = −1, 0, and 1, respectively.)
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The Analysis of Variance
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13.2 The Analysis of Variance Procedure

13.3 Comparison of More Than Two Means: Analysis of Variance
for a One-Way Layout

13.4 An Analysis of Variance Table for a One-Way Layout

13.5 A Statistical Model for the One-Way Layout

13.6 Proof of Additivity of the Sums of Squares and E (MST) for a One-Way
Layout (Optional)
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13.10 Estimation in the Randomized Block Design

13.11 Selecting the Sample Size

13.12 Simultaneous Confidence Intervals for More Than One Parameter

13.13 Analysis of Variance Using Linear Models

13.14 Summary

References and Further Readings

13.1 Introduction
Most experiments involve a study of the effect of one or more independent variables
on a response. Independent variables that can be controlled in an experiment are called
factors, and the intensity level of a factor is called its level.

The analysis of data generated by a multivariable experiment requires identifica-
tion of the independent variables in the experiment. These will not only be factors
(controlled independent variables) but could also be directions of blocking. If one
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662 Chapter 13 The Analysis of Variance

studies wear measurements for three types of tires, A, B, and C, on each of four au-
tomobiles, “tire types” is a factor representing a single qualitative variable (there is
no quantitative or numerical value associated with the variable “tire type”) with three
levels. Automobiles are blocks and represent a single qualitative variable with four
levels. Responses for a Latin square design depend on the factors that represent treat-
ments but are also affected by two qualitative independent block variables, “rows”
and “columns.”

Methods for designing experiments to increase accuracy and to control for extra-
neous sources of variation were discussed in Chapter 12. In particular, the one-way
layout and the randomized block design were shown to be generalizations of simple
designs for the independent samples and matched-pairs comparisons of means that
were discussed in Chapters 8, 10, and 12. Treatments correspond to combinations
of factor levels and identify the different populations of interest to the experimenter.
This chapter presents an introduction to the analysis of variance and gives methods for
the analysis of the one-way layout (including the completely randomized design) and
randomized block designs. The analogous methods of analysis for the Latin square
design are not presented in this chapter, but they can be found in the texts listed in
the references at the end of the chapter.

13.2 The Analysis of Variance Procedure
The method of analysis for experiments involving several independent variables can
be explained by intuitively developing the procedure or, more rigorously, through the
linear models approach developed in Chapter 11. We begin by presenting an intuitive
discussion of a procedure known as the analysis of variance (ANOVA). An outline
of the linear model approach is presented in Section 13.13.

As the name implies, the ANOVA procedure attempts to analyze the variation
in a set of responses and assign portions of this variation to each variable in a set
of independent variables. Because the experimenter rarely, if ever, includes all the
variables affecting the response in an experiment, random variation in the responses
is observed even if all independent variables considered by the experimenter are held
constant. The objective of the ANOVA is to identify important independent variables
and determine how they affect the response.

The rationale underlying the ANOVA can best be indicated with a symbolic discus-
sion. The actual analysis—that is, how to do it—will be illustrated with an example.

As in Chapter 11, variability of a set of n measurements is quantified by the sum
of squares of deviations

∑n
i=1 (yi − y)2. The ANOVA procedure partitions this sum

of squares of deviations, called the total sum of squares, into parts, each of which is
attributed to one of the independent variables in the experiment, plus a remainder that
is associated with random error. Figure 13.1 illustrates such a partitioning for three
independent variables. If a multivariable linear model were written for the response,
as suggested in Chapter 11, the portion of the total sum of squares assigned to error
is labeled SSE.

For the cases that we consider and under the hypothesis that the independent
variables are unrelated to the response, each of the pieces of the total sum of squares,
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Sum of Squares for
Independent Variable

No. 1

Sum of Squares for
Independent Variable

No. 2

Sum of Squares for
Independent Variable

No. 3

Sum of Squares for
Error

Total Sum of Squares

n

i = 1
( yi – y)2$

F I G U R E 13.1
Partitioning of the

total sum of squares
of deviations

divided by an appropriate constant, provides an independent and unbiased estimator
of σ 2, the variance of the experimental error. When a variable is highly related to the
response, its portion of the total sum of squares (called the sum of squares for that
variable) will be inflated. This condition can be detected by comparing the sum of
squares for that variable with the sum of squares for error, SSE. The test will be based
on a statistic that possesses an F distribution and specifies that the hypothesis of no
effect for the independent variable should be rejected if the value of F is large.

The mechanism involved in an ANOVA can best be introduced by considering a
familiar example. Assume that we wish to use information in independent samples
of sizes n1 = n2 to compare the means of two normally distributed populations with
means μ1 and μ2 and equal variances σ 2

1 = σ 2
2 = σ 2. This experiment, formerly

analyzed using the independent samples t test, will now be approached from another
point of view. The total variation of the response measurements in the two samples
is quantified by (recall that n1 = n2)

Total SS =
2∑

i=1

ni∑
j=1

(Yi j − Y )2 =
2∑

i=1

n1∑
j=1

(Yi j − Y )2,

where Yi j denotes the j th observation in the i th sample and Y is the mean of all
n = 2n1 observations. This quantity can be partitioned into two parts, as follows:

Total SS =
2∑

i=1

n1∑
j=1

(Yi j − Y )2

= n1

2∑
i=1

(Y i − Y )2

︸ ︷︷ ︸
SST

+
2∑

i=1

n1∑
j=1

(Yi j − Y i )
2

︸ ︷︷ ︸
SSE

(proof deferred to Section 13.6), where Y i is the average of the observations in the i th
sample, for i = 1, 2. Let us examine the quantity SSE more closely. Recall that we
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664 Chapter 13 The Analysis of Variance

have assumed that the underlying population variances are equal and that n1 = n2.

SSE =
2∑

i=1

n1∑
j=1

(Yi j − Y i )
2 =

2∑
i=1

(n1 − 1)S2
i

= (n1 − 1)S2
1 + (n1 − 1)S2

2 ,

where

S2
i = 1

n1 − 1

n1∑
j=1

(Yi j − Y i )
2.

Recall that, in the case n1 = n2, the “pooled” estimator for the common variance σ 2

is given by

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
= (n1 − 1)S2

1 + (n1 − 1)S2
2

n1 + n1 − 2
= SSE

2n1 − 2
.

We have partitioned the total sum of squares of deviations into two parts. One part,
SSE, can be divided by 2n1 − 2 to obtain the pooled estimator of σ 2. Because there
are only two treatments (or populations) and n1 = n2, the other part,

SST = n1

2∑
i=1

(Y i − Y )2 = n1

2
(Y 1 − Y 2)

2,

the sum of squares for treatments (SST), will be large if |Y 1 − Y 2| is large. Hence,
the larger SST is, the greater will be the weight of evidence to indicate a difference
between μ1 and μ2. When will SST be large enough to indicate a significant difference
between μ1 and μ2?

Because we have assumed that Yi j is normally distributed with E(Yi j ) = μi , for
i = 1, 2, and V (Yi j ) = σ 2 and because SSE/(2n1 − 2) is identical to the pooled
estimator of σ 2 used in Chapters 8 and 10, it follows that

E

(
SSE

2n1 − 2

)
= σ 2

and that

SSE

σ 2
=

n1∑
j=1

(Y1 j − Y 1)
2

σ 2
+

n1∑
j=1

(Y2 j − Y 2)
2

σ 2

has a χ2 distribution with 2n1 − 2 degrees of freedom (df ) (see Section 8.8).
In Section 13.6, we will derive a result impling that

E(SST) = σ 2 + n1

2
(μ1 − μ2)

2.

Notice that SST estimates σ 2 if μ1 = μ2 and a quantity larger than σ 2 if μ1 7= μ2.
Under the hypothesis that μ1 = μ2, it follows that

Z = Y 1 − Y 2√
2σ 2/n1
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has a standard normal distribution; hence,

Z2 =
(n1

2

) [
(Y 1 − Y 2)

2

σ 2

]
= SST

σ 2

has a χ2 distribution with 1 df.
Notice that SST is a function of only the sample means Y 1 and Y 2 whereas SSE

is a function of only the sample variances S2
1 and S2

2 . Theorem 7.3 implies that, for
i = 1, 2, the sample means Y i and sample variances S2

i are independent. Because the
samples are assumed to be independent, it follows that SST and SSE are independent
random variables. Hence, from Definition 7.3, under the hypothesis that μ1 = μ2,

SST

σ 2

/
1

SSE

σ 2

/
(2n1 − 2)

= SST/1

SSE/(2n1 − 2)

has an F distribution with ν1 = 1 numerator degree of freedom and ν2 = (2n1 − 2)

denominator degrees of freedom.
Sums of squares divided by their respective degrees of freedom are called mean

squares. In this case, the mean square for error and the mean square for treatments
are given by

MSE = SSE

2n1 − 2
and MST = SST

1
.

Under H0 : μ1 = μ2, both MST and MSE estimate σ 2. However, when H0 is false
and μ1 7= μ2, MST estimates something larger than σ 2 and tends to be larger than
MSE. To test H0 : μ1 = μ2 versus Ha : μ1 7= μ2, we use

F = MST

MSE
as the test statistic.

Disagreement with the null hypothesis is indicated by a large value of F ; hence,
the rejection region for a test with significance level α is

F > Fα.

Thus, the ANOVA test results in a one-tailed F test. The degrees of freedom for F are
those associated with MST and MSE. In the present instance, as previously indicated,
F is based on ν1 = 1 and ν2 = 2n1 − 2 numerator and denominator degrees of
freedom, respectively.

For the two-sample problem under consideration, the F test just described is
equivalent to the two-tailed t test of Chapter 10. So why bother establishing this
equivalence? As we will see in Section 13.3, the F test readily generalizes to allow
comparison of any number of treatments.

EXAMPLE 13.1 The coded values for a measure of elasticity in plastic prepared by two different
processes are given in Table 13.1. Independent samples, both of size 6, were taken
from the output of each process. Do the data present sufficient evidence to indicate a
difference in mean elasticity for the two processes?
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666 Chapter 13 The Analysis of Variance

Table 13.1 Data for Example 13.1

A B

6.1 9.1
7.1 8.2
7.8 8.6
6.9 6.9
7.6 7.5
8.2 7.9

Solution Although the two-sample t test of Section 10.8 could be used to analyze these data,
we will use the ANOVA F test discussed earlier in this section. The three desired
sums of squares are

Total SS =
2∑

i=1

6∑
j=1

(yi j − y)2 =
2∑

i=1

6∑
j=1

y2
i j − 1

12

(
2∑

i=1

6∑
j=1

yi j

)2

= 711.35 − 1

12
(91.9)2 = 7.5492,

SST = n1

2∑
i=1

(yi − y)2 = 6
2∑

i=1

(yi − y)2 = 1.6875,

SSE =
2∑

i=1

6∑
j=1

(yi j − yi )
2 = 5.8617.

(You may verify that SSE is the pooled sum of squares of the deviations for the two
samples and that Total SS = SST + SSE.) The mean squares for treatment and error,
respectively, are

MST = SST

1
= 1.6875,

MSE = SSE

2n1 − 2
= 5.8617

10
= .58617.

To test the null hypothesis μ1 = μ2, we compute the value of the test statistic

F = MST

MSE
= 1.6875

.58617
= 2.88

and reject H0 if the calculated value of F exceeds Fα . The critical value of the F
statistic with 1 numerator degree of freedom and 10 denominator degrees of freedom
for α = .05 is F.05 = 4.96. Although the MST is almost three times the MSE, it is not
large enough to permit rejection of the null hypothesis. Consequently, at the α = .05
level of significance, there is not sufficient evidence to indicate a difference between
μ1 and μ2. The attained significance level is given by p-value = P(F > 2.88).
According to Table 7, Appendix 3, p-value > .10. The applet F-Ratio Probabilities
and Quantiles gives the exact p-value = P(F > 2.88) = .12054.

The purpose of this example is to illustrate the computations involved in a simple
ANOVA. The F test for comparing two means is equivalent to a two-sample t test
because the square of a t-distributed random variable with ν df has an F distribution
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with 1 numerator degree of freedom and ν denominator degrees of freedom. You
can easily verify that the square of t.025 = 2.228 (used for the two-tailed test with
α = .05 and ν = 10 df ) is equal to F.05 = 4.96. Had the t test been used for
Example 13.1, we would have obtained t = −1.6967, which satisfies the relationship
t2 = (−1.6967)2 = 2.88 = F .

Exercises
13.1 The reaction times for two different stimuli in a psychological word-association experiment

were compared by using each stimulus on independent random samples of size 8. Thus, a total
of 16 people were used in the experiment. Do the following data present sufficient evidence to
indicate that there is a difference in the mean reaction times for the two stimuli?

Stimulus 1 1 3 2 1 2 1 3 2

Stimulus 2 4 2 3 3 1 2 3 3

a Use the ANOVA approach to test the appropriate hypotheses. Test at the α = .05 level of
significance.

b Applet Exercise Use the applet F-Ratio Probabilities and Quantiles to determine the exact
p-value for the test in part (a).

c Test the appropriate hypotheses by using the two-sample t test for comparing population
means, which we developed in Section 10.8. Compare the value of the t statistic to the
value of the F statistic calculated in part (a).

d What assumptions are necessary for the tests implemented in the preceding parts?

13.2 Refer to Exercises 8.90 and 10.77.

a Use an F test to determine whether there is sufficient evidence to claim a difference in the
mean verbal SAT scores for high school students who intend to major in engineering and
language/literature. Give bounds for the associated p-value. What would you conclude at
the α = .05 level of significance?

b Applet Exercise Use the applet F-Ratio Probabilities and Quantiles to determine the exact
p-value for the test in part (a).

c How does the value of the F statistic obtained in part (a) compare to the value of the t
statistic that you obtained in Exercise 10.77?

d What assumptions are necessary for the analyses performed in part (a)?

13.3 Comparison of More Than Two Means:
Analysis of Variance for a One-Way Layout
An ANOVA to compare more than two population means is a simple generalization of
the ANOVA presented in Section 13.2. The random selection of independent samples
from k populations is known as a one-way layout. As indicated in Section 12.4, the data
in a one-way layout may correspond to data obtained from a completely randomized
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668 Chapter 13 The Analysis of Variance

experimental design (see Definition 12.4) or from taking independent samples from
each of several existing populations.

Assume that independent random samples have been drawn from k normal pop-
ulations with means μ1, μ2, . . . , μk , respectively, and common variance σ 2. To be
completely general, we will allow the sample sizes to be unequal and let ni , for
i = 1, 2, . . . , k, be the number of observations in the sample drawn from the i th pop-
ulation. The total number of observations in the experiment is n = n1 +n2 +· · ·+nk .

Let Yi j denote the response for the j th experimental unit in the i th sample and
let Yi• and Y i• represent the total and mean, respectively, of the ni responses in
the i th sample. The dot in the second position in the subscript of Yi• is intended to
remind you that this quantity is computed by summing over all possible values of the
subscript that is replaced by the dot— j , in this case. Similarly the subscripts of Y i•
indicate that this mean is calculated by averaging the values in the i th sample. Thus,
for i = 1, 2, . . . , k,

Yi• =
ni∑

j=1

Yi j and Y i• =
(

1

ni

) ni∑
j=1

Yi j =
(

1

ni

)
Yi•.

This modification in the symbols for sample totals and averages will simplify the
computing formulas for the sums of squares.

Then, as in the ANOVA involving two means, we have

Total SS = SST + SSE

(proof deferred to Section 13.6), where

Total SS =
k∑

i=1

ni∑
j=1

(Yi j − Y )2 =
k∑

i=1

ni∑
j=1

Y 2
i j − CM,

CM = (total of all observations)2

n
= 1

n

(
k∑

i=1

ni∑
j=1

Yi j

)2

= nY
2
,

(the symbol CM denotes correction for the mean),

SST =
k∑

i=1

ni (Y i• − Y )2 =
k∑

i=1

Y 2
i•

ni
− CM,

SSE = Total SS − SST.

Although the easy way to compute SSE is by subtraction, as shown earlier, it is
interesting to observe that SSE is the pooled sum of squares for all k samples and is
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equal to

SSE =
k∑

i=1

ni∑
j=1

(Yi j − Y i•)2

=
k∑

i=1

(ni − 1)S2
i ,

where

S2
i = 1

ni − 1

ni∑
j=1

(Yi j − Y i•)2.

Notice that SSE is a function of only the sample variances S2
i , for i = 1, 2, . . . , k.

Because each of the S2
i values provides an unbiased estimator for σ 2

i = σ 2 with ni −
1 df, an unbiased estimator of σ 2 based on (n1 + n2 + · · · + nk − k) = n − k df is
provided by

S2 = MSE = SSE

(n1 − 1) + (n2 − 1) + · · · + (nk − 1)
= SSE

n − k
.

Because

Y = 1

n

k∑
i=1

ni∑
j=1

Yi j = 1

n

k∑
i=1

ni Y i•,

it follows that SST is a function of only the sample means Y i•, for i = 1, 2, . . . , k.
The MST possesses (k − 1) df—that is, 1 less than the number of means—and is

MST = SST

k − 1
.

To test the null hypothesis,

H0 : μ1 = μ2 = · · · = μk,

against the alternative that at least one of the equalities does not hold, we compare
MST with MSE, using the F statistic based on ν1 = k−1 and ν2 = n−k numerator and
denominator degrees of freedom, respectively. The null hypothesis will be rejected if

F = MST

MSE
> Fα,

where Fα is the critical value of F for a test of level α. In Exercise 13.6, you will prove
that, under H0 : μ1 = μ2 = · · · = μk , the statistic F possesses an F distribution with
k − 1 and n − k numerator and denominator degrees of freedom, respectively.
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In keeping with our previous conventions, we will use the notation yi j to denote the
observed value of Yi j . Similarly, we will use yi• and yi• to denote the observed values
of Yi• and Y i•, for i = 1, 2, . . . , k, respectively. Intuitively, the greater the differences
among the observed values of the treatment means, y1•, y2•, . . . , yk•, the greater is
the evidence to indicate a difference among the corresponding population means. If
all of the treatment means are identical, y1• = y2• = · · · = yk• = y, and all of the
differences that appear in the preceding expression for SST equal zero, implying that
SST = 0. As the treatment means get farther apart, the deviations (yi•− y) increase in
absolute value and the observed value of SST increases in magnitude. Consequently,
the larger the observed value of SST, the greater is the weight of evidence favoring
rejection of the null hypothesis. This same line of reasoning applies to the F tests
employed in the ANOVA for all designed experiments.

The assumptions underlying the ANOVA F tests deserve particular attention.
Independent random samples are assumed to have been selected from the k pop-
ulations. The k populations are assumed to be normally distributed with variances
σ 2

1 = σ 2
2 = · · · = σ 2

k = σ 2 and means μ1, μ2, . . . , μk . Moderate departures from
these assumptions will not seriously affect the properties of the test. This is particu-
larly true of the normality assumption. The assumption of equal population variances
is less critical if the sizes of the samples from the respective populations are all equal
(n1 = n2 = · · · = nk). A one-way layout with equal numbers of observations per
treatment is said to be balanced.

EXAMPLE 13.2 Four groups of students were subjected to different teaching techniques and tested at
the end of a specified period of time. As a result of dropouts from the experimental
groups (due to sickness, transfer, etc.), the number of students varied from group
to group. Do the data shown in Table 13.2 present sufficient evidence to indicate a
difference in mean achievement for the four teaching techniques?

Solution The observed values of the quantities necessary to compute the value of the F
statistic are

CM = 1

n

(
4∑

i=1

ni∑
j=1

yi j

)2

= (1779)2

23
= 137,601.8,

Total SS =
4∑

i=1

ni∑
j=1

y2
i j − CM = 139,511 − 137,601.8 = 1909.2,

SST =
4∑

i=1

y2
i•

ni
− CM = 138,314.4 − 137,601.8 = 712.6,

SSE = Total SS − SST = 1196.6.

The observed values of MST and MSE are

MST = SST

k − 1
= 712.6

3
= 237.5,

MSE = SSE

n − k
= 1196.6

19
= 63.0.
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Table 13.2 Data for Example 13.2

1 2 3 4

65 75 59 94
87 69 78 89
73 83 67 80
79 81 62 88
81 72 83
69 79 76

90

yi• 454 549 425 351
ni 6 7 6 4
yi• 75.67 78.43 70.83 87.75

Finally, the observed value of the test statistic for testing the null hypothesis
H0 : μ1 = μ2 = μ3 = μ4 is

F = MST

MSE
= 237.5

63.0
= 3.77,

where the appropriate numerator and denominator degrees of freedom are ν1 =
k − 1 = 3 and ν2 = n − k = (6 + 7 + 6 + 4) − 4 = 19, respectively.

The attained significance level is given by p-value = P(F > 3.77). Using Table 7,
Appendix 3, with 3 numerator and 19 denominator degrees of freedom, we see that
.025 < p-value < .05. Thus, if we choose α = .05 (or any larger value), we reject
the null hypothesis and conclude that there is sufficient evidence to indicate a differ-
ence in mean achievement among the four teaching procedures. The applet F-Ratio
Probabilities and Quantiles can be used to establish that the exact p-value = P(F >

3.77) = .02808.

You may feel that this conclusion could have been made on the basis of visual
observation of the treatment means. However, it is not difficult to construct a set of
data that will lead the visual decision maker to erroneous results.

13.4 An Analysis of Variance Table
for a One-Way Layout
The calculations for an ANOVA are usually displayed in an ANOVA (or AOV) table.
The table for the design in Section 13.3 for comparing k treatment means is shown in
Table 13.3. The first column shows the source associated with each sum of squares;
the second column gives the respective degrees of freedom; the third and fourth
columns give the sums of squares and mean squares, respectively. A calculated value
of F , comparing MST and MSE, is usually shown in the fifth column. Notice that
SST + SSE = Total SS and that the sum of the degrees of freedom for treatments and
error equals the total number of degrees of freedom.
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672 Chapter 13 The Analysis of Variance

Table 13.3 ANOVA table for a one-way layout

Source df SS MS F

Treatments k − 1 SST MST = SST

k − 1

MST

MSE

Error n − k SSE MSE = SSE

n − k

Total n − 1
k∑

i=1

ni∑
j=1

(yi j − y)2

Table 13.4 ANOVA table for Example 13.2

Source df SS MS F

Treatments 3 712.6 237.5 3.77
Error 19 1196.6 63.0

Total 22 1909.2

The ANOVA table for Example 13.2, shown in Table 13.4, gives a compact pre-
sentation of the appropriate computed quantities for the analysis of variance.

Exercises
13.3 State the assumptions underlying the ANOVA of a completely randomized design.

13.4 Refer to Example 13.2. Calculate the value of SSE by pooling the sums of squares of deviations
within each of the four samples and compare the answer with the value obtained by subtrac-
tion. This is an extension of the pooling procedure used in the two-sample case discussed in
Section 13.2.

*13.5 In Exercise 6.59, we showed that if Y1 and Y2 are independent χ 2-distributed random variables
with ν1 and ν2 df, respectively, then Y1 + Y2 has a χ 2 distribution with ν1 + ν2 df. Now suppose
that W = U +V , where U and V are independent random variables, and that W and V have χ2

distributions with r and s df, respectively, where r > s. Use the method of moment-generating
functions to prove that U must have a χ2 distribution with r − s df.1

13.6 Suppose that independent samples of sizes n1, n2, . . . , nk are taken from each of k normally
distributed populations with means μ1, μ2, . . . , μk and common variances, all equal to σ 2. Let
Yi j denote the j th observation from population i , for j = 1, 2, . . . , ni and i = 1, 2, . . . , k, and
let n = n1 + n2 + · · · + nk .

a Recall that

SSE =
k∑

i=1

(ni − 1)S2
i where S2

i = 1

ni − 1

ni∑
j=1

(Yi j − Y i•)2.

Argue that SSE/σ 2 has a χ 2 distribution with (n1 −1)+(n2 −1)+· · ·+(nk −1) = n−k df.

1. Exercises preceded by an asterisk are optional.
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b Argue that under the null hypothesis, H0 : μ1 = μ2 = · · · = μk all the Yi j ’s are inde-
pendent, normally distributed random variables with the same mean and variance. Use
Theorem 7.3 to argue further that, under the null hypothesis,

Total SS =
k∑

i=1

ni∑
j=1

(Yi j − Y )2

is such that (Total SS)/σ 2 has a χ 2 distribution with n − 1 df.

c In Section 13.3, we argued that SST is a function of only the sample means and that SSE is
a function of only the sample variances. Hence, SST and SSE are independent. Recall that
Total SS = SST + SSE. Use the results of Exercise 13.5 and parts (a) and (b) to show that,
under the hypothesis H0 : μ1 = μ2 = · · · = μk , SST/σ 2 has a χ 2 distribution with k −1 df.

d Use the results of parts (a)–(c) to argue that, under the hypothesis H0 : μ1 = μ2 = · · · = μk ,
F = MST/MSE has an F distribution with k − 1 and n − k numerator and denominator
degrees of freedom, respectively.

13.7 Four chemical plants, producing the same products and owned by the same company, discharge
effluents into streams in the vicinity of their locations. To monitor the extent of pollution created
by the effluents and to determine whether this differs from plant to plant, the company collected
random samples of liquid waste, five specimens from each plant. The data are given in the
accompanying table.

Plant Polluting Effluents (lb/gal of waste)

A 1.65 1.72 1.50 1.37 1.60
B 1.70 1.85 1.46 2.05 1.80
C 1.40 1.75 1.38 1.65 1.55
D 2.10 1.95 1.65 1.88 2.00

a Do the data provide sufficient evidence to indicate a difference in the mean weight of
effluents per gallon in the effluents discharged from the four plants? Test using α = .05.

b Applet Exercise Find the p-value associated with the test in part (a) using the applet
F-Ratio Probabilities and Quantiles.

13.8 In a study of starting salaries for assistant professors, five male assistant professors at each of
three types of doctoral-granting institutions were randomly polled and their starting salaries
were recorded under the condition of anonymity. The results of the survey (measured in $1000)
are given in the following table.2

Public Universities Private-Independent Church-Affiliated

49.3 81.8 66.9
49.9 71.2 57.3
48.5 62.9 57.7
68.5 69.0 46.2
54.0 69.0 52.2

2. Source: Adapted from “Average Salary for Men and Women Faculty, by Category, Affiliation, and
Academic Rank 2002–2003,” Academe: Bulletin of the American Association of University Professors,
March–April 2003, 37.
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674 Chapter 13 The Analysis of Variance

a What type of experimental design was utilized when the data were collected?

b Is there sufficient evidence to indicate a difference in the average starting salaries of assistant
professors at the three types of doctoral-granting institutions? Use the table in the text to
bound the p-value.

c Applet Exercise Determine the exact p-value by using the applet F-Ratio Probabilities
and Quantiles.

13.9 In a comparison of the strengths of concrete produced by four experimental mixes, three
specimens were prepared from each type of mix. Each of the 12 specimens was subjected to in-
creasingly compressive loads until breakdown. The accompanying table gives the compressive
loads, in tons per square inch, attained at breakdown. Specimen numbers 1–12 are indicated in
parentheses for identification purposes.

Mix A Mix B Mix C Mix D

(1) 2.30 (2) 2.20 (3) 2.15 (4) 2.25
(5) 2.20 (6) 2.10 (7) 2.15 (8) 2.15
(9) 2.25 (10) 2.20 (11) 2.20 (12) 2.25

a Assuming that the requirements for a one-way layout are met, analyze the data. State
whether there is statistical support at the α = .05 level of significance for the conclusion
that at least one of the concretes differs in average strength from the others.

b Applet Exercise Use the applet F-Ratio Probabilities and Quantiles to find the p-value
associated with the test in part (a).

13.10 A clinical psychologist wished to compare three methods for reducing hostility levels in uni-
versity students. A psychological test (HLT) was used to measure the degree of hostility. High
scores on this test indicate great hostility. Eleven students obtaining high and nearly equal
scores were used in the experiment. Five were selected at random from among the 11 problem
cases and treated by method A. Three were taken at random from the remaining 6 students and
treated by method B. The other 3 students were treated by method C. All treatments continued
throughout a semester. Each student was given the HLT test again at the end of the semester,
with the results shown in the accompanying table.

Method A Method B Method C

73 54 79
83 74 95
76 71 87
68
80

a Do the data provide sufficient evidence to indicate that at least one of the methods of treat-
ment produces a mean student response different from the other methods? Give bounds for
the attained significance level.

b Applet Exercise Find the exact p-value by using the applet F-Ratio Probabilities and
Quantiles.

c What would you conclude at the α = .05 level of significance?

13.11 It is believed that women in the postmenopausal phase of life suffer from calcium defi-
ciency. This phenomenon is associated with the relatively high proportion of bone fractures
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for women in that age group. Is this calcium deficiency associated with an estrogen deficiency, a
condition that occurs after menopause? To investigate this theory, L. S. Richelson and
colleagues3 compared the bone mineral density in three groups of women.

The first group of 14 women had undergone oophorectomy (the surgical removing of ovaries)
during young adult womanhood and had lived for a period of 15 to 25 years with an estrogen
deficiency. A second group, identified as premenopausal, were approximately the same age
(approximately 50 years) as the oophorectomy group except that the women had never suffered
a period of estrogen deficiency. The third group of 14 women were postmenopausal and had
suffered an estrogen deficiency for an average of 20 years. The mean and standard error of the
mean for the three samples of lumbar spine bone-density measurements—14 measurements in
each sample, one for each subject—are recorded in the following table.

Oophorectomized Premenopausal Postmenopausal
Group I Group 2 Group 3

Mean Standard Error Mean Standard Error Mean Standard Error

0.93 0.04 1.21 0.03 0.92 0.04

a Is there sufficient evidence to permit us to conclude that the mean bone-density measure-
ments differ for the three groups of women? What is the p-value associated with your
test?

b What would you conclude at the α = .05 level?

13.12 If vegetables intended for human consumption contain any pesticides at all, these pesticides
should occur in minute quantities. Detection of pesticides in vegetables sent to market is accom-
plished by using solvents to extract the pesticides from the vegetables and then performing tests
on this extract to isolate and quantify the pesticides present. The extraction process is thought
to be adequate because, if known amounts of pesticides are added to “clean” vegetables in
a laboratory environment, essentially all the pesticide can be recovered from the artificially
contaminated extract.

The following data were obtained from a study by Willis Wheeler and colleagues,4 who
sought to determine whether the extraction process is also effective when used in the more
realistic situation where pesticides are applied to vegetable crops. Dieldrin (a commonly used
pesticide) labeled with (radioactive) carbon-14 was applied to growing radishes. Fourteen days
later, the extraction process was used, and the extracts were analyzed for pesticide content. A
liquid scintillation counter was used to determine the amount of carbon-14 present in the extract
and also the amount left behind in the vegetable pulp. Because the vegetable pulp typically
is discarded when analyzing for pesticides, if an appreciable proportion of pesticide remains
in this pulp, a serious underassessment of the amount of pesticide could result. The pesticide
was the only source of carbon-14; thus, the proportion of carbon-14 in the pulp is likely to be
indicative of the proportion of pesticide in the pulp. The following table shows a portion of the
data that the researchers obtained when low, medium, and high concentrations of the solvent,
acetonitrile, were used in the extraction process.

3. Source: L. S. Richelson, H. W. Wahner, L. J. Melton III, and B. L. Riggs, “Relative Contributions of
Aging and Estrogen Deficiency to Postmenopausal Bone Loss,” New England Journal of Medicine 311(20)
(1984): 1273–1275.

4. Source: Willis B. Wheeler, N. P. Thompson, R. L. Edelstein, R. C. Littel, and R. T. Krause, “Influence
of Various Solvent–Water Mixtures on the Extraction of Dieldrin and Methomyl Residues from Radishes,”
Journal of the Association of Official Analytical Chemists 65(5) (1982): 1112–1117.
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676 Chapter 13 The Analysis of Variance

Percentage of carbon-14 in vegetable pulp

Concentration of Acetonitrile
Low Medium High

23.37 20.39 18.87
25.13 20.87 19.69
23.78 20.78 19.29
27.74 20.19 18.10
25.30 20.01 18.42
25.21 20.23 19.33
22.12 20.73 17.26
20.96 19.53 18.09
23.11 18.87 18.69
22.57 18.17 18.82
24.59 23.34 18.72
23.70 22.45 18.75

Total 287.58 245.56 224.03

a Is there sufficient evidence that the mean percentage of carbon-14 remaining in the vegetable
pulp differs for the different concentrations of acetonitrile used in the extraction process?
Give bounds for, or use the appropriate applet to determine the attained significance level.
What would you conclude at the α = .01 level of significance?

b What assumptions are necessary to validly employ the analysis that you performed in
part (a)? Relate the necessary assumptions to the specific application represented in this
exercise.

13.13 One portion of the research described in a paper by Yean-Jye Lu5 involved an evaluation of
maneuver times for vehicles of various sizes that were involved in making a left turn at an
intersection with a separate left-turn lane but without a separate left-turn phase on the traffic
light governing the intersection (an “unprotected” left-turn maneuver). The maneuver time was
measured from the instant that a vehicle entered the opposing lanes of traffic until it completely
cleared the intersection. Four-cylinder automobiles were classified as “small cars” and six-
or eight-cylinder automobiles as “large cars.” Trucks and buses were combined to form a
third category identified as “truck or bus.” Other motorized vehicles (motorcycles, etc.) were
ignored in the study. A summary of the data, giving maneuver times (in seconds) for vehicles
that attempted the left-turn maneuver from a standing stop, appears in the accompanying table.

Vehicle Type Sample Size Mean Standard Deviation

Small car 45 4.59 0.70
Large car 102 4.88 0.64
Truck or bus 18 6.24 0.90

a Is there sufficient evidence to claim that the mean maneuver times differ for the three
vehicle types? Give bounds for the attained significance level.

b Indicate the appropriate conclusion for an α = .05 level test.

5. Source: Yean-Jye Lu, “A Study of Left-Turn Maneuver Time for Signalized Intersections,” ITE Journal
54 (October 1984): 42–47. Institute of Transportation Engineers, Washington, D.C., c©1984 I.T.E. All
rights reserved.
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13.14 The Florida Game and Fish Commission desires to compare the amounts of residue from
three chemicals found in the brain tissue of brown pelicans. Independent random samples
of ten pelicans each yielded the accompanying results (measurements in parts per million). Is
there evidence of sufficient differences among the mean residue amounts, at the 5% level of
significance?

Chemical

Statistic DDE DDD DDT

Mean .032 .022 .041
Standard deviation .014 .008 .017

13.15 Water samples were taken at four different locations in a river to determine whether the quantity
of dissolved oxygen, a measure of water pollution, differed from one location to another.
Locations 1 and 2 were selected above an industrial plant, one near the shore and the other in
midstream; location 3 was adjacent to the industrial water discharge for the plant; and location
4 was slightly downriver in midstream. Five water specimens were randomly selected at each
location, but one specimen, from location 4, was lost in the laboratory. The data are shown
in the accompanying table (the greater the pollution, the lower will be the dissolved oxygen
readings). Do the data provide sufficient evidence to indicate a difference in mean dissolved
oxygen content for the four locations? Give bounds for the attained significance level.

Location Dissolved Oxygen Content

1 5.9 6.1 6.3 6.1 6.0
2 6.3 6.6 6.4 6.4 6.5
3 4.8 4.3 5.0 4.7 5.1
4 6.0 6.2 6.1 5.8

13.16 An experiment was conducted to examine the effect of age on heart rate when subjects perform
a specific amount of exercise. Ten male subjects were randomly selected from four age groups:
10–19, 20–39, 40–59, and 60–69. Each subject walked a treadmill at a fixed grade for a period
of 12 minutes, and the increase in heart rate—the difference in rates before and after exercise—
was recorded (in beats per minute). Preliminary calculations yielded Total SS = 1002.975 and
SST = 67.475.

a Construct the associated ANOVA table.

b Do the data provide sufficient evidence to indicate differences in mean increase in heart
rate among the four age groups? Test by using α = .05.

13.5 A Statistical Model for the One-Way Layout
As earlier, we let Yi j denote the random variables that generate the observed values yi j ,
for i = 1, 2, . . . , k and j = 1, 2, . . . , ni . The Yi j -values correspond to independent
random samples from normal populations with E(Yi j ) = μi and V (Yi j ) = σ 2, for
i = 1, 2, . . . , k and j = 1, 2, . . . , ni . Let us consider the random sample drawn from
population 1 and write

Y1 j = μ1 + ε1 j , j = 1, 2, . . . , n1.
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678 Chapter 13 The Analysis of Variance

Equivalently,

ε1 j = Y1 j − μ1, j = 1, 2, . . . , n1.

Because ε1 j is the difference between a normally distributed random variable and
its mean, it follows that ε1 j is normally distributed with E(ε1 j ) = 0 and V (ε1 j ) =
V (Y1 j ) = σ 2. Further, the independence of Y1 j , for j = 1, 2, . . . , n1, implies that
ε1 j , for j = 1, 2, . . . , n1, are mutually independent random variables. For each
i = 1, 2, . . . , k, we can proceed in an analogous manner to write

Yi j = μi + εi j , j = 1, 2, . . . , ni ,

where the “error terms” εi j are independent, normally distributed random variables
with E(εi j ) = 0 and V (εi j ) = σ 2, for i = 1, 2, . . . , k and j = 1, 2, . . . , ni . The
error terms simply represent the difference between the observations in each sample
and the corresponding population means.

One more set of considerations will lead to the classical model for the one-way
layout. Consider the means μi , for i = 1, 2, . . . , k, and write

μi = μ + τi where τ1 + τ2 + · · · + τk = 0.

Notice that
∑k

i=1 μi = kμ + ∑k
i=1 τi = kμ, and hence μ = k−1 ∑k

i=1 μi is just
the average of the k population means (the μi -values). For this reason, μ is generally
referred to as the overall mean. Since for i = 1, 2, . . . , k, τi = μi − μ quantifies
the difference between the mean for population i and the overall mean, τi is usually
referred to as the effect of treatment (or population) i . Finally, we present the classical
model for the one-way layout.

Statistical Model for a One-Way Layout
For i = 1, 2, . . . , k and j = 1, 2, . . . , ni ,

Yi j = μ + τi + εi j

where Yi j = the j th observation from population (treatment) i ,
μ = the overall mean,
τi = the nonrandom effect of treatment i , where

∑k
i=1 τi = 0,

εi j = random error terms such that εi j are independent normally
distributed random variables with E(εi j ) = 0 and V (εi j ) = σ 2.

The advantage of this model is that it very clearly summarizes all the assumptions
made in the analysis of the data obtained from a one-way layout. It also gives us a
basis for presenting a precise statistical model for the randomized block design. (See
Section 13.8.)

Notice that (see Exercise 13.19) H0 : μ1 = μ2 = · · · = μk can be restated as

H0 : τ1 = τ2 = · · · = τk = 0
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and that Ha : μi 7= μi ′ for some i 7= i ′ is equivalent to Ha : τi 7= 0 for some i ,
1 ≤ i ≤ k. Thus, the F test for equality of means that we presented in Section 13.3
is the test of the hypotheses

H0 : τ1 = τ2 = · · · = τk = 0 versus Ha : τi 7= 0 for some i, 1 ≤ i ≤ k.

Exercises
13.17 Let Y i• denote the average of all of the responses to treatment i . Use the model for the one-way

layout to derive E(Y i•) and V (Y i•).

13.18 Refer to Exercise 13.17 and consider Y i• − Y i ′• for i 7= i ′.

a Show that E(Y i• − Y i ′•) = μi − μi ′ = τi − τi ′ . This result implies that Y i• − Y i ′• is an
unbiased estimator of the difference in the effects of treatments i and i ′.

b Derive V (Y i• − Y i ′•).

13.19 Refer to the statistical model for the one-way layout.

a Show that H0 : τ1 = τ2 = · · · = τk = 0 is equivalent to H0 : μ1 = μ2 = · · · = μk .

b Show that Ha : τi 7= 0 for at least one i is equivalent to Ha : μi 7= μi ′ for some i 7= i ′.

13.6 Proof of Additivity of the Sums of Squares
and E (MST) for a One-Way
Layout (Optional)
The proof that

Total SS = SST + SSE

for the one-way layout is presented in this section for the benefit of those who are
interested. It may be omitted without loss of continuity.

The proof uses elementary results on summations that appear in the exercises for
Chapter 1 and the device of adding and subtracting Y i• within the expression for the
Total SS. Thus,

Total SS =
k∑

i=1

ni∑
j=1

(Yi j − Y )2 =
k∑

i=1

ni∑
j=1

(Yi j − Y i• + Y i• − Y )2

=
k∑

i=1

ni∑
j=1

[(Yi j − Y i•) + (Y i• − Y )]2

=
k∑

i=1

ni∑
j=1

[(Yi j − Y i•)2 + 2(Yi j − Y i•)(Y i• − Y ) + (Y i• − Y )2].
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Summing first over j , we obtain

Total SS =
k∑

i=1

[
ni∑

j=1

(Yi j − Y i•)2 + 2(Y i• − Y )

ni∑
j=1

(Yi j − Y i•) + ni (Y i• − Y )2

]
,

where
ni∑

j=1

(Yi j − Y i•) = Yi• − ni Y i• = Yi• − Yi• = 0.

Consequently, the middle term in the expression for the Total SS is equal to zero.
Then, summing over i , we obtain

Total SS =
k∑

i=1

ni∑
j=1

(Yi j − Y i•)2 +
k∑

i=1

ni (Y i• − Y )2 = SSE + SST.

Proof of the additivity of the ANOVA sums of squares for other experimental
designs can be obtained in a similar manner although the procedure is often tedious.

We now proceed with the derivation of the expected value of MST for a one-way
layout (including a completely randomized design). Using the statistical model for
the one-way layout presented in Section 13.5, it follows that

Y i• = 1

ni

ni∑
j=1

Yi j = 1

ni

ni∑
j=1

(μ + τi + εi j ) = μ + τi + εi , where εi = 1

ni

ni∑
j=1

εi j .

Because the εi j ’s are independent random variables with E(εi j ) = 0 and V (εi j ) = σ 2,
Theorem 5.12 implies (see Example 5.27) that E(εi ) = 0 and V (εi ) = σ 2/ni .

In a completely analogous manner, Y is given by

Y = 1

n

k∑
i=1

ni∑
j=1

Yi j = 1

n

k∑
i=1

ni∑
j=1

(μ + τi + εi j ) = μ + τ + ε,

where

τ = 1

n

k∑
i=1

niτi and ε = 1

n

k∑
i=1

ni∑
j=1

εi j .

Since the τi values are constants, τ is simply a constant; again using Theorem 5.12,
we obtain E(ε) = 0 and V (ε) = σ 2/n.

Therefore, with respect to the terms in the model for the one-way layout,

MST =
(

1

k − 1

) k∑
i=1

ni (Y i• − Y )2 =
(

1

k − 1

) k∑
i=1

ni (τi + εi − τ − ε)2

=
(

1

k − 1

) k∑
i=1

ni (τi − τ)2 +
(

1

k − 1

) k∑
i=1

2ni (τi − τ)(εi − ε)

+
(

1

k − 1

) k∑
i=1

ni (εi − ε)2.
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13.7 Estimation in the One-Way Layout 681

Because τ and τi , for i = 1, 2, . . . , k, are constants and E(εi j ) = E(εi ) = E(ε) = 0,
it follows that

E(MST) =
(

1

k − 1

) k∑
i=1

ni (τi − τ)2 +
(

1

k − 1

)
E

[
k∑

i=1

ni (εi − ε)2

]
.

Notice that

k∑
i=1

ni (εi − ε)2 =
k∑

i=1

(
niε

2
i − 2niεiε + niε

2
)

=
k∑

i=1

niε
2
i − 2nε2 + nε2 =

k∑
i=1

niε
2
i − nε2.

Because E(εi ) = 0 and V (εi ) = σ 2/ni , it follows that E(ε2
i ) = σ 2/ni , for i =

1, 2, . . . , k. Similarly, E(ε2) = σ 2/n, and, hence,

E

[
k∑

i=1

ni (εi − ε)2

]
=

k∑
i=1

ni E
(
ε2

i

) − nE
(
ε2

) = kσ 2 − σ 2 = (k − 1)σ 2.

Summarizing, we obtain

E(MST) = σ 2 +
(

1

k − 1

) k∑
i=1

ni (τi − τ)2, where τ = 1

n

k∑
i=1

niτi .

Under H0 : τ1 = τ2 = · · · = τk = 0, it follows that τ = 0, and, hence, E(MST) =
σ 2. Thus, when H0 is true, MST/MSE is the ratio of two unbiased estimators for σ 2.
When Ha : τi 7= 0 for some i, 1 ≤ i ≤ k is true, the quantity 1/(k − 1)

∑k
i=1 ni (τi −

τ)2 is strictly positive and MST is a positively biased estimator for σ 2.

13.7 Estimation in the One-Way Layout
Confidence intervals for a single treatment mean and for the difference between a
pair of treatment means based on data obtained in a one-way layout (Section 13.3)
are completely analogous to those given in Chapter 8. The only difference between
the intervals in Chapter 8 and those that follow is that intervals associated with
the one-way layout use MSE (the pooled estimator based on all k samples) to esti-
mate the population variance(s) σ 2. The confidence interval for the mean of treat-
ment i or the difference between the means for treatments i and i ′ are, respectively,
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as follows:

Y i• ± tα/2
S√
ni

,

and

(Y i• − Y i ′•) ± tα/2S

√
1

ni
+ 1

ni ′
,

where

S =
√

S2 =
√

MSE =
√

SSE

n1 + n2 + · · · + nk − k

and tα/2 is based on (n − k) df.

The confidence intervals just stated are appropriate for a single treatment mean
or a comparison of a pair of means selected prior to observation of the data. These
intervals are likely to be shorter than the corresponding intervals from Chapter 8
because the value of tα/2 is based on a greater number of degrees of freedom (n − k
instead of ni − 1 or ni + ni ′ − 2, respectively). The stated confidence coefficients are
appropriate for a single mean or difference in two means identified prior to observing
the actual data. If we were to look at the data and always compare the populations
that produced the largest and smallest sample means, we would expect the difference
between these sample means to be larger than for a pair of means specified to be of
interest before observing the data.

EXAMPLE 13.3 Find a 95% confidence interval for the mean score for teaching technique 1, Example
13.2.

Solution The 95% confidence interval for the mean score is

Y 1• ± t.025
S√
n1

,

where t.025 is determined for n − k = 19 df, or

75.67 ± (2.093)

√
63√
6

or 75.67 ± 6.78.

Notice that if we had analyzed only the data for teaching technique 1, the value of
t.025 would have been based on only n1 − 1 = 5 df, the number of degrees of freedom
associated with s1.

EXAMPLE 13.4 Find a 95% confidence interval for the difference in mean score for teaching techniques
1 and 4, Example 13.2.
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Solution The 95% confidence interval is

(Y 1• − Y 4•) ± (2.093)(7.94)
√

1/6 + 1/4 or −12.08 ± 10.73.

Hence, the 95% confidence interval for (μ1 − μ4) is (−22.81, −1.35). At the 95%
confidence level we conclude that μ4 > μ1 by at least 1.35 but no more than 22.81.

Exercises
13.20 Refer to Examples 13.2 and 13.3.

a Use the portion of the data in Table 13.2 that deals only with teaching technique 1 and the
method of Section 8.8 to form a 95% confidence interval for the mean score of students
taught using technique 1.

b How does the length of the 95% confidence interval that you found in part (a) compare to
the length of the 95% confidence interval obtained in Example 13.3?

c What is the major reason that the interval that you found in part (a) is longer than the
interval given in Example 13.3?

13.21 Refer to Examples 13.2 and 13.4.

a Use the portion of the data in Table 13.2 that deals only with teaching techniques 1 and 4
and the method of Section 8.8 to form a 95% confidence interval for the difference in mean
score for students taught using techniques 1 and 4.

b How does the length of the 95% confidence interval that you found in part (a) compare to
the length of the 95% confidence interval obtained in Example 13.4?

c What is the major reason that the interval that you found in part (a) is longer than the
interval given in Example 13.4?

13.22 a Based on your answers to Exercises 13.20 and 13.21 and the comments at the end of this
section, how would you expect confidence intervals computed using the results of this
section to compare with related intervals that make use of the data from only one or two of
the samples obtained in a one-way layout? Why?

b Refer to part (a). Is it possible that a 95% confidence interval for the mean of a single
population based only on the sample taken from that population will be shorter than the
95% confidence interval for the same population mean that would be obtained using the
procedure of this section? How?

13.23 Refer to Exercise 13.7.

a Construct a 95% confidence interval for the mean amount of polluting effluent per gallon
for plant A. If the limit for the mean amount of polluting effluent is 1.5 pound/gallon, would
you conclude that plant A exceeds this limit? Why?

b Give a 95% confidence interval for the difference in mean polluting effluent per gallon for
plants A and D. Does this interval indicate that mean effluent per gallon differs for these
two plants? Why?

13.24 Refer to Exercise 13.8. Construct a 98% confidence interval for the difference in mean starting
salaries for assistant professors at public and private/independent doctoral-granting institutions.
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13.25 Refer to Exercise 13.11. As noted in the description of the experiment, the oophorectomized
and the premenopausal groups of women were approximately the same age, but those in
the oophorectomized group suffered from an estrogen deficiency. Form a 95% confidence
interval for the difference in mean bone densities for these two groups of women. Would you
conclude that the mean bone densities for the oophorectomized and premenopausal women
were significantly different? Why?

13.26 Refer to Exercise 13.9. Let μA and μB denote the mean strengths of concrete specimens
prepared for mix A and mix B, respectively.

a Find a 90% confidence interval for μA.

b Find a 95% confidence interval for (μA − μB).

13.27 Refer to Exercise 13.10. Let μA and μB, respectively, denote the mean scores at the end of the
semester for the populations of extremely hostile students who were treated throughout that
semester by methods A and B, respectively. Find a 95% confidence interval for

a μA.

b μB.

c (μA − μB).

13.28 Refer to Exercise 13.12.

a Construct a 95% confidence interval for the mean percentage of carbon-14 that remains in
the vegetable pulp when the low level of acetonitrile is used.

b Give a 90% confidence interval for the difference in mean percentages of carbon-14 that
remain in the vegetable pulp for low and medium levels of acetonitrile.

13.29 Refer to Exercise 13.13.

a Give a 95% confidence interval for the mean left-turn maneuver time for buses and trucks.

b Estimate the difference in mean maneuver times for small and large cars with a 95%
confidence interval.

c The study report by Lu involved vehicles that passed through the intersection of Guadalupe
Avenue and 38th Street in Austin, Texas. Do you think that the results in parts (a) and
(b) would be valid for a “nonprotected” intersection in your hometown? Why or why not?

13.30 It has been hypothesized that treatments (after casting) of a plastic used in optic lenses will
improve wear. Four different treatments are to be tested. To determine whether any differences
in mean wear exist among treatments, 28 castings from a single formulation of the plastic were
made and 7 castings were randomly assigned to each of the treatments. Wear was determined
by measuring the increase in “haze” after 200 cycles of abrasion (better wear being indicated
by smaller increases). The data collected are reported in the accompanying table.

Treatment
A B C D

9.16 11.95 11.47 11.35
13.29 15.15 9.54 8.73
12.07 14.75 11.26 10.00
11.97 14.79 13.66 9.75
13.31 15.48 11.18 11.71
12.32 13.47 15.03 12.45
11.78 13.06 14.86 12.38
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a Is there evidence of a difference in mean wear among the four treatments? Use α = .05.

b Estimate the mean difference in haze increase between treatments B and C, using a 99%
confidence interval.

c Find a 90% confidence interval for the mean wear for lenses receiving treatment A.

13.31 With the ongoing energy crisis, researchers for the major oil companies are attempting to find
alternative sources of oil. It is known that some types of shale contain small amounts of oil
that feasibly (if not economically) could be extracted. Four methods have been developed for
extracting oil from shale, and the government has decided that some experimentation should be
done to determine whether the methods differ significantly in the average amount of oil that each
can extract from the shale. Method 4 is known to be the most expensive method to implement,
and method 1 is the least expensive, so inferences about the differences in performance of these
two methods are of particular interest. Sixteen bits of shale (of the same size) were randomly
subjected to the four methods, with the results shown in the accompanying table (the units are
in liters per cubic meter). All inferences are to be made with α = .05.

Method 1 Method 2 Method 3 Method 4

3 2 5 5
2 2 2 2
1 4 5 4
2 4 1 5

a Assuming that the 16 experimental units were as alike as possible, implement the appro-
priate ANOVA to determine whether there is any significant difference among the mean
amounts extracted by the four methods. Use α = .05.

b Set up a 95% confidence interval for the difference in the mean amounts extracted by the
two methods of particular interest. Interpret the result.

13.32 Refer to Exercise 13.14. Construct a 95% confidence interval for the mean amount of residue
from DDT.

13.33 Refer to Exercise 13.15. Compare the mean dissolved oxygen content in midstream above the
plant with the mean content adjacent to the plant (location 2 versus location 3). Use a 95%
confidence interval.

13.34 Refer to Exercise 13.15. Compare the mean dissolved oxygen content for the two locations
above the plant with the mean content slightly downriver from the plant, by finding a 95%
confidence interval for (1/2)(μ1 + μ2) − μ4.

13.35 Refer to Exercise 13.16. The average increase in heart rate for the ten individuals in each age
category were

Average Heart
Age Sample Size Rate Increase

10–19 10 30.9
20–39 10 27.5
40–59 10 29.5
60–69 10 28.2

a Find a 90% confidence interval for the difference in mean increase in heart rate for the
10–19 and 60–69 age groups.

b Find a 90% confidence interval for the mean increase in heart rate for the 20–39 age group.
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13.8 A Statistical Model for the Randomized
Block Design
The method for constructing a randomized block design was presented in Section
12.4. As previously indicated in Definition 12.6, the randomized block design is a
design for comparing k treatments using b blocks. The blocks are selected so that,
hopefully, the experimental units within each block are essentially homogeneous. The
treatments are randomly assigned to the experimental units in each block in such a
way that each treatment appears exactly once in each of the b blocks. Thus, the total
number of observations obtained in a randomized block design is n = bk. Implicit
in the consideration of a randomized block design is the presence of two qualitative
independent variables, “blocks” and “treatments.” In this section, we present a formal
statistical model for the randomized block design.

Statistical Model for a Randomized Block Design
For i = 1, 2, . . . , k and j = 1, 2, . . . , b,

Yi j = μ + τi + β j + εi j

where Yi j = the observation on treatment i in block j ,
μ = the overall mean,
τi = the nonrandom effect of treatment i , where

∑k
i=1 τi = 0,

β j = the nonrandom effect of block j , where
∑b

j=1 β j = 0.
εi j = random error terms such that εi j are independent normally

distributed random variables with E(εi j ) = 0 and V (εi j ) = σ 2.

Notice that μ, τ1, τ2, . . . , τk , and β1, β2, . . . , βb are all assumed to be unknown
constants. This model differs from that for the completely randomized design
(a specific type of one-way layout) only in containing parameters associated with
the different blocks. Because the block effects are assumed to be fixed but unknown,
this model usually is referred to as the fixed block effects model. A random block
effects model, another model for the randomized block design in which the β’s are
assumed to be random variables, is considered in the supplementary exercises. Our
formal development in the body of this text is restricted to the fixed block effects
model.

The statistical model just presented very clearly summarizes all the assumptions
made in the analysis of data in a randomized block design with fixed block effects.
Let us consider the observation Yi j made on treatment i in block j . Notice that the
assumptions in the model imply that E(Yi j ) = μ + τi + β j and V (Yi j ) = σ 2 for
i = 1, 2, . . . , k and j = 1, 2, . . . , b. Let us consider the observations made on
treatment i and observe that two observations receiving treatment i have means that
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differ only by the difference of the block effects. For example,

E(Yi1) − E(Yi2) = μ + τi + β1 − (μ + τi + β2) = β1 − β2.

Similarly, two observations that are taken from the same block have means that differ
only by the difference of the treatment effects. That is, if i 7= i ′,

E(Yi j ) − E(Yi ′ j ) = μ + τi + β j − (μ + τi ′ + β j ) = τi − τi ′ .

Observations that are taken on different treatments and in different blocks have means
that differ by the difference in the treatment effects plus the difference in the block
effects because, if i 7= i ′ and j 7= j ′,

E(Yi j ) − E(Yi ′ j ′) = μ + τi + β j − (μ + τi ′ + β j ′) = (τi − τi ′) + (β j − β j ′).

In the next section, we proceed with an analysis of the data obtained from a
randomized block design.

Exercises
13.36 State the assumptions underlying the ANOVA for a randomized block design with fixed block

effects.

13.37 According to the model for the randomized block design given in this section, the expected
response when treatment i is applied in block j is E(Yi j ) = μ + τi + β j , for i = 1, 2, . . . , k
and j = 1, 2, . . . , b.

a Use the model given in this section to calculate the average of the n = bk expected responses
associated with all of the blocks and treatments.

b Give an interpretation for the parameter μ that appears in the model for the randomized
block design.

13.38 Let Y i• denote the average of all of the responses to treatment i . Use the model for the random-
ized block design to derive E

(
Y i•

)
and V

(
Y i•

)
. Is Y i• an unbiased estimator for the mean

response to treatment i? Why or why not?

13.39 Refer to Exercise 13.38 and consider Y i• − Y i ′• for i 7= i ′.

a Show that E
(

Y i• − Y i ′•
) = τi − τi ′ . This result implies that Y i• − Y i ′• is an unbiased

estimator of the difference in the effects of treatment i and i ′.
b Derive V

(
Y i• − Y i ′•

)
.

13.40 Refer to the model for the randomized block design and let Y • j denote the average of all of the
responses in block j .

a Derive E
(

Y • j

)
and V

(
Y • j

)
.

b Show that Y • j − Y • j ′ is an unbiased estimator for β j − β j ′ the difference in the effects of
blocks j and j ′.

c Derive V
(

Y • j − Y • j ′
)
.
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13.9 The Analysis of Variance for a
Randomized Block Design
The ANOVA for a randomized block design proceeds much like that for a completely
randomized design (which is a special case of the one-way layout). In the randomized
block design, the total sum of squares, Total SS, is partitioned into three parts: the
sum of squares for blocks, treatments, and error.

Denote the total and average of all observations in block j as Y• j and Y • j , respec-
tively. Similarly, let Yi• and Y i• represent the total and the average for all observa-
tions receiving treatment i . Again, the “dots” in the subscripts indicate which index is
“summed over” to compute the totals and “averaged over” to compute the averages.
Then for a randomized block design involving b blocks and k treatments, we have
the following sums of squares:

Total SS =
k∑

i=1

b∑
j=1

(Yi j − Y )2 =
k∑

i=1

b∑
j=1

Y 2
i j − CM

= SSB + SST + SSE, where

SSB = k
b∑

j=1

(Y • j − Y )2 =
b∑

j=1

Y 2
• j

k
− CM,

SST = b
k∑

i=1

(Y i• − Y )2 =
k∑

i=1

Y 2
i•
b

− CM,

SSE = Total SS − SSB − SST.

In the preceding formulas,

Y = (average of all n = bk observations) = 1

bk

b∑
j=1

k∑
i=1

Yi j ,

and

CM = (total of all observations)2

n
= 1

bk

(
b∑

j=1

k∑
i=1

Yi j

)2

.

The ANOVA table for the randomized block design is presented in Table 13.5.
The degrees of freedom associated with each sum of squares are shown in the second
column. Mean squares are calculated by dividing the sum of squares by their respective
degrees of freedom.

To test the null hypothesis that there is no difference in treatment means, we use
the F statistic
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Table 13.5 ANOVA table for a randomized block design

Source df SS MS

Blocks b − 1 SSB
SSB

b − 1

Treatments k − 1 SST
SST

k − 1

Error n − b − k + 1 SSE MSE

Total n − 1 Total SS

F = MST

MSE

and reject the null hypothesis if F > Fα , based on ν1 = (k−1) and ν2 = (n−b−k+1)

numerator and denominator degrees of freedom, respectively.
As discussed in Section 12.4, blocking can be used to control for an extraneous

source of variation (the variation between blocks). In addition, with blocking, we
have the opportunity to see whether evidence exists to indicate a difference in the
mean response for blocks. Under the null hypothesis that there is no difference in
mean response for blocks (that is, β j = 0, for j = 1, 2, . . . , b), the mean square for
blocks (MSB) provides an unbiased estimator for σ 2 based on (b − 1) df. Where real
differences exist among block means, MSB will tend to be inflated in comparison
with MSE, and

F = MSB

MSE

provides a test statistic. As in the test for treatments, the rejection region for the
test is

F > Fα,

where F has ν1 = b − 1 and ν2 = n − b − k + 1 numerator and denominator degrees
of freedom, respectively.

EXAMPLE 13.5 A stimulus–response experiment involving three treatments was laid out in a ran-
domized block design using four subjects. The response was the length of time until
reaction, measured in seconds. The data, arranged in blocks, are shown in Figure 13.2.
The treatment number is circled and shown above each observation. Do the data
present sufficient evidence to indicate a difference in the mean responses for stimuli
(treatments)? Subjects? Use α = .05 for each test and give the associated p-values.
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Table 13.6 ANOVA table for Example 13.5

Source df SS MS F

Blocks 3 3.48 1.160 15.47
Treatments 2 5.48 2.740 36.53
Error 6 .45 .075

Total 11 9.41

Solution The observed values of the sums of squares for the ANOVA are shown jointly in
Table 13.6 and individually as follows:

CM = (total)2

n
= (21.2)2

12
= 37.45,

Total SS =
4∑

j=1

3∑
i=1

(yi j − y)2 =
4∑

j=1

3∑
i=1

y2
i j − CM = 46.86 − 37.45 = 9.41,

SSB =
4∑

j=1

Y 2
• j

3
− CM = 40.93 − 37.45 = 3.48,

SST =
3∑

i=1

Y 2
i•
4

− CM = 42.93 − 37.45 = 5.48,

SSE = Total SS − SSB − SST = 9.41 − 3.48 − 5.48 = .45.

We use the ratio of MST and MSE to test a hypothesis of no difference in the mean
response for treatments. Thus, the calculated value of F is

F = MST

MSE
= 2.74

.075
= 36.53.

The critical value of the F statistic (α = .05) for ν1 = 2 and ν2 = 6 df is F.05 = 5.14.
Because the computed value of F exceeds the critical value, there is sufficient evidence
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at the α = .05 level to reject the null hypothesis and conclude that real differences
do exist among the expected responses for the three stimuli. The correspond-
ing p-value = P(F > 36.53), which, based on Table 7, Appendix 3, is such that
p-value < .005. The applet F-Ratio Probabilities and Quantiles provides the exact
p-value = P(F > 36.53) = .00044.

A similar test may be conducted for the null hypothesis that no difference exists in
the mean response for subjects. Rejection of this hypothesis would imply that there are
significant differences among subjects and that blocking is desirable. The computed
value of F based on ν1 = 3 and ν2 = 6 df is

F = MSB

MSE
= 1.16

.075
= 15.47.

Because this value of F exceeds the corresponding tabulated critical value, F.05 =
4.76, we reject the null hypothesis and conclude that a real difference exists in the mean
responses among the four groups of subjects. The applet yields that the associated
p-value = P(F > 15.47) = .00314. Based upon Table 7, Appendix 3, we would
have concluded only that p-value < .005. Regardless, we conclude that blocking by
subjects was beneficial.

Exercises
13.41 In Exercise 12.10, a matched-pairs analysis was performed to compare the differences in mean

CPU time to run benchmark programs on two computers. The data are reproduced in the
following table.

Benchmark Program

Computer 1 2 3 4 5 6

1 1.12 1.73 1.04 1.86 1.47 2.10
2 1.15 1.72 1.10 1.87 1.46 2.15

a Treat the six programs as six blocks and test for a difference between the mean CPU times
for the two computers by using a randomized block analysis. Use α = .05. How does your
decision compare to that reached in Exercise 12.10(a)?

b Give bounds for the associated p-value. How does your answer compare to your answer to
Exercise 12.10(b)?

c Applet Exercise Use the applet F-Ratio Probabilities and Quantiles to find the exact
p-value.

d How does the computed value of MSE compare to the value for s2
D that you used in your

solution to Exercise 12.10?

13.42 The accompanying table presents data on yields relating to resistance to stain for three materials
(M1, M2, and M3) treated with four chemicals in a randomized block design. (A low value
indicates good stain resistance.)

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



692 Chapter 13 The Analysis of Variance

Material
Chemical M1 M2 M3 Total

A 5 9 7 21
B 3 8 4 15
C 8 13 9 30
D 4 6 8 18

Total 20 36 28 84∑
i

∑
j y2

i j = 674 1
12

(∑
i

∑
j yi j

)2
= 588

a Is there evidence of differences in mean resistance among the four chemicals? Give bounds
for the p-value.

b What would you conclude at the α = .05 level of significance?

13.43 Refer to Exercise 13.42. Why was a randomized block design used to compare the chemicals?

13.44 Do average automobile insurance costs differ for different insurance companies? Other vari-
ables that impact insurance costs are geographic location, ages of the drivers, and type of
coverage. The following are estimates (in dollars) of the cost of 6-month policies for basic
liability coverage for a single man who has been licensed for 6–8 years, has no violations or
accidents, and drives between 12,600 and 15,000 miles per year.6

Insurance Company
21st Fireman’s State

Location Century Allstate AAA Fund Farm

Riverside 736 745 668 1065 1202
San Bernadino 836 725 618 869 1172
Hollywood 1492 1384 1214 1502 1682
Long Beach 996 884 802 1571 1272

a What type of design was used in the collection of this data?

b Is there sufficient evidence to indicate that average insurance premiums differ from company
to company?

c Is there sufficient evidence to indicate that insurance premiums differ location to location?

d Applet Exercise Use the applet F-Ratio Probabilities and Quantiles to find the p-values
associated with the tests in parts (b) and (c).

13.45 An experiment was conducted to determine the effect of three methods of soil preparation on
the first-year growth of slash pine seedlings. Four locations (state forest lands) were selected,
and each location was divided into three plots. Because soil fertility within a location was likely
to be more homogeneous than between locations, a randomized block design was employed,
using locations as blocks. The methods of soil preparation were A (no preparation), B (light
fertilization), and C (burning). Each soil preparation was randomly applied to a plot within
each location. On each plot the same number of seedlings was planted, and the observation
recorded was the average first-year growth (in centimeters) of the seedlings on each plot. These
observations are reproduced in the accompanying table.

6. Source: “2003 Auto Insurance,” California Department of Insurance, http:cdinswww.insurance.ca.gov/
pls/wu-survey-auto/apsw-get-prem$auto-mc.querylist, 23 April 2004.
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LocationSoil
Preparation 1 2 3 4

A 11 13 16 10
B 15 17 20 12
C 10 15 13 10

a Conduct an ANOVA. Do the data provide sufficient evidence to indicate differences in the
mean growth for the three soil preparations?

b Is there evidence to indicate differences in mean growth for the four locations?

13.46 A. E. Dudeck and C. H. Peacock report on an experiment conducted to evaluate the performance
of several cool-season grasses for winter overseeding of golf greens in northern Florida. One
of the variables of interest was the distance that a golf ball would roll on a green after being
rolled down a ramp (used to induce a constant initial velocity to the ball). Because the distance
that the ball would roll was influenced by the slope of the green and the direction in which the
grass was mowed, the experiment was set up in a randomized block design. The blocks were
determined so that the slopes of the individual plots were constant within blocks (a transit was
used to ensure accuracy), and all plots were mowed in the same direction and at the same height
to eliminate mowing effects. The base grass was “Tiftgreen” Bermuda grass in a semidormant
state. The same method of seeding and rates of application were used for all the ryegrasses that
are represented in the following table of data. Measurements are average distances (in meters)
from the base of the ramp to the stopping points for five balls rolled down the ramp and directly
up the slope on each plot. Cultivars used in the study included A (Pennfine ryegrass), B (Dasher
ryegrass), C (Regal ryegrass), D (Marvelgreen supreme), and E (Barry ryegrass). The grasses
were planted within blocks and yielded the measurements shown.7

Variety

Block A B C D E Total

1 2.764 2.568 2.506 2.612 2.238 12.688
2 3.043 2.977 2.533 2.675 2.616 13.844
3 2.600 2.183 2.334 2.164 2.127 11.408
4 3.049 3.028 2.895 2.724 2.697 14.393

Total 11.456 10.756 10.268 10.175 9.678 52.333

a Perform the appropriate ANOVA to test for sufficient evidence to indicate that the mean
distance of ball roll differs for the five cultivars. Give bounds for the attained significance
level. What would you conclude at the α = .01 level of significance?

b Is there evidence of a significant difference between the blocks used in the experiment?
Test using α = .05.

13.47 Refer to Exercise 13.31. Suppose that we now find out that the 16 experimental units were
obtained in the following manner. One sample was taken from each of four locations, each
individual sample was split into four parts, and then each method was applied to exactly one
part from each location (with the proper randomization). The data are now presented more
correctly in the form shown in the accompanying table. Does this new information suggest a

7. Source: A. E. Dudeck and C. H. Peacock, “Effects of Several Overseeded Ryegrasses on Turf Quality,
Traffic Tolerance and Ball Roll,” Proceedings of the Fourth International Turfgrass Research Conference,
R. W. Sheard, ed., pp. 75–81. Ontario Agricultural College, University of Guelph, Guelph, Ontario, and
the International Turfgrass Society, 1981.
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more appropriate method of analysis than that used in Exercise 13.31? If so, perform the new
analysis and answer the question in Exercise 13.31(a). Is this new information worthwhile?

Location Method 1 Method 2 Method 3 Method 4

I 3 2 5 5
II 2 2 2 2
III 1 4 5 4
IV 2 4 1 5

13.48 Suppose that a randomized block design with b blocks and k treatments has each treatment mea-
sured twice in each block. Indicate how you would perform the computations for an ANOVA.

13.49 An evaluation of diffusion bonding of zircaloy components is performed. The main objective
is to determine which of three elements—nickel, iron, or copper—is the best bonding agent.
A series of zircaloy components are bonded using each of the possible bonding agents. Due
to significant variation in components machined from different ingots, a randomized block
design is used, blocking on the ingots. Two components from each ingot are bonded together
using each of the three agents, and the pressure (in units of 1000 pounds per square inch)
required to separate the bonded components is measured. The data shown in the following
table are obtained. Is there evidence of a difference in mean pressures required to separate the
components among the three bonding agents? Use α = .05.

Bonding Agent
Ingot Nickel Iron Copper

1 67.0 71.9 72.2
2 67.5 68.8 66.4
3 76.0 82.6 74.5
4 72.7 78.1 67.3
5 73.1 74.2 73.2
6 65.8 70.8 68.7
7 75.6 84.9 69.0

13.50 From time to time, one branch office of a company must make shipments to another branch
office in another state. Three package-delivery services operate between the two cities where
the branch offices are located. Because the price structures for the three delivery services are
quite similar, the company wants to compare the delivery times. The company plans to make
several different types of shipments to its branch office. To compare the carriers, the company
sends each shipment in triplicate, one with each carrier. The results listed in the accompanying
table are the delivery times in hours.

Carrier

Shipment I II III

1 15.2 16.9 17.1
2 14.3 16.4 16.1
3 14.7 15.9 15.7
4 15.1 16.7 17.0
5 14.0 15.6 15.5

a Is there evidence of a difference in mean delivery times among the three carriers? Give
bounds for the attained significance level.

b Why was the experiment conducted using a randomized block design?
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*13.51 Refer to the model for the randomized block design presented in Section 13.8.

a Derive E(MST).

b Derive E(MSB).

c Derive E(MSE).

Notice that these quantities appear in the F statistics used to test for differences in the mean
response among the blocks and among the treatments.

13.10 Estimation in the Randomized
Block Design
The confidence interval for the difference between a pair of treatment means in a
randomized block design is completely analogous to that associated with the com-
pletely randomized design (a special case of the one-way layout) in Section 13.7. A
100(1 − α)% confidence interval for τi − τi ′ is

(Y i• − Y i ′•) ± tα/2S

√
2

b
,

where ni = ni ′ = b, the number of observations contained in a treatment mean,
and S = √

MSE. The difference between the confidence intervals for the completely
randomized and the randomized block designs is that the value tα/2 is based on
ν = n − b − k + 1 = (b − 1)(k − 1) df and that S, appearing in the preceding
expression, is obtained from the ANOVA table associated with the randomized block
design.

EXAMPLE 13.6 Construct a 95% confidence interval for the difference between the mean responses
for treatments 1 and 2, Example 13.5.

Solution The confidence interval for the difference in mean responses for a pair of treatments is

(Y i• − Y i ′•) ± tα/2S

√
2

b
,

where for our example t.025 is based on 6 df. For treatments 1 and 2, we have

(.98 − 2.63) ± (2.447)(.27)

√
2

4
, or − 1.65 ± .47 = (−2.12, −1.18).

Thus, at the 95% confidence level we conclude that the mean reaction time to stim-
ulus 1 is between 1.18 and 2.12 seconds shorter than the mean reaction time to
stimulus 2.
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Exercises
13.52 Refer to Exercises 13.41 and 12.10. Find a 95% confidence interval for the difference in mean

CPU times required for the two computers to complete a job. How does your answer compare
to that obtained in Exercise 12.10(c)?

13.53 Refer to Exercise 13.42. Construct a 95% confidence interval for the difference between mean
resistances for chemicals A and B.

13.54 Refer to Exercise 13.45. Construct a 90% confidence interval for the differences in mean growth
for methods A and B.

13.55 Refer to Exercise 13.46. Construct a 95% confidence interval for the difference in the mean
distance of roll when Dasher ryegrass and Marvelgreen supreme are used for overseeding.

13.56 Refer to Exercise 13.47. Construct a 95% confidence interval for the difference between the
mean amounts of oil extracted by methods 1 and 4. Compare the answer to that obtained in
Exercise 13.31(b).

13.57 Refer to Exercise 13.49. Estimate the difference in mean pressures to separate components that
are bonded with nickel and iron, using a 99% confidence interval.

13.11 Selecting the Sample Size
The method for selecting the sample size for the one-way layout (including the com-
pletely randomized) or the randomized block design is an extension of the proce-
dures of Section 8.7. We confine our attention to the case of equal sample sizes,
n1 = n2 = · · · = nk , for the treatments of the one-way layout. The number of ob-
servations per treatment is equal to the number of blocks b for the randomized block
design. Thus, the problem is to determine n1 or b for these two designs so that the
resulting experiment contains the desired amount of information.

The determination of sample sizes follows a similar procedure for both designs;
we outline a general method. First, the experimenter must decide on the parameter
(or parameters) of major interest. Usually, this involves comparing a pair of treatment
means. Second, the experimenter must specify a bound on the error of estimation
that can be tolerated. Once this has been determined, the next task is to select ni

(the size of the sample from population or treatment i) or, correspondingly, b (the
number of blocks for a randomized block design) that will reduce the half-width of
the confidence interval for the parameter so that, at a prescribed confidence level,
it is less than or equal to the specified bound on the error of estimation. It should
be emphasized that the sample size solution always will be an approximation be-
cause σ is unknown and an estimate for σ is unknown until the sample is acquired.
The best available estimate for σ will be used to produce an approximate solution.
We illustrate the procedure with an example.

EXAMPLE 13.7 A completely randomized design is to be conducted to compare five teaching tech-
niques in classes of equal size. Estimation of the differences in mean response on
an achievement test is desired correct to within 30 test-score points, with probability
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13.11 Selecting the Sample Size 697

equal to .95. It is expected that the test scores for a given teaching technique will pos-
sess a range approximately equal to 240. Find the approximate number of observations
required for each sample in order to acquire the specified information.

Solution The confidence interval for the difference between a pair of treatment means is

(Y i• − Y i ′•) ± tα/2S

√
1

ni
+ 1

ni ′
.

Therefore, we wish to select ni and ni ′ so that

tα/2S

√
1

ni
+ 1

ni ′
≤ 30.

The value of σ is unknown, and S is a random variable. However, an approximate
solution for ni = ni ′ can be obtained by conjecturing that the observed value of s
will be roughly equal to one-fourth of the range. Thus, s ≈ 240/4 = 60. The value
of tα/2 will be based on (n1 + n2 + · · · + n5 − 5) df, and for even moderate values of
ni , t.025 will approximately equal 2. Then

t.025s

√
1

ni
+ 1

ni ′
≈ (2)(60)

√
2

ni
= 30,

or

ni = 32, i = 1, 2, . . . , 5.

EXAMPLE 13.8 An experiment is to be conducted to compare the toxic effects of three chemicals on
the skin of rats. The resistance to the chemicals was expected to vary substantially
from rat to rat. Therefore, all three chemicals were to be tested on each rat, thereby
blocking out rat-to-rat differences.

The standard deviation of the experimental error was unknown, but prior exper-
imentation involving several applications of a similar chemical on the same type of
rat suggested a range of response measurements equal to 5 units.

Find a value for b such that the error of estimating the difference between a pair
of treatment means is less than 1 unit, with probability equal to .95.

Solution A very approximate value for s is one-fourth of the range, or s ≈ 1.25. Then, we
wish to select b so that

t.025s

√
1

b
+ 1

b
= t.025s

√
2

b
≤ 1.

Because t.025 will depend on the degrees of freedom associated with s2, which will
be (n − b − k + 1), we will use the approximation t.025 ≈ 2. Then,

(2)(1.25)

√
2

b
= 1, or b ≈ 13.
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Approximately thirteen rats will be required to obtain the desired information. Since
we will make three observations (k = 3) per rat, our experiment will require that a
total of n = bk = 13(3) = 39 measurements be made.

The degrees of freedom associated with the resulting estimate s2 will be (n − b −
k + 1) = 39 − 13 − 3 + 1 = 24, based on this solution. Therefore, the guessed value
of t would seem to be adequate for this approximate solution.

The sample size solutions for Examples 13.7 and 13.8 are very approximate and
are intended to provide only a rough estimate of sample size and consequent costs of
the experiment. The actual lengths of the resulting confidence intervals will depend
on the data actually observed. These intervals may not have the exact lengths specified
by the experimenter but will have the required confidence coefficient. If the resulting
intervals are still too long, the experimenter can obtain information on σ as the
data are being collected and can recalculate a better approximation to the number of
observations per treatment (ni or b) as the experiment proceeds.

Exercises
13.58 Refer to Exercise 13.9.

a About how many specimens per concrete mix should be prepared to allow estimation of
the difference in mean strengths for a preselected pair of specimen types to within .02 ton
per square inch? Assume knowledge of the data given in Exercise 13.9.

b What is the total number of observations required in the entire experiment?

13.59 Refer to Exercises 13.10 and 13.27(a). Approximately how many observations would be nec-
essary to estimate μA to within 10 units? Use a 95% confidence coefficient.

13.60 Refer to Exercises 13.10 and 13.27(c).

a Assuming equal sample sizes for each treatment, approximately how many observations
from method A and method B are necessary to estimate μA − μB to within 20 units? Use
a 95% confidence coefficient.

b What is the total number of observations required in the entire experiment?

13.61 Refer to Exercise 13.45.

a How many locations need to be used to estimate the difference between the mean growth
for any two specified soil preparations to within 1 unit, with confidence coefficient .95?

b What is the total number of observations required in the entire experiment?

13.62 Refer to Exercises 13.47 and 13.55. How many locations should be used if it is desired to
estimate μ1 − μ4 to within .5 unit, with confidence coefficient .95?

13.12 Simultaneous Confidence Intervals
for More Than One Parameter
The methods of Section 13.7 can be used to construct 100(1 − α)% confidence
intervals for a single treatment mean or for the difference between a pair of treatment
means in a one-way layout. Suppose that in the course of an analysis we wish to
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construct several of these confidence intervals. The method of Section 13.10 can be
used to compare a pair of treatment means in a randomized block design. Although it
is true that each interval will enclose the estimated parameter with probability (1−α),
what is the probability that all the intervals will enclose their respective parameters?
The objective of this section is to present a procedure for forming sets of confidence
intervals so that the simultaneous confidence coefficient is no smaller than (1 − α)

for any specified value of α.
Suppose that we want to find confidence intervals I1, I2, . . . , Im for parameters

θ1, θ2, . . . , θm so that

P(θ j ∈ I j for all j = 1, 2, . . . , m) ≥ 1 − α.

This goal can be achieved by using a simple probability inequality, known as the
Bonferroni inequality (recall Exercise 2.104). For any events A1, A2, . . . , Am , we
have

A1 ∩ A2 ∩ · · · ∩ Am = A1 ∪ A2 ∪ · · · ∪ Am .

Therefore,

P(A1 ∩ A2 ∩ · · · ∩ Am) = 1 − P(A1 ∪ A2 ∪ · · · ∪ Am).

Also, from the additive law of probability, we know that

P(A1 ∪ A2 ∪ · · · ∪ Am) ≤
m∑

j=1

P(A j ).

Hence, we obtain the Bonferroni inequality

P(A1 ∩ A2 ∩ · · · ∩ Am) ≥ 1 −
m∑

j=1

P(A j ).

Suppose that P(θ j ∈ I j ) = 1 − α j and let A j denote the event {θ j ∈ I j }. Then,

P(θ1 ∈ I1, . . . , θm ∈ Im) ≥ 1 −
m∑

j=1

P(θ j 7∈ I j ) = 1 −
m∑

j=1

α j .

If all α j ’s, for j = 1, 2, . . . , m, are chosen equal to α, we can see that the simultaneous
confidence coefficient of the intervals I j , for j = 1, 2, . . . , m, could be as small as
(1 − mα), which is smaller than (1 − α) if m > 1. A simultaneous confidence
coefficient of at least (1 − α) can be ensured by choosing the confidence intervals I j ,
for j = 1, 2, . . . , m, so that

∑m
j=1 α j = α. One way to achieve this objective is if

each interval is constructed to have confidence coefficient 1 − (α/m). We apply this
technique in the following example.

EXAMPLE 13.9 For the four treatments given in Example 13.2, construct confidence intervals for all
comparisons of the form μi −μi ′ , with simultaneous confidence coefficient no smaller
than .95.
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Solution The appropriate 100(1 − α)% confidence interval for a single comparison (say,
μ1 − μ2) is

(Y 1• − Y 2•) ± tα/2S

√
1

n1
+ 1

n2
.

Because there are six such differences to consider, each interval should have confi-
dence coefficient 1−(α/6). Thus, the corresponding t-value is tα/2(6) = tα/12. Because
we want simultaneous confidence coefficient at least .95, the appropriate t-value is
t.05/12 = t.00417. Using Table 5, Appendix 3, the closest available table value is t.005, so
we will use this to approximate the desired result. The MSE for the data in Example
13.2 is based on 19 df, so the table value is t.005 = 2.861.

Because s = √
MSE = √

63 = 7.937, the interval for μ1 − μ2 among the six
with simultaneous confidence coefficient at least .95 is

μ1 − μ2: (75.67 − 78.43) ± 2.861(7.937)

√
1

6
+ 1

7
or −2.76 ± 12.63.

Analogously, the entire set of six realized intervals are

μ1 − μ2: −2.76 ± 12.63
μ1 − μ3: 4.84 ± 13.11
μ1 − μ4: −12.08 ± 14.66
μ2 − μ3: 7.60 ± 12.63
μ2 − μ4: −9.32 ± 14.23
μ3 − μ4: −16.92 ± 14.66.

We cannot achieve our objective of obtaining a set of six confidence intervals with
simultaneous confidence coefficient at least .95 because the t tables in the text are
too limited. Of course, more extensive tables of the t distributions are available.
Because each of our six intervals has confidence coefficient .99, we can claim that
the six intervals above have a simultaneous confidence coefficient of at least .94. The
applet Student’s t Probabilities and Quantiles, applied with 19 df, yields t.00417 =
2.9435. Intervals with simultaneous confidence coefficient .9499 can be obtained by
substituting t.00417 = 2.9435 in place of 2.861 in the above calculations.

We emphasize that the technique presented in this section guarantees simultaneous
coverage probabilities of at least 1−α. The actual simultaneous coverage probability
can be much larger than the nominal value 1 − α. Other methods for constructing
simultaneous confidence intervals can be found in the books listed in the references
at the end of the chapter.

Exercises
13.63 Refer to Example 13.9. The six confidence intervals for μi − μi ′ were obtained by using an

approximate (due to the limitation of the information in Table 5, Appendix 3) value for t.00417.
Why do some of the intervals differ in length?

13.64 Refer to Exercise 13.63 and Example 13.9.
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a Use the exact value for t.00417 given in Example 13.9 to give a 99.166% interval for
μ1 −μ2. This interval is one of the six simultaneous intervals for μi −μi ′ with simultaneous
confidence coefficient no smaller than .94996 ≈ .95.

b What is the ratio of the lengths of the intervals for μ1 − μ2 obtained in Example 13.9 and
part (a)?

c How does the ratio you obtained in part (b) compare to the ratio t.005/t.00417?

d Based on parts (b) and (c) and the interval for μ1 − μ3 given in Example 13.9, give a
99.166% interval for μ1 − μ3. As before, this is one of the six simultaneous intervals to
compare μi and μi ′ with simultaneous confidence coefficient no smaller than .94996 ≈ .95.

13.65 Refer to Exercise 13.13. Construct confidence intervals for all possible differences between
mean maneuver times for the three vehicle classes so that the simultaneous confidence coeffi-
cient is at least .95. Interpret the results.

13.66 Refer to Exercise 13.12. After looking at the data, a reader of the report of Wheeler et al.
noticed that the largest difference between sample means occurs when comparing high and
low concentrations of acetonitrile. If a confidence interval for the difference in corresponding
population means is desired, how would you suggest constructing this interval?

13.67 Refer to Exercise 13.45. Construct confidence intervals for all possible differences among
treatment (soil preparation) means so that the simultaneous confidence coefficient is at
least .90.

13.68 Refer to Exercises 13.31 and 13.47. Because method 4 is the most expensive, it is desired to
compare it to the other three. Construct confidence intervals for the differencesμ1−μ4, μ2−μ4,
and μ3 − μ4 so that the simultaneous confidence coefficient is at least .95.

13.13 Analysis of Variance Using Linear Models
The methods for analyzing linear models presented in Chapter 11 can be adapted for
use in the ANOVA. We illustrate the method by formulating a linear model for data
obtained through a completely randomized design involving k = 2 treatments.

Let Yi j denote the random variable to be observed on the j th observation from
treatment i , for i = 1, 2. Let us define a dummy, or indicator, variable x as follows:

x =
{

1, if the observation is from population 1,

0, otherwise.

Although such dummy variables can be defined in many ways, this definition is con-
sistent with the coding used in SAS and other statistical analysis computer programs.
Notice that with this coding x is 1 if the observation is taken from population 1 and
x is 0 if the observation is taken from population 2. If we use x as an independent
variable in a linear model, we can model Yi j as

Yi j = β0 + β1x + εi j ,

where εi j is a normally distributed random error with E(εi j ) = 0 and V (εi j ) = σ 2.
In this model,

μ1 = E(Y1 j ) = β0 + β1(1) = β0 + β1,
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and

μ2 = E(Y2 j ) = β0 + β1(0) = β0.

Thus, it follows that β1 = μ1 − μ2 and a test of the hypothesis μ1 − μ2 = 0 is
equivalent to the test that β1 = 0. Our intuition would suggest that β̂0 = Y 2• and
β̂1 = Y 1• − Y 2• are good estimators of β0 and β1; indeed, it can be shown (proof
omitted) that these are the least-squares estimators obtained by fitting the preceding
linear model. We illustrate the use of this technique through reanalyzing the data
presented in Example 13.1.

EXAMPLE 13.10 Fit an appropriate linear model to the data of Example 13.1 and test to see whether
there is a significant difference between μ1 and μ2.

Solution The model, as indicated earlier, is given by

Yi j = β0 + β1x + εi j ,

where

x =
{

1, if the observation is from population 1,

0, otherwise.

The matrices used for the least-squares estimators are then

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.1
7.1
7.8
6.9
7.6
8.2
9.1
8.2
8.6
6.9
7.5
7.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1
1 1
1 1
1 1
1 1
1 0
1 0
1 0
1 0
1 0
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

X′X =
[

12 6
6 6

]
, (X′X)−1 =

[
1/6 −1/6

−1/6 1/3

]
.

The least-squares estimates are given by

β̂ = (X′X)−1X′Y =
[

1/6 −1/6
−1/6 1/3

] [
91.9
43.7

]
=

[
8.033
−.75

]
.

Notice that β̂0 = 8.033 = Y 2• and β̂1 = −.75 = Y 1• − Y 2•.
Further,

SSE = Y′Y − β̂
′
X′Y = 5.8617

is the same as the SSE calculated in Example 13.1. Therefore, s2 = SSE/(n − 2) =
.58617, and s = √

.58617 = .7656.
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To test H0 : β1 = 0, we construct the t statistic (see Section 11.12):

t = β̂1 − 0

s
√

c11
= −.75

.7656
√

1/3
= −1.697.

Because we are interested in a two-tailed test, the associated p-value is 2P(t <

−1.697) = 2P(t > 1.697), where t is based on 10 df. Thus, using Table 5, Appendix
3, we obtain .05 < P(t > 1.697) < .10 and .10 < p-value < .20. Therefore, for
any α-value less than .1, we cannot reject H0. That is, there is insufficient evidence
to indicate that μ1 and μ2 differ.

This t test is equivalent to the F test of Example 13.1. In fact, the square of the
observed t-value is the observed F-value of Example 13.1.

We illustrate the linear model approach to a more complicated analysis of variance
problem by considering a randomized block design.

EXAMPLE 13.11 An experiment was conducted to compare the effects of four chemicals A, B, C, and
D on water resistance in textiles. Three different bolts of material I, II, and III were
used, with each chemical treatment being applied to one piece of material cut from
each of the bolts. The data are given in Table 13.7. Write a linear model for this
experiment and test the hypothesis that there are no differences among mean water
resistances for the four chemicals. Use α = .05.

Solution In formulating the model, we define β0 as the mean response for treatment D on
material from bolt III, and then we introduce a distinct indicator variable for each
treatment and for each bolt of material (block). The model is

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε,

where

x1 =
{

1, if material from bolt I is used,

0, otherwise,

x2 =
{

1, if material from bolt II is used,

0, otherwise,

x3 =
{

1, if treatment A is used,

0, otherwise,

Table 13.7 Data for Example 13.11

Treatments

Bolt of Material A B C D

I 10.1 11.4 9.9 12.1
II 12.2 12.9 12.3 13.4
III 11.9 12.7 11.4 12.9
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x4 =
{

1, if treatment B is used,

0, otherwise,

x5 =
{

1, if treatment C is used,

0, otherwise.

We want to test the hypothesis that there are no differences among treatment means,
which is equivalent to H0 : β3 = β4 = β5 = 0. Thus, we must fit a complete and a
reduced model. (See Section 11.14.)

For the complete model, we have

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.1
12.2
11.9
11.4
12.9
12.7
9.9

12.3
11.4
12.1
13.4
12.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0
1 0 1 1 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A little matrix algebra yields, for this complete model,

SSEC = Y′Y − β̂
′
X′Y = 1721.760 − 1721.225 = .535.

The relevant reduced model is

Y = β0 + β1x1 + β2x2 + ε,

and the corresponding X matrix consists of only the first three columns of the X
matrix given for the complete model. We then obtain

β̂ = (X′X)−1X′Y =
⎡⎣ 12.225

−1.350
.475

⎤⎦
and

SSER = Y′Y − β̂
′
X′Y = 1721.760 − 1716.025 = 5.735.

It follows that the F ratio appropriate to compare these complete and reduced
models is

F = (SSER − SSEC)/(k − g)

SSEC/(n − [k + 1])
= (5.735 − .535)/(5 − 2)

(.535)/(12 − 6)
= 1.733

.0892
= 19.4.

The tabulated F for α = .05, ν1 = 3, and ν2 = 6 is 4.76. Hence, if we choose
α = .05, we reject the null hypothesis and conclude that the data present sufficient
evidence to indicate that differences exist among the treatment means. The associated
p-value is given by P(F > 19.4). Table 7, Appendix 3, establishes that p-value <

.005. The applet F-Ratio Probabilities and Quantiles, applied with 3 numerator and
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13.14 Summary 705

6 denominator degrees of freedom yields p-value = P(F > 19.4) = .00172. The F
test used in this example is equivalent to the one that would have been produced by
the methods discussed in Section 13.9.

Although it provides a very useful technique, the linear model approach to ANOVA
calculation generally is used only when the computations are being done on a com-
puter. The calculation formulas given earlier in the chapter are more convenient for
hand calculation. Notice that if there are k treatments involved in a study, the “dummy
variables” approach requires that we define k − 1 dummy variables if we wish to use
the linear model approach to analyze the data.

Exercises
13.69 Refer to Example 13.11. In Exercise 13.37, you interpreted the parameters in the model for a

randomized block design in terms of the mean response for each treatment in each block. In
terms of the model with dummy variables given in Example 13.11, β0 is the mean response to
treatment D for bolt of material (block) III.

a In terms of the β-values, what is the mean response to treatment A in block III?

b Based on your answer to part (a), what is an interpretation of the parameter β3?

13.70 Refer to Exercise 13.10.

a Answer the question posed in Exercise 13.10 by fitting complete and reduced linear models.
Test using α = .05.

b Use the calculations for the complete model from part (a) to test the hypothesis that there
is no difference between the means for methods A and C. Test using α = .05.

c Give the attained significance levels for the tests implemented in parts (a) and (b).

13.71 Refer to Exercise 13.42. Answer part (a) by fitting complete and reduced models.

13.72 Refer to Exercise 13.45. Answer part (b) by constructing an F test, using complete and reduced
linear models.

13.14 Summary
The one-way layout (including the completely randomized design) and the random-
ized block design are examples of experiments involving one and two qualitative
independent variables, respectively. The ANOVA partitions the total sum of squares,
Total SS, into portions associated with each independent variable and with experi-
mental error. Mean squares associated with each independent variable may be com-
pared with MSE, to see whether the mean squares are large enough to imply that
the independent variable has an effect on the response. Confidence intervals for the
mean response to an individual treatment or the difference in mean responses for
two preselected treatments are straightforward modifications of intervals presented in
previous chapters. The Bonferroni inequality was used to construct a set of confidence
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intervals with simultaneous confidence coefficient at least 1−α. Finally, we introduced
the dummy variable approach that permits the use of linear models methodology to
implement an analysis of variance.

In this chapter, we have presented a very brief introduction to the analysis of
variance and its associated subject, the design of experiments. Experiments can be
designed to investigate the effect of many quantitative and qualitative variables on
a response. These may be variables of primary interest to the experimenter, as well
as nuisance variables such as blocks, which may contribute unwanted variation that
we attempt to separate from the experimental error. When properly designed, such
experiments yield data that can be analyzed using an ANOVA approach. A more
extensive coverage of the basic concepts of experimental design and the analysis of
experiments is found in the references.
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Supplementary Exercises
13.73 Assume that n = bk experimental units are available for use in an experiment used to compare

k treatments. If blocks can be formed in a meaningful way, how should the experimental units
in each block be identified?

13.74 Refer to Exercise 13.73.

a If a completely randomized design is employed, how would you select the experimental
units that are assigned to the different treatments?

b If a randomized block design is employed, how would you select the experimental units
that are assigned to each of the k treatments?

13.75 Three skin cleansing agents were used on three persons. For each person, three patches of skin
were exposed to a contaminant and afterward cleansed by using one of the three cleansing
agents. After 8 hours, the residual contaminant was measured, with the following results:

SST = 1.18, SSB = .78, SSE = 2.24.
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a What are the experimental units, and what are the blocks in this experiment?

b Test the hypothesis that there are no differences among the treatment means, using α = .05.

13.76 Refer to Exercise 13.9. Suppose that the sand used in the mixes for samples 1–4 came from
pit A, the sand used for samples 5–8 came from pit B, and the sand for samples 9–12 came
from pit C. Analyze the data, assuming that the requirements for a randomized block are met
with three blocks consisting, respectively, of samples 1, 2, 3, and 4; samples 5, 6, 7, and 8; and
samples 9, 10, 11, and 12.

a At the 5% significance level, is there evidence of differences in concrete strength due to
the sand used?

b Is there evidence, at the 5% significance level, of differences in average strength among
the four types of concrete used?

c Does the conclusion of part (b) contradict the conclusion that was obtained in Exercise
13.9?

13.77 Refer to Exercise 13.76. Let μA and μB, respectively, denote the mean strengths of concrete
specimens prepared from mix A and mix B.

a Find a 95% confidence interval for (μA − μB).

b Is the interval found in part (a) the same interval found in Exercise 13.26(b)? Why or
why not?

13.78 A study was initiated to investigate the effect of two drugs, administered simultaneously, on
reducing human blood pressure. It was decided to use three levels of each drug and to include
all nine combinations in the experiment. Nine high-blood-pressure patients were selected for
the experiment, and one was randomly assigned to each of the nine drug combinations. The
response observed was a drop in blood pressure over a fixed interval of time.

a Is this a randomized block design?

b Suppose that two patients were randomly assigned to each of the nine drug combinations.
What type of experimental design is this?

13.79 Refer to Exercise 13.78. Suppose that a balanced completely randomized design is to be
employed and that prior experimentation suggests that σ = 20.

a How many replications would be required to estimate any treatment (drug combination)
mean correct to within ±10 with probability .95?

b How many degrees of freedom will be available for estimating σ 2 when using the number
of replications determined in part (a)?

c Give the approximate half-width of a 95% confidence interval for the difference in mean
responses for two treatments when using the number of replications determined in part (a).

13.80 A dealer has in stock three cars (models A, B, and C) of the same make but different models.
Wishing to compare mileage obtained for these different models, a customer arranged to test
each car with each of three brands of gasoline (brands X, Y, and Z). In each trial, a gallon of
gasoline was added to an empty tank, and the car was driven without stopping until it ran out of
gasoline. The accompanying table shows the number of miles covered in each of the nine trials.

Distance (miles)

Brand of Gasoline Model A Model B Model C

X 22.4 17.0 19.2
Y 20.8 19.4 20.2
Z 21.5 18.7 21.2
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a Should the customer conclude that the different car models differ in mean gas mileage?
Test at the α = .05 level.

b Do the data indicate that the brand of gasoline affects gas mileage?

13.81 Refer to Exercise 13.80. Suppose that the gas mileage is unrelated to the brand of gasoline. Carry
out an analysis of the data appropriate for a completely randomized design with three treatments.

a Should the customer conclude that the three cars differ in gas mileage? Test at the α = .05
level.

b Comparing your answer for Exercise 13.80(a) with your answer for part (a), can you suggest
a reason why blocking may be unwise in certain cases?

c Why might it be Wrong to analyze the data in the manner suggested in part (a)?

13.82 In the hope of attracting more riders, a city transit company plans to have express bus service
from a suburban terminal to the downtown business district. These buses should save travel
time. The city decides to perform a study of the effect of four different plans (such as a special
bus lane and traffic signal progression) on the travel time for the buses. Travel times (in min-
utes) are measured for several weekdays during a morning rush-hour trip while each plan is in
effect. The results are recorded in the following table.

Plan

1 2 3 4

27 25 34 30
25 28 29 33
29 30 32 31
26 27 31

24 36

a What type of experimental design was employed?

b Is there evidence of a difference in the mean travel times for the four plans? Use α = 0.01.

c Form a 95% confidence interval for the difference between plan 1 (express lane) and plan
3 (a control: no special travel arrangements).

13.83 A study was conducted to compare the effect of three levels of digitalis on the level of calcium
in the heart muscle of dogs. A description of the actual experimental procedure is omitted, but
it is sufficient to note that the general level of calcium uptake varies from one animal to another
so that comparison of digitalis levels (treatments) had to be blocked on heart muscles. That is,
the tissue for a heart muscle was regarded as a block and comparisons of the three treatments
were made within a given muscle. The calcium uptakes for the three levels of digitalis, A, B,
and C, were compared based on the heart muscles of four dogs. The results are shown in the
accompanying table.

Dogs

1 2 3 4

A C B A
1342 1698 1296 1150

B B A C
1608 1387 1029 1579

C A C B
1881 1140 1549 1319
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a Calculate the sums of squares for this experiment and construct an ANOVA table.

b How many degrees of freedom are associated with SSE?

c Do the data present sufficient evidence to indicate a difference in the mean uptake of calcium
for the three levels of digitalis?

d Do the data indicate a difference in the mean uptake in calcium for the heart muscles of
the four dogs?

e Give the standard deviation of the difference between the mean calcium uptakes for two
levels of digitalis.

f Find a 95% confidence interval for the difference in mean responses between treatments
A and B.

13.84 Refer to Exercise 13.83. Approximately how many replications are required for each level of
digitalis (how many blocks) so that the error of estimating the difference in mean response for a
pair of digitalis levels is less than 20, with probability .95? Assume that additional observations
would be made within a randomized block design.

13.85 A completely randomized design was conducted to compare the effects of five stimuli on reac-
tion time. Twenty-seven people were employed in the experiment, which was conducted using a
completely randomized design. Regardless of the results of the ANOVA, it is desired to compare
stimuli A and D. The reaction times (in seconds) were as shown in the accompanying table.

Stimulus

A B C D E

.8 .7 1.2 1.0 .6

.6 .8 1.0 .9 .4

.6 .5 .9 .9 .4

.5 .5 1.2 1.1 .7
.6 1.3 .7 .3
.9 .8
.7

Total 2.5 4.7 6.4 4.6 2.4
Mean .625 .671 1.067 .920 .480

a Conduct an ANOVA and test for a difference in mean reaction times due to the five stimuli.
Give bounds for the p-value.

b Compare stimuli A and D to see if there is a difference in mean reaction times. What can
be said about the attained significance level?

13.86 Because we would expect mean reaction time to vary from one person to another, the exper-
iment in Exercise 13.85 might have been conducted more effectively by using a randomized
block design with people as blocks. Hence, four people were used in a new experiment, and
each person was subjected to each of the five stimuli in a random order. The reaction times (in
seconds) were as shown in the accompanying table. Conduct an ANOVA and test for differences
in mean reaction times for the four stimuli.

Stimulus

Subject A B C D E

1 .7 .8 1.0 1.0 .5
2 .6 .6 1.1 1.0 .6
3 .9 1.0 1.2 1.1 .6
4 .6 .8 .9 1.0 .4
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13.87 Refer to Exercise 13.46. Construct confidence intervals to compare each of the ryegrass culti-
vars with Marvelgreen supreme in such a way that the simultaneous confidence coefficient is
at least .95. Interpret the results.

13.88 Show that

Total SS = SST + SSB + SSE

for a randomized block design, where

SSE =
b∑

j=1

k∑
i=1

(Yi j − Y • j − Y i• + Y )2.

*13.89 Consider the following model for the responses measured in a randomized block design con-
taining b blocks and k treatments:

Yi j = μ + τi + β j + εi j ,

where Yi j = response to treatment i in block j ,
μ = overall mean,
τi = nonrandom effect of treatment i , where

∑k
i=1 τi = 0,

β j = random effect of block j , where β j ’s are independent, normally
distributed random variables with E(β j ) = 0 and V (β j ) = σ 2

β , for
j = 1, 2, . . . , b,

εi j = random error terms where εi j ’s are independent, normally distributed
random variables with E(εi j ) = 0 and V (εi j ) = σ 2

ε , for i = 1, 2, . . . , k
and j = 1, 2, . . . , b.

Further, assume that the β j ’s and εi j ’s also are independent. This model differs from that pre-
sented in Section 13.8 in that the block effects are assumed to be random variables instead of
fixed but unknown constants.

a If the model just described is appropriate, show that observations taken from different
blocks are independent of one another. That is, show that Yi j and Yi j ′ are independent if
j 7= j ′, as are Yi j and Yi ′ j ′ if i 7= i ′ and j 7= j ′.

b Under the model just described, derive the covariance of two observations from the same
block. That is, find Cov(Yi j , Yi ′ j ) if i 7= i ′.

c Two random variables that have a joint normal distribution are independent if and only if
their covariance is 0. Use the result from part (b) to determine conditions under which two
observations from the same block are independent of one another.

*13.90 Refer to the model for the randomized block design with random block effect given in
Exercise 13.89.

a Give the expected value and variance of Yi j .

b Let Y i• denote the average of all of the responses to treatment i . Use the model for the
randomized block design to derive E(Y i•) and V (Y i•). Is Y i• an unbiased estimator for the
mean response to treatment i? Why or why not? Notice that V (Y i•) depends on b and both
σ 2

β and σ 2
ε .

c Consider Y i• − Y i ′• for i 7= i ′. Show that E(Y i• − Y i ′•) = τi − τi ′ . This result implies that
Y i• − Y i ′• is an unbiased estimator of the difference in the effects of treatments i and i ′.

d Derive V (Y i• − Y i ′•). Notice that V (Y i• − Y i ′•) depends only on b and σ 2
ε .

*13.91 Refer to the model for the randomized block design with random block effect given in
Exercise 13.89 and let Y • j denote the average of all the responses in block j . Derive
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a E(Y • j ) and V (Y • j ).

b E(MST).

c E(MSB).

d E(MSE).

*13.92 Refer to the model for the randomized block design with random block effect given in Exercise
13.89 and the results obtained in Exercise 13.91(c) and (d). Give an unbiased estimator for

a σ 2
ε .

b σ 2
β .

*13.93 Suppose that Y1, Y2, . . . , Yn is a random sample from a normal distribution with mean μ and
variance σ 2. The independence of

∑n
i=1(Yi − Y )2 and Y can be shown as follows. Define an

n × n matrix A by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
n

1√
n

1√
n

1√
n

· · · 1√
n

1√
n

1√
2

−1√
2

0 0 · · · 0 0

1√
2 · 3

1√
2 · 3

−2√
2 · 3

0 · · · 0 0

...
...

...
...

...
...

...

1√
(n − 1)n

1√
(n − 1)n

· · · 1√
(n − 1)n

−(n − 1)√
(n − 1)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and notice that A′A = I, the identity matrix. Then,

n∑
i=1

Y 2
i = Y′Y = Y′A′AY,

where Y is the vector of Yi values.

a Show that

AY =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y
√

n

U1

U2

...

Un−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where U1, U2, . . . , Un−1 are linear functions of Y1, Y2, . . . , Yn . Thus,
n∑

i=1

Y 2
i = nY

2 +
n−1∑
i=1

U 2
i .

b Show that the linear functions Y
√

n, U1, U2, . . . , Un−1 are pairwise orthogonal and hence
independent under the normality assumption. (See Exercise 5.130.)

c Show that
n∑

i=1

(Yi − Y )2 =
n−1∑
i=1

U 2
i

and conclude that this quantity is independent of Y .
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712 Chapter 13 The Analysis of Variance

d Using the results of part (c), show that∑n
i=1(Yi − Y )2

σ 2
= (n − 1)S2

σ 2

has a χ 2 distribution with (n − 1) df.

13.94 Consider a one-way layout with k treatments. Assume that Yi j is the j th response for treat-
ment (population) i and that Yi j is normally distributed with mean μi and variance σ 2, for
i = 1, 2, . . . , k and j = 1, 2, . . . , ni .

a Use Exercise 13.93 to justify that Y 1, Y 2, . . . , Y k are independent of SSE.

b Show that MST/MSE has an F distribution with ν1 = k − 1 and ν2 = n1 + n2 + · · · +
nk − k df under H0 : μ1 = μ2 = · · · = μk . (You may assume, for simplicity, that
n1 = n2 = · · · = nk .)
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CHAPTER 14

Analysis of
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14.7 Summary and Concluding Remarks
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14.1 A Description of the Experiment
Many experiments result in measurements that are qualitative or categorical rather
than quantitiative like many of the measurements discussed in previous chapters. In
these instances, a quality or characteristic is identified for each experimental unit.
Data associated with such measurements can be summarized by providing the count
of the number of measurements that fall into each of the distinct categories associated
with the variable. For example,

• Employees can be classified into one of five income brackets.
• Mice might react in one of three ways when subjected to a stimulus.
• Motor vehicles might fall into one of four vehicle types.
• Paintings could be classified into one of k categories according to style and

period.
• The quality of surgical incisions could be most meaningfully be identified as

excellent, very good, good, fair, or poor.
• Manufactured items are acceptable, seconds, or rejects.

All the preceding examples exhibit, to a reasonable degree of approximation, the
following characteristics, which define a multinomial experiment (see Section 5.9):
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714 Chapter 14 Analysis of Categorical Data

1. The experiment consists of n identical trials.
2. The outcome of each trial falls into exactly one of k distinct categories or cells.
3. The probability that the outcome of a single trial will fall in a particular cell,

cell i , is pi , where i = 1, 2, . . . , k, and remains the same from trial to trial.
Notice that

p1 + p2 + p3 + · · · + pk = 1.

4. The trials are independent.
5. We are interested in n1, n2, n3, . . . , nk , where ni for i = 1, 2, . . . , k is equal

to the number of trials for which the outcome falls into cell i . Notice that
n1 + n2 + n3 + · · · + nk = n.

This experiment is analogous to tossing n balls at k boxes, where each ball must
fall into exactly one of the boxes. The probability that a ball will fall into a box varies
from box to box but remains the same for each box in repeated tosses. Finally, the
balls are tossed in such a way that the trials are independent. At the conclusion of
the experiment, we observe n1 balls in the first box, n2 in the second, . . . , and nk in
the kth. The total number of balls is n = n1 + n2 + n3 + · · · + nk .

Notice the similarity between the binomial and the multinomial experiments and,
in particular, that the binomial experiment represents the special case for the multi-
nomial experiment when k = 2. The two-cell probabilities, p and q = 1 − p, of the
binomial experiment are replaced by the k-cell probabilities, p1, p2, . . . , pk , of the
multinomial experiment. The objective of this chapter is to make inferences about
the cell probabilities p1, p2, . . . , pk . The inferences will be expressed in terms of
statistical tests of hypotheses concerning the specific numerical values of the cell
probabilites or their relationship one to another.

Because the calculation of multinomial probabilities is somewhat cumbersome,
it would be difficult to calculate the exact significance levels (probabilities of type I
errors) for hypotheses regarding the values of p1, p2, . . . , pk . Fortunately, we have
been relieved of this chore by the British statistician Karl Pearson, who proposed a
very useful test statistic for testing hypotheses concerning p1, p2, . . . , pk and gave the
approximate sampling distribution of this statistic. We will outline the construction
of Pearson’s test statistic in the following section.

14.2 The Chi-Square Test
Suppose that n = 100 balls were tossed at the cells (boxes) and that we knew that p1

was equal to .1. How many balls would be expected to fall into cell 1? Referring to
Section 5.9, recall that n1 has a (marginal) binomial distribution with parameters n
and p1, and that

E(n1) = np1 = (100)(.1) = 10.

In like manner, each of the ni ’s have binomial distributions with parameters n and pi

and the expected numbers falling into cell i is

E(ni ) = npi , i = 1, 2, . . . , k.
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14.2 The Chi-Square Test 715

Now suppose that we hypothesize values for p1, p2, . . . , pk and calculate the
expected value for each cell. Certainly if our hypothesis is true, the cell counts ni

should not deviate greatly from their expected values npi for i = 1, 2, . . . , k. Hence,
it would seem intuitively reasonable to use a test statistic involving the k deviations,

ni − E(ni ) = ni − npi , for i = 1, 2, . . . , k.

In 1900 Karl Pearson proposed the following test statistic, which is a function of the
squares of the deviations of the observed counts from their expected values, weighted
by the reciprocals of their expected values:

X2 =
k∑

i=1

[ni − E(ni )]2

E(ni )
=

k∑
i=1

[ni − npi ]2

npi
.

Although the mathematical proof is beyond the scope of this text, it can be shown
that when n is large, X2 has an approximate chi-square (χ2) probability distribution.
We can easily demonstrate this result for the case k = 2, as follows. If k = 2, then
n2 = n − n1 and p1 + p2 = 1. Thus,

X2 =
2∑

i=1

[ni − E(ni )]2

E(ni )
= (n1 − np1)

2

np1
+ (n2 − np2)

2

np2

= (n1 − np1)
2

np1
+ [(n − n1) − n(1 − p1)]2

n(1 − p1)

= (n1 − np1)
2

np1
+ (−n1 + np1)

2

n(1 − p1)

= (n1 − np1)
2

(
1

np1
+ 1

n(1 − p1)

)
= (n1 − np1)

2

np1(1 − p1)
.

We have seen (Section 7.5) that for large n
n1 − np1√
np1(1 − p1)

has approximately a standard normal distribution. Since the square of a standard
normal random variable has a χ2 distribution (see Example 6.11), for k = 2 and large
n, X2 has an approximate χ2 distribution with 1 degree of freedom (df).

Experience has shown that the cell counts ni should not be too small if the χ2

distribution is to provide an adequate approximation to the distribution of X2. As a
rule of thumb, we will require that all expected cell counts are at least five, although
Cochran (1952) has noted that this value can be as low as one for some situations.

You will recall the use of the χ2 probability distribution for testing a hypothesis
concerning a population variance σ 2 in Section 10.9. In particular, we have seen that
the shape of the χ2 distribution and the associated quantiles and tail areas differ con-
siderably depending on the number of degrees of freedom (see Table 6, Appendix 3).
Therefore, if we want to use X2 as a test statistic, we must know the number of degrees
of freedom associated with the approximating χ2 distribution and whether to use a
one-tailed or two-tailed test in locating the rejection region for the test. The latter
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716 Chapter 14 Analysis of Categorical Data

problem may be solved directly. Because large differences between the observed and
expected cell counts contradict the null hypothesis, we will reject the null hypothesis
when X2 is large and employ an upper-tailed statistical test.

The determination of the appropriate number of degrees of freedom to be employed
for the test can be a little tricky and therefore will be specified for the physical
applications described in the following sections. In addition, we will state the principle
involved (which is fundamental to the mathematical proof of the approximation)
so that you will understand why the number of degrees of freedom changes with
various applications. This principle states that the appropriate number of degrees of
freedom will equal the number of cells, k, less 1 df for each independent linear restric-
tion placed on the cell probabilities. For example, one linear restriction is always
present because the sum of the cell probabilities must equal 1; that is,

p1 + p2 + p3 + · · · + pk = 1.

Other restrictions will be introduced for some applications because of the necessity
for estimating unknown parameters required in the calculation of the expected cell
frequencies or because of the method used to collect the sample. When unknown
parameters must be estimated in order to compute X2, a maximum-likelihood esti-
mator (MLE) should be employed. The degrees of freedom for the approximating χ2

distribution is reduced by 1 for each parameter estimated. These cases will arise as
we consider various practical examples.

14.3 A Test of a Hypothesis Concerning
Specified Cell Probabilities:
A Goodness-of-Fit Test
The simplest hypothesis concerning the cell probabilities is one that specifies numer-
ical values for each. In this case, we are testing H0 : p1 = p1,0, p2 = p2,0, . . . , pk =
pk,0, where pi,0 denotes a specified value for pi . The alternative is the general
one that states that at least one of the equalities does not hold. Because the only
restriction on the cell probabilities is that

∑k
i=1 pi = 1, the X2 test statistic has

approximately a χ2 distribution with k − 1 df.

EXAMPLE 14.1 A group of rats, one by one, proceed down a ramp to one of three doors. We wish to
test the hypothesis that the rats have no preference concerning the choice of a door.
Thus, the appropriate null hypothesis is

H0 : p1 = p2 = p3 = 1

3
,

where pi is the probability that a rat will choose door i , for i = 1, 2, or 3.
Suppose that the rats were sent down the ramp n = 90 times and that the three

observed cell frequencies were n1 = 23, n2 = 36, and n3 = 31. The expected cell
frequency are the same for each cell: E(ni ) = npi = (90)(1/3) = 30. The observed
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14.3 A Test of a Hypothesis Concerning Specified Cell Probabilities: A Goodness-of-Fit Test 717

Table 14.1 Observed and expected cell counts

Door

Value 1 2 3

Observed cell frequency n1 = 23 n2 = 36 n3 = 31
Expected cell frequency (30) (30) (30)

and expected cell frequencies are presented in Table 14.1. Notice the discrepancy
between the observed and expected cell frequencies. Do the data present sufficient
evidence to warrant rejection of the hypothesis of no preference?

Solution The χ2 test statistic for our example will possess (k − 1) = 2 df since the only
restriction on the cell probabilities is that

p1 + p2 + p3 = 1.

Therefore, if we choose α = .05, we would reject the null hypothesis when X2 >

5.991 (see Table 6, Appendix 3).
Substituting into the formula for X2, we obtain

X2 =
k∑

i=1

[ni − E(ni )]2

E(ni )
=

k∑
i=1

(ni − npi )
2

npi

= (23 − 30)2

30
+ (36 − 30)2

30
+ (31 − 30)2

30
= 2.87.

Because X2 is less than the tabulated critical value of χ2, the null hypothesis is not
rejected, and we conclude that the data do not present sufficient evidence to indicate
that the rats have a preference for any of the doors. In this case, the p-value is given
by p-value = P(χ2 > 2.87), where χ2 possesses a χ2 distribution with k −1 = 2 df.
Using Table 6, Appendix 3, it follows that p-value > 0.10. The applet Chi-Square
Probability and Quantiles gives p-value = P(χ2 > 2.87) = .23812.

The χ2 statistic also can be used to test whether sample data indicate that a specific
model for a population distribution does not fit the data. An example of such a test,
called the goodness-of-fit test, is given in the following example.

EXAMPLE 14.2 The number of accidents Y per week at an intersection was checked for n = 50
weeks, with the results as shown in Table 14.2. Test the hypothesis that the random
variable Y has a Poisson distribution, assuming the observations to be independent.
Use α = .05.

Solution The null hypothesis H0 states that Y has the Poisson distribution, given by

p(y | λ) = λye−λ

y!
, y = 0, 1, 2, . . . .
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718 Chapter 14 Analysis of Categorical Data

Table 14.2 Data for Example 14.2

y Frequency

0 32
1 12
2 6
3 or more 0

Because λ is unknown, we must find its MLE. In Exercise 9.80, we established that
the MLE of λ is λ̂ = Y . For the given data, λ̂ has the value y = 24/50 = .48.

We have, for the given data, three cells with five or more observations—the cells
defined by Y = 0, Y = 1, and Y ≥ 2. Under H0, the probabilities for these cells are

p1 = P(Y = 0) = e−λ, p2 = P(Y = 1) = λe−λ,

p3 = P(Y ≥ 2) = 1 − e−λ − λe−λ.

These probabilities are estimated by replacing λ with λ̂, which gives

p̂1 = e−.48 = .619, p̂2 = .48e−.48 = .297, p̂3 = 1 − p̂1 − p̂2 = .084.

If the observations are independent, the cell frequencies n1, n2, and n3 have a
multinomial distribution with parameters p1, p2, and p3. Thus, E(ni ) = npi , and the
estimated expected cell frequencies are given by

Ê(n1) = n p̂1 = 30.95, Ê(n2) = n p̂2 = 14.85, Ê(n3) = n p̂3 = 4.20.

Thus, the test statistic is given by

X2 =
3∑

i=1

[ni − Ê(ni )]2

Ê(ni )
,

which has approximately a χ2 distribution with (k − 2) = 1 df. (One degree of free-
dom is lost because λ had to be estimated, the other, because

∑3
i=1 pi = 1.)

On computing X2 we find

X2 = (32 − 30.95)2

30.95
+ (12 − 14.85)2

14.85
+ (6 − 4.20)2

4.20
= 1.354.

Because χ2
.05 = 3.841, with 1 df, we do not reject H0. The data do not present sufficient

evidence to contradict our hypothesis that Y possesses a Poisson distribution. The
p-value is given by P(χ2 > 1.354). Table 6, Appendix 3, gives p-value > .10
whereas the applet Chi-Square Probability and Quantiles establishes that p-value =
.24458. Unless a very large value of α is used (α ≥ .24458), there is insufficient
evidence to reject the claim that the number of accidents per week has a Poisson
distribution.

Exercises
14.1 Historically, the proportions of all Caucasians in the United States with blood phenotypes A,

B, AB, and O are .41, .10, .04, and .45, respectively. To determine whether current population
proportions still match these historical values, a random sample of 200 American Caucasians

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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were selected, and their blood phenotypes were recorded. The observed numbers with each
phenotype are given in the following table.

A B AB O

89 18 12 81

a Is there sufficient evidence, at the .05 level of significance, to claim that current proportions
differ from the historic values?

b Applet Exercise Use the applet Chi-Square Probability and Quantiles to find the p-value
associated with the test in part (a).

14.2 Previous enrollment records at a large university indicate that of the total number of persons
who apply for admission, 60% are admitted unconditionally, 5% are conditionally admitted,
and the remainder are refused admission. Of 500 applicants to date for next year, 329 were
admitted unconditionally, 43 were conditionally admitted, and the remainder were not admitted.
Do the data indicate a departure from previous admission rates?

a Test using α = .05.

b Applet Exercise Use the applet Chi-Square Probability and Quantiles to find the p-value
associated with the test in part (a).

14.3 A city expressway with four lanes in each direction was studied to see whether drivers preferred
to drive on the inside lanes. A total of 1000 automobiles were observed during the heavy
early-morning traffic, and their respective lanes were recorded. The results are shown in the
accompanying table. Do the data present sufficient evidence to indicate that some lanes are
preferred over others? (Test the hypothesis that p1 = p2 = p3 = p4 = 1/4, using α = .05.)
Give bounds for the associated p-value.

Lane 1 2 3 4

Count 294 276 238 192

14.4 Do you hate Mondays? Researchers in Germany have provided another reason for you: They
concluded that the risk of heart attack on a Monday for a working person may be as much as
50% greater than on any other day.1 The researchers kept track of heart attacks and coronary
arrests over a period of 5 years among 330,000 people who lived near Augsberg, Germany. In an
attempt to verify the researcher’s claim, 200 working people who had recently had heart attacks
were surveyed. The day on which their heart attacks occurred appear in the following table.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

24 36 27 26 32 26 29

Do these data present sufficient evidence to indicate that there is a difference in the percentages
of heart attacks that occur on different days of the week? Test using α = .05.

14.5 After inspecting the data in Exercise 14.4, you might wish to test the hypothesis that the
probability that a heart attack victim suffered a heart attack on Monday is 1/7 against the
alternative that this probability is greater than 1/7.

1. Source: Daniel Q. Haney, “Mondays May Be Hazardous,” Press-Enterprise (Riverside, Calif.), 17
November 1992, p. A16.
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720 Chapter 14 Analysis of Categorical Data

a Carry out the test above, using α = .05.

b What tenet of good statistical practice is violated in the test in part (a)?

c Prior to looking at the current data, is there a reason that you might legitimately consider
the hypotheses from part (a)?

14.6 Suppose that the assumptions associated with a multinomial experiment are all satisfied. Then
(see Section 5.9) each of the ni ’s, i = 1, 2, . . . , k, have a binomial distribution with parameters
n and pi . Further, Cov(ni , n j ) = −npi p j if i 7= j .

a What is E(ni − n j )?

b Refer to part (a). Give an unbiased estimator for pi − p j .

c Show that V (ni − n j ) = n[pi (1 − pi ) + p j (1 − p j ) + 2pi p j ].

d Refer to part (c). What is the variance of the unbiased estimator that you gave in part (b)?

e Give a consistent estimator for n−1V (ni − n j ).

f If n is large, the estimator that you gave in part (b) is approximately normally distributed
with mean pi − p j and variance n−2V (ni − n j ). If p̂i = ni/n and p̂ j = n j/n, show that
a large sample (1 − α)100% confidence interval for pi − p j is given by

p̂i − p̂ j ± zα/2

√
p̂i (1 − p̂i ) + p̂ j (1 − p̂ j ) + 2 p̂i p̂ j

n
.

14.7 Refer to Exercise 14.3. Lane 1 is the “slow” land and lane 4 is the “fast” lane. Use the confidence
interval formula given in Exercise 14.6(f ) to give a 95% confidence interval for p1 − p4. Would
you conclude that a greater proportion drive in the slow lane than in the fast lane? Why?

14.8 The Mendelian theory states that the number of a type of peas that fall into the classifications
round and yellow, wrinkled and yellow, round and green, and wrinkled and green should be in the
ratio 9:3:3:1. Suppose that 100 such peas revealed 56, 19, 17, and 8 in the respective categories.
Are these data consistent with the model? Use α = .05. (The expression 9:3:3:1 means that
9/16 of the peas should be round and yellow, 3/16 should be wrinkled and yellow, etc.)

14.9 Refer to Exercise 14.6(f ) and to the data in Exercise 14.8.

a Give a 95% confidence interval for the difference in the proportions of round–yellow and
round–green peas.

b Construct, using the Bonferroni method discussed in Section 13.12, simultaneous confi-
dence intervals to compare the proportion of round–yellow peas with the proportions of
peas in each of the other three categories. The intervals are to have simultaneous confidence
coefficient at least .95.

14.10 Two types of defects, A and B, are frequently seen in the output of a manufacturing process.
Each item can be classified into one of the four classes: A ∩ B, A ∩ B, A ∩ B, and A ∩ B, where
A denotes the absence of the type A defect. For 100 inspected items, the following frequencies
were observed:

A ∩ B : 48, A ∩ B : 18, A ∩ B : 21, A ∩ B : 13.

Is there sufficient evidence to indicate that the four categories, in the order listed, do not occur
in the ratio 5:2:2:1? (Use α = .05.)

14.11 The data in the following table are the frequency counts for 400 observations on the number
of bacterial colonies within the field of a microscope, using samples of milk film.2 Is there
sufficient evidence to claim that the data do not fit the Poisson distribution? (Use α = .05.)

2. Source: C. A. Bliss and R. A. Fisher, “Fitting the Negative Binomial Distribution to Biological Data,”
Biometrics 9 (1953): 176–200. Biometrics Society. All rights reserved.
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Number of Colonies Frequency of
per Field Observation

0 56
1 104
2 80
3 62
4 42
5 27
6 9
7 9
8 5
9 3

10 2
11 0
19 1

400

14.4 Contingency Tables
A problem frequently encountered in the analysis of count data concerns assessment
of the independence of two methods for classification of subjects. For example, we
might classify a sample of people by gender and by opinion on a political issue
in order to test the hypothesis that opinions on the issue are independent of gender.
Analogously, we might classify patients suffering from a disease according to the type
of medication and their rate of recovery in order to see if recovery rate depends on the
type of medication. In each of these examples, we wish to investigate a dependency
(or contingency) between two classification criteria.

Suppose that we wish to classify defects found on furniture produced in a manufac-
turing plant according to (1) the type of defect and (2) the production shift. A total of
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Table 14.3 A contingency table

Type of Defect

Shift A B C D Total

1 15 (22.51) 21 (20.99) 45 (38.94) 13 (11.56) 94
2 26 (22.99) 31 (21.44) 34 (39.77) 5 (11.81) 96
3 33 (28.50) 17 (26.57) 49 (49.29) 20 (14.63) 119

Total 74 69 128 38 309

n = 309 furniture defects was recorded and the defects were classified as one of four
types, A, B, C, or D. At the same time each piece of furniture was identified according
to the production shift during which it was manufactured. These counts are presented
in Table 14.3, an example of a contingency table. (As you will subsequently see, the
numbers in parentheses are the estimated expected cell frequencies.) Our objective
is to test the null hypothesis that type of defect is independent of shift against the
alternative that the two categorization schemes are dependent. That is, we wish to test
H0: column classification is independent of row classification.

Let pA equal the unconditional probability that a defect is of type A. Similarly,
define pB, pC, and pD as the probabilities of observing the three other types of defects.
Then these probabilities, which we will call the column probabilities of Table 14.3,
satisfy the requirement

pA + pB + pC + pD = 1.

In like manner, let pi for i = 1, 2, or 3 equal the row probabilities that a defective
item was produced on shift i , where

p1 + p2 + p3 = 1.

If the two classifications are independent of each other, each cell probability equals
the product of its respective row and column probabilities. For example, the probabil-
ity that a defect will occur on shift 1 and be of type A is p1 × pA. We observe that the
numerical values of the cell probabilities are unspecified in the problem under consid-
eration. The null hypothesis specifies only that each cell probability equals the product
of its respective row and column probabilities and thereby implies independence of
the two classifications.

The analysis of the data obtained from a contingency table differs from the analysis
in Example 14.1 because we must estimate the row and column probabilities in order
to estimate the expected cell frequencies. The estimated expected cell frequencies
may be substituted for the E(ni ) in X2, and X2 will continue to possess a distribution
that is well approximated by a χ2 probability distribution.

The MLE for any row or column probability is found as follows. Let ni j denote
the observed frequency in row i and column j of the contingency table and let pi j

denote the probability of an observation falling into this cell. If observations are
independently selected, then the cell frequencies have a multinomial distribution, and
the MLE of pi j is simply the observed relative frequency for that cell. That is,

p̂i j = ni j

n
, i = 1, 2, . . . , r, j = 1, 2, . . . , c

(see Exercise 9.87).
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14.4 Contingency Tables 723

Likewise, viewing row i as a single cell, the probability for row i is given by pi ,
and if ri denotes the number of observations in row i ,

p̂i = ri

n
is the MLE of pi .

By analogous arguments, the MLE of the j th-column probability is c j/n, where
c j denotes the number of observations in column j .

Under the null hypothesis, the MLE of the expected value of n11 iŝE(n11) = n( p̂1 × p̂A) = n
(r1

n

) (c1

n

)
= r1 · c1

n
.

Analogously, if the null hypothesis is true, the estimated expected value of the cell
frequency, ni j for a contingency table is equal to the product of its respective row and
column totals divided by the total sample size. That is,

̂E(ni j ) = ri c j

n
.

The estimated expected cell frequencies for our example are shown in parentheses in
Table 14.3. For example,

̂E(n11) = r1c1

n
= 94(74)

309
= 22.51.

We may now use the expected and observed cell frequencies shown in Table 14.3
to calculate the value of the test statistic:

X2 =
4∑

j=1

3∑
i=1

[ni j − ̂E(ni j )]2̂E(ni j )

= (15 − 22.51)2

22.51
+ (26 − 22.99)2

22.99
+ · · · + (20 − 14.63)2

14.63
= 19.17.

The only remaining obstacle involves the determination of the appropriate number
of degrees of freedom associated with the test statistic. We will give this as a rule, which
we will subsequently justify. The degrees of freedom associated with a contingency
table possessing r rows and c columns will always equal (r − 1)(c − 1). For our
example, we will compare X2 with the critical value of χ2 with (r − 1)(c − 1) =
(3 − 1)(4 − 1) = 6 df.

You will recall that the number of degrees of freedom associated with the χ2

statistic will equal the number of cells (in this case, k = r × c) less 1 df for each
independent linear restriction placed on the cell probabilities. The total number of
cells for the data of Table 14.3 is k = 12. From this we subtract 1 df because the sum
of the cell probabilities must equal 1; that is,

p11 + p12 + · · · + p34 = 1.

In addition, we used the cell frequencies to estimate two of the three row probabilities.
Notice that the estimate of the third-row probability is determined once we have
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724 Chapter 14 Analysis of Categorical Data

estimated p1 and p2, because

p1 + p2 + p3 = 1.

Thus, we lose 3 − 1 = 2 df for estimating the row probabilities.
Finally, we used the cell frequencies to estimate (c − 1) = 3 column probabilities,

and therefore we lose (c − 1) = 3 additional degrees of freedom. The total number
of degrees of freedom remaining is

df = 12 − 1 − 2 − 3 = 6 = (3 − 1)(4 − 1).

In general, we see that the total number of degrees of freedom associated with an
r × c contingency table is

df = rc − 1 − (r − 1) − (c − 1) = (r − 1)(c − 1).

Therefore, in our example relating shift to type of furniture defect, if we use
α = .05, we will reject the null hypothesis that the two classifications are independent
if X2 > 12.592. Because the value of the test statistic, X2 = 19.17, exceeds the critical
value of χ2, we reject the null hypothesis at the α = .05 level of significance. The
associated p-value is given by p-value = P(χ2 > 19.17). Bounds on this probability
can be obtained using Table 6, Appendix 3, from which it follows that p-value < .005.
The applet Chi-Square Probability and Quantiles give the exact p-value = .00389.
Thus, for any value of α greater than or equal to .00389, the data present sufficient
evidence to indicate dependence between defect type and manufacturing shift. A study
of the production operations for the three shifts would probably reveal the cause.

EXAMPLE 14.3 A survey was conducted to evaluate the effectiveness of a new flu vaccine that had
been administered in a small community. The vaccine was provided free of charge in
a two-shot sequence over a period of 2 weeks to those wishing to avail themselves
of it. Some people received the two-shot sequence, some appeared only for the first
shot, and the others received neither.

A survey of 1000 local inhabitants in the following spring provided the information
shown in Table 14.4. Do the data present sufficient evidence to indicate a dependence
between the two classifications—vaccine category and occurrence or nonoccurrence
of flu?

Solution The question asks whether the data provide sufficient evidence to indicate a depen-
dence between vaccine category and occurrence or nonoccurrence of flu. We therefore
analyze the data as a contingency table.

Table 14.4 Data tabulation for Example 14.3

Status No Vaccine One Shot Two Shots Total

Flu 24 (14.4) 9 (5.0) 13 (26.6) 46
No flu 289 (298.6) 100 (104.0) 565 (551.4) 954

Total 313 109 578 1000
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The estimated expected cell frequencies may be calculated by using the appropriate
row and column totals, ̂E(ni j ) = ri c j

n
.

Thus, for example,

̂E(n11) = r1c1

n
= (46)(313)

1000
= 14.4,

̂E(n12) = r1c2

n
= (46)(109)

1000
= 5.0.

These and the remaining estimated expected cell frequencies are shown in parentheses
in Table 14.4.

The value of the test statistic X2 will now be computed and compared with the
critical value of χ2 possessing (r − 1)(c − 1) = (1)(2) = 2 df. Then for α = .05, we
will reject the null hypothesis when X2 > 5.991. Substituting into the formula for
X2, we obtain

X2 = (24 − 14.4)2

14.4
+ (289 − 298.6)2

298.6
+ · · · + (565 − 551.4)2

551.4
= 17.35.

Observing that X2 falls in the rejection region, we reject the null hypothesis of
independence of the two classifications. If we choose to use the attained significance-
level approach to making our inference, use of Table 6, Appendix 3, establishes that
p-value < .005. The χ2 applet gives p-value = .00017. As is always the case, we find
agreement between our fixed α-level approach to testing and the proper interpretation
of the p-value.

As established in Section 5.9, the ni j ’s are negatively corellated. For example,
Cov(ni j , nkl) = −npi j pkl if i 7= k or j 7= l. An adaptation of the result given
in Exercise 14.7(f) can be used to provide a large sample confidence interval for
pi j − pkl if such an interval has practical interpretive value. Similarly, the marginal
proportions can be compared by “collapsing” the contingency table to only the row or
column marginal observations. The result in Exercise 14.7(f) directly applies to the
collapsed table. However, these “collapsed” marginal tables sacrifice any information
about the dependence between the row and column variables.

We have considered only the simplest hypothesis connected with a contingency
table, that of independence between rows and columns. Many other hypotheses are
possible, and numerous techniques have been devised to test these hypotheses. For
further information on this topic, consult Agresti (2002) and Fienberg (1980).

Exercises
14.13 On the 40th anniversary of President John F. Kennedy’s assassination, a FOX news poll showed

that most Americans disagree with the government’s conclusions about the killing. The Warren
Commission found that Lee Harvey Oswald acted alone when he shot Kennedy, but many
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726 Chapter 14 Analysis of Categorical Data

Americans are not so sure about this conclusion. Do you think that we know all of the relevant
facts associated with Kennedy’s assassination, or do you think that some information has been
withheld? The following table contains the results of a nationwide poll of 900 registered voters.4

We Know All Some Relevant
Relevant Facts Facts Withheld Not Sure

Democrat 42 309 31
Republican 64 246 46
Other 20 115 27

a Do the data provide sufficient evidence to indicate a dependence between party affiliation
and opinion about a possible cover-up? Test using α = .05.

b Give bounds for the associated p-value and interpret the result.

c Applet Exercise Use the χ2 applet to obtain the approximate p-value.

d Why is the value you obtained in part (c) “approximate”?

14.14 A study was conducted by Joseph Jacobson and Diane Wille to determine the effect of early
child care on infant–mother attachment patterns.5 In the study, 93 infants were classified as
either “secure” or “anxious” using the Ainsworth strange-situation paradigm. In addition, the
infants were classified according to the average number of hours per week that they spent in
child care. The data appear in the accompanying table.

Hours in Child Care

Attachment Low Moderate High
Pattern (0–3 hours) (4–19 hours) (20–54 hours)

Secure 24 35 5
Anxious 11 10 8

a Do the data indicate a dependence between attachment patterns and the number of hours
spent in child care? Test using α = .05.

b Give bounds for the attained significance level.

14.15 Suppose that the entries in a contingency table that appear in row i and column j are denoted
ni j , for i = 1, 2, . . . , r and j = 1, 2, . . . , c; that the row and column totals are denoted ri , for
i = 1, 2, . . . , r , and c j , for j = 1, 2, . . . , c; and that the total sample size is n.

a Show that

X 2 =
c∑

j=1

r∑
i=1

[ni j − ̂E(ni j )]2̂E(ni j )
= n

(
c∑

j=1

r∑
i=1

n2
i j

ri c j
− 1

)
.

Notice that this formula provides a computationally more efficient way to compute the
value of X 2.

b Using the preceding formula, what happens to the value of X 2 if every entry in the contin-
gency table is multiplied by the same integer constant k > 0?

14.16 A survey to explore the relationship between voters’ church-attendance patterns and their
choice of presidential candidate was reported in the Riverside Press-Enterprise prior to the

4. Source: Adapted from Dana Blanton, “Poll: Most Believe ‘Cover-Up’ of JFK Assassination Facts,”
http://www.foxnews.com/story/0,2933,102511,00.html, 10 February 2004.

5. Source: Linda Schmittroth (ed.), Statistical Record of Women Worldwide (Detroit and London: Gale
Research, 1991), pp. 8, 9, 335.
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2004 presidential election. Voters were asked how often they attended church services and
which of the two major presidential candidates (George W. Bush or John Kerry) they intended
to vote for in the election. The results of a similar survey are contained in the following table.6

Church Attendance Bush Kerry

More than once per week 89 53
Once per week 87 68
Once or twice per month 93 85
Once or twice per year 114 134
Seldom/never 22 36

a Is there sufficient evidence to indicate dependence between reported frequency of church
attendance and choice of presidential candidate in the 2004 presidential election? Test at
the .05 level of significance. Place bounds on the attained significance level.

b Give a 95% confidence interval for the proportion of individuals who report attending
church at least once per week.

14.17 In the academic world, students and their faculty supervisors often collaborate on research
papers, producing works in which publication credit can take several forms. Many feel that the
first authorship of a student’s paper should be given to the student unless the input from the
faculty advisor was substantial. In an attempt to see whether this is in fact the case, authorship
credit was studied for several different levels of faculty input and two objectives (dissertations
versus nondegree research). The frequency of authorship assignment decisions for published
dissertations is given in the accompanying tables as assigned by 60 faculty members and 161
students:7

Faculty respondents

Authorship Assignment High Input Medium Input Low Input

Faculty first author, student mandatory 4 0 0
second author

Student first author, faculty mandatory 15 12 3
second author

Student first author, faculty courtesy 2 7 7
second author

Student sole author 2 3 5

Student respondents

Authorship Assignment High Input Medium Input Low Input

Faculty first author, student mandatory 19 6 2
second author

Student first author, faculty mandatory 19 41 27
second author

Student first author, faculty courtesy 3 7 31
second author

Student sole author 0 3 3

6. Source: Adapted from Bettye Wells Miller, “Faith Shows Ballot Clout,” Press-Enterprise (Riverside,
Calif.), 1 March 2004, p. A7.

7. Source: M. Martin Costa and M. Gatz, “Determination of Authorship Credit in Published Dissertations,”
Psychological Science 3(6) (1992): 54.
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728 Chapter 14 Analysis of Categorical Data

a Is there sufficient evidence to indicate a dependence between the authorship assignment
and the input of the faculty advisor as judged by faculty members? Test using α = .01.

b Is there sufficient evidence to indicate a dependence between the authorship assignment
and the input of the faculty advisor as judged by students? Test using α = .01.

c Have any of the assumptions necessary for a valid analysis in parts (a) and (b) been violated?
What effect might this have on the validity of your conclusions?

14.18 A study of the amount of violence viewed on television as it relates to the age of the viewer
yielded the results shown in the accompanying table for 81 people. (Each person in the study
was classified, according to the person’s TV-viewing habits, as a low-violence or high-violence
viewer.) Do the data indicate that viewing of violence is not independent of age of viewer, at
the 5% significance level?

Age

Viewing 16–34 35–54 55 and Over

Low violence 8 12 21
High violence 18 15 7

14.19 The results of a study8 suggest that the initial electrocardiogram (ECG) of a suspected heart
attack victim can be used to predict in-hospital complications of an acute nature. The study
included 469 patients with suspected myocardial infarction (heart attack). Each patient was
categorized according to whether their initial ECG was positive or negative and whether the
person suffered life-threatening complications subsequently in the hospital. The results are
summarized in the following table.

Subsequent In-Hospital Life-Threatening
Complications

ECG No Yes Total

Negative 166 1 167
Positive 260 42 302

Total 426 43 469

a Is there sufficient evidence to indicate that whether or not a heart attack patient suffers
complications depends on the outcome of the initial ECG? Test using α = .05.

b Give bounds for the observed significance level.

14.20 Refer to Exercise 14.10. Test the hypothesis, at the 5% significance level, that the type A defects
occur independently of the type B defects.

14.21 An interesting and practical use of the χ2 test comes about in testing for segregation of species
of plants or animals. Suppose that two species of plants, A and B, are growing on a test plot. To
assess whether the species tend to segregate, a researcher randomly samples n plants from the
plot; the species of each sampled plant, and the species of its nearest neighbor are recorded.
The data are then arranged in a table, as shown here.

8. Source: J. E. Brush et al., “Use of the Initial Electrocardiogram to Predict In-Hospital Complications
of Acute Myocardial Infarction,” New England Journal of Medicine (May 1985).
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Nearest Neighbor

Sampled Plant A B

A a b
B c d

n

If a and d are large relative to b and c, we would be inclined to say that the species tend to
segregate. (Most of A’s neighbors are of type A, and most of B’s neighbors are of type B.) If
b and c are large compared to a and d , we would say that the species tend to be overly mixed.
In either of these cases (segregation or overmixing), a χ2 test should yield a large value, and
the hypothesis of random mixing would be rejected. For each of the following cases, test the
hypothesis of random mixing (or, equivalently, the hypothesis that the species of a sample plant
is independent of the species of its nearest neighbor). Use α = .05 in each case.

a a = 20, b = 4, c = 8, d = 18.

b a = 4, b = 20, c = 18, d = 8.

c a = 20, b = 4, c = 18, d = 8.

14.5 r × c Tables with Fixed Row
or Column Totals
In the previous section, we described the analysis of an r × c contingency table by
using examples that for all practical purposes fit the multinomial experiment described
in Section 14.1. Although the methods of collecting data in many surveys may meet
the requirements of a multinomial experiment, other methods do not. For example, we
might not wish to randomly sample the population described in Example 14.3 because
we might find that due to chance one category is completely missing. People who have
received no flu shots might fail to appear in the sample. We might decide beforehand
to interview a specified number of people in each column category, thereby fixing
the column totals in advance. We would then have three separate and independent
binomial experiments, corresponding to “no vaccine,” “one shot,” and “two shots,”
with respective probabilities p1, p2, and p3 that a person contracts the flu. In this case,
we are interested in testing the null hypothesis

H0 : p1 = p2 = p3.

(We actually are testing the equivalence of three binomial distributions.) Under this
hypothesis, the MLEs of the expected cell frequencies are the same as in Section 14.4,
namely, ̂E(ni j ) = ri c j

n
.

How many degrees of freedom are associated with the approximating χ2 distribution?
There are rc probabilities overall. Since the column totals are fixed, the sum of the
probabilities in each column must equal one. That is,

p1 j + p2 j + · · · pr j = 1, for each j = 1, 2, . . . c,
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and there are c linear constraints on the pi j ’s, resulting in a loss of c df. Finally, it is
necessary to estimate r − 1 row probabilities (the estimated row probabilities must
add to 1), decreasing the degrees of freedom by an additional r −1. Thus, the number
of degrees of freedom associated with X2 computed for an r × c table with fixed
column totals is df = rc − c − (r − 1) = (r − 1)(c − 1).

To illustrate, suppose that we wish to test a hypothesis concerning the equivalence
of four binomial populations, as indicated in the following example.

EXAMPLE 14.4 A survey of voter sentiment was conducted in four midcity political wards to compare
the fraction of voters favoring candidate A. Random samples of 200 voters were polled
in each of the four wards, with results as shown in Table 14.5. Do the data present
sufficient evidence to indicate that the fractions of voters favoring candidate A differ
in the four wards?

Solution You will observe that the mechanics for testing hypotheses concerning the equivalence
of the parameters of the four binomial populations that correspond to the four wards
is identical to the mechanics associated with testing the hypothesis of independence
of the row and column classifications. If we denote the fraction of voters favoring A
as p and hypothesize that p is the same for all four wards, we imply that the first-row
probabilities are all equal to p and and that the second-row probabilities are all equal
to 1 − p. The MLE (combining the results from all four samples) for the common
value of p is p̂ = 236/800 = r1/n. The expected number of individuals who favor
candidate A in ward 1 is E(n11) = 200p, which is estimated by the value

̂E(n11) = 200 p̂ = 200

(
236

800

)
= (c1r1)

n
.

Notice that even though we are considering a very different experiment than that
considered in Section 14.4, the estimated mean cell frequencies are computed the
same way as they were in Section 14.4. The other estimated expected cell frequencies,
calculated by using the row and column totals, appear in parentheses in Table 14.5.
We see that

X2 =
4∑

j=1

2∑
i=1

[
ni j − ̂E(ni j )

]2

̂E(ni j )

= (76 − 59)2

59
+ (124 − 141)2

141
+ · · · + (152 − 141)2

141
= 10.72.

Table 14.5 Data tabulation for Example 14.4

Ward

Opinion 1 2 3 4 Total

Favor A 76 (59) 53 (59) 59 (59) 48 (59) 236
Do not favor A 124 (141) 147 (141) 141 (141) 152 (141) 564

Total 200 200 200 200 800
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The critical value of χ2 for α = .05 and (r − 1)(c − 1) = (1)(3) = 3 df is 7.815.
Because X2 exceeds this critical value, we reject the null hypothesis and conclude
that the fraction of voters favoring candidate A is not the same for all four wards. The
associated p-value is given by P(χ2 > 10.72) when χ2 has 3 df. Thus, .01 ≤ p-value
≤ .025. The χ2 applet gives P(χ2 > 10.72) = .01334.

This example was worked out in Exercise 10.106 by the likelihood ratio method.
Notice that the conclusions are the same.

The test implemented in Example 14.4 is a test of the equality of four binomial pro-
portions based on independent samples from each of the corresponding populations.
Such a test is often referred to as a test of homogeneity of the binomial populations.
If there are more than two row categories and the column totals are fixed, the χ2 test
is a test of the equivalence of the proportions in c multinomial populations.

Exercises
14.22 A study to determine the effectiveness of a drug (serum) for the treatment of arthritis resulted

in the comparison of two groups each consisting of 200 arthritic patients. One group was
inoculated with the serum whereas the other received a placebo (an inoculation that appears to
contain serum but actually is not active). After a period of time, each person in the study was
asked whether his or her arthritic condition had improved. The results in the accompanying
table were observed. Do these data present sufficient evidence to indicate that the proportions
of arthritic individuals who said their condition had improved differed depending on whether
they received the serum?

Condition Treated Untreated

Improved 117 74
Not improved 83 126

a Test by using the X 2 statistic. Use α = .05.

b Test by using the Z test of Section 10.3 and α = .05. Compare your result with that in
part (a).

c Give bounds for the attained significance level associated with the test in part (a).

14.23 The χ 2 test used in Exercise 14.22 is equivalent to the two-tailed Z test of Section 10.3, provided
α is the same for the two tests. Show algebraically that the χ2 test statistic X 2 is the square of
the test statistic Z for the equivalent test.

14.24 How do Americans in the “sandwich generation” balance the demands of caring for older and
younger relatives? The following table contains the results of a telephone poll of Americans
aged 45 to 55 years conducted by the New York Times.9 From each of four subpopulations,
200 individuals were polled and asked whether they were providing financial support for their
parents.

9. Source: Adapted from Tamar Lewin, “Report Looks at a Generation, and Caring for Young and Old,”
New York Times online, 11 July 2001.
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Subpopulation

White African Hispanic Asian
Support Americans Americans Americans Americans

Yes 40 56 68 84
No 160 144 132 116

a Use the χ2 test to determine whether the proportions of individuals providing financial
support for their parents differ for the four subpopulations. Use α = .05.

b Since the samples are independent, confidence intervals to compare the proportions in
each subpopulation who financially support their parents can be obtained using the method
presented in Section 8.6.

i Give a 95% confidence interval for the difference in proportions who provide parental
support for White and Asian Americans.

ii Use the Bonferroni method presented in Section 13.12 to give six simultaneous confi-
dence intervals to compare the proportions who provide parental support for all pairs
of subpopulations. The objective is to provide intervals with simultaneous confidence
coefficient at least .95.

iii Based on your answer to part (ii), which subpopulations differ from the others regarding
the proportion who provide financial support for their parents?

14.25 Does education really make a difference in how much money you will earn? Reseachers ran-
domly selected 100 people from each of three income categories—“marginally rich,” “com-
fortably rich,” and “super rich”—and recorded their education levels. The data is summarized
in the table that follows.10

Highest Marginally Comfortably
Education Level Rich Rich Super Rich

No college 32 20 23
Some college 13 16 1
Undergraduate degree 43 51 60
Postgraduate study 12 13 16

Total 100 100 100

a Describe the independent multinomial populations whose proportions are compared in the
χ 2 analysis.

b Do the data indicate that the proportions in the various education levels differ for the three
income categories? Test at the α = .01 level.

c Construct a 95% confidence interval for the difference in proportions with at least an un-
dergraduate degree for individuals who are marginally and super rich. Interpret the interval.

14.26 A manufacturer of buttons wished to determine whether the fraction of defective buttons
produced by three machines varied from machine to machine. Samples of 400 buttons were
selected from each of the three machines, and the number of defectives were counted for each
sample. The results are shown in the accompanying table. Do these data present sufficient
evidence to indicate that the fraction of defective buttons varied from machine to machine?

10. Source: Adapted from Rebecca Piirto Heath, “Life on Easy Street,” American Demographics, April
1997, p. 33.
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Machine Number of
Number Defectives

1 16
2 24
3 9

a Test, using α = .05, with a χ2 test.

*b Test, using α = .05, with a likelihood ratio test. [Hint: Refer to Exercise 10.106.]11

14.28 Traditionally, U.S. labor unions have been content to leave the management of companies to
managers and corporate executives. In Europe, worker participation in management decision
making is an accepted idea that is becoming increasingly popular. To study the effect of worker
participation, 100 workers were interviewed in each of two separate German manufacturing
plants. One plant had active worker participation in managerial decision making; the other
plant did not. Each selected worker was asked whether he or she approved of the managerial
decisions made within the plant. The results follow.

Participation No Participation

Generally approve 73 51
Do not appove 27 49

a Do the data indicate a difference in the proportions of workers in the two plants who
generally approve of managerial decisions? Test at the .05 significance level using the
χ 2 test.

b Construct a 95% lower confidence bound for the difference in the proportion of workers
who approve of managerial decisions in the plants with and without worker participation.

11. Exercises preceded by an asterisk are optional.
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734 Chapter 14 Analysis of Categorical Data

Does the resulting confidence bound indicate that a greater proportion of workers approve
of managerial decisions in the plant with active worker participation? Why?

c Could the conclusion that you reached in part (b) have resulted from the χ2 test implemented
in part (a)? Why?

14.29 A survey was conducted to study the relationship between lung disease and air pollution. Four
areas were chosen for the survey, two cities frequently plagued with smog and two nonurban
areas in states that possessed low air-pollution counts. Only adult permanent residents of the area
were included in the study. Random samples of 400 adult permanent residents from each area
gave the results listed in the accompanying table.

Number with
Area Lung Disease

City A 34
City B 42
Nonurban area 1 21
Nonurban area 2 18

a Do the data provide sufficient evidence to indicate a difference in the proportions with lung
disease for the four locations?

b Should cigarette smokers have been excluded from the samples? How would this affect
inferences drawn from the data?

14.30 Refer to Exercise 14.29. Estimate the difference in the fractions of adult permanent residents
with lung disease for cities A and B. Use a 95% confidence interval.

14.31 A survey was conducted to investigate interest of middle-aged adults in physical-fitness pro-
grams in Rhode Island, Colorado, California, and Florida. The objective of the investigation
was to determine whether adult participation in physical-fitness programs varies from one
region of the United States to another. Random samples of people were interviewed in each
state, and the data reproduced in the accompanying table were recorded. Do the data indicate
differences among the rates of adult participation in physical-fitness programs from one state
to another? What would you conclude with α = .01?

Participation Rhode Island Colorado California Florida

Yes 46 63 108 121
No 149 178 192 179

14.6 Other Applications
The applications of the χ2 test in analyzing categorical data described in Sections
14.3–14.5 represent only a few of the interesting classification problems that may be
approximated by the multinomial experiment and for which our method of analysis is
appropriate. Generally, these applications are complicated to a greater or lesser degree
because the numerical values of the cell probabilities are unspecified and hence require
the estimation of one or more population parameters. Then, as in Sections 14.4 and
14.5, we can estimate the cell probabilities. Although we omit the mechanics of the
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statistical tests, several additional applications of the χ2 test are worth mention as a
matter of interest.

For example, suppose that we wish to test a hypothesis stating that a population
possesses a normal probability distribution. The cells of a sample frequency histogram
would correspond to the k cells of the multinomial experiment, and the observed cell
frequencies would be the number of measurements falling into each cell of the his-
togram. Given the hypothesized normal probability distribution for the population,
we could use the areas under the normal curve to calculate the theoretical cell proba-
bilities and hence the expected cell frequencies. MLEs must be employed when μ and
σ are unspecified for the normal population, and these parameters must be estimated
to obtain the estimated cell probabilities.

The construction of a two-way table to investigate dependency between two clas-
sifications can be extended to three or more classifications. For example, if we wish
to test the mutual independence of three classifications, we would employ a three-
dimensional “table.” The reasoning and methodology associated with the analysis of
both the two- and three-way tables are identical although the analysis of the three-way
table is a bit more complex.

A third and interesting application of our methodology would be its use in the
investigation of the rate of change of a multinomial (or binomial) population as
a function of time. For example, we might study the problem-solving ability of a
human (or any animal) subjected to an educational program and tested over time. If,
for instance, the human is tested at prescribed intervals of time and the test is of the
yes or no type, yielding a number of correct answers y that would follow a binomial
probability distribution, we would be interested in the behavior of the probability of
a correct response p as a function of time. If the number of correct responses was
recorded for c time periods, the data would fall in a 2 × c table similar to that in
Example 14.4 (Section 14.5). We would then be interested in testing the hypothesis
that p is equal to a constant—that is, that no learning has occurred—and we would
then proceed to more interesting hypotheses to determine whether the data present
sufficient evidence to indicate a gradual (say, linear) change over time as opposed to
an abrupt change at some point in time. The procedures that we have described could
be extended to decisions involving more than two alternatives.

You will observe that our change over time example is common to business, to
industry, and to many other fields, including the social sciences. For example, we
might wish to study the rate of consumer acceptance of a new product for various
types of advertising campaigns as a function of the length of time that the campaign
has been in effect. Or we might wish to study the trend in the lot-fraction defective in
a manufacturing process as a function of time. Both these examples, as well as many
others, require a study of the behavior of a binomial (or multinomial) process as a
function of time.

The examples just described are intended to suggest the relatively broad application
of the χ2 analysis of categorical data, a fact that should be borne in mind by the
experimenter concerned with this type of data. The statistical test employing X2 as
a test statistic is often called a goodness-of-fit test. Its application for some of these
examples requires care in the determination of the appropriate estimates and the
number of degrees of freedom for X2, which for some of these problems may be
rather complex.
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14.7 Summary and Concluding Remarks
The material in this chapter has been concerned with tests of hypotheses regarding the
cell probabilities associated with multinomial experiments (Sections 14.2 and 14.3)
or several independent multinomial experiments (Section 14.5). When the number of
observations n is large, the test statistic X2 can be shown to possess, approximately,
a χ2 probability distribution in repeated sampling, the number of degrees of freedom
depending on the particular application. In general, we assume that n is large and that
the minimum expected cell frequency is equal to or greater than five.

Several words of caution concerning the use of the X2 statistic as a method of an-
alyzing categorical data are appropriate. The determination of the correct number of
degrees of random associated with the X2 statistic is critical in locating the rejection
region. If the number is specified incorrectly, erroneous conclusions might result.
Notice, too, that nonrejection of the null hypothesis does not imply that it should
be accepted. We would have difficulty in stating a meaningful alternative hypothe-
sis for many practical applications, and therefore we would lack knowledge of the
probability of making a type II error. For example, we hypothesize that the two
classifications of a contingency table are independent. A specific alternative must
specify a measure of dependence that may or may not possess practical significance
to the experimenter. Finally, if parameters are missing and the expected cell fre-
quencies must be estimated, missing parameters should be estimated by the method
of maximum likelihood in order that the test be valid. In other words, the applica-
tion of the χ2 test for other than the simple applications outlined in Sections 14.3–
14.5 will require experience beyond the scope of this introductory presentation of
the subject.
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Supplementary Exercises
14.32 List the characteristics of a multinomial experiment.

14.33 A survey was conducted to determine student, faculty, and administration attitudes on a new
university parking policy. The distribution of those favoring or opposing the policy was as shown
in the accompanying table. Do the data provide sufficient evidence to indicate that attitudes
regarding the parking policy are independent of student, faculty, or administration status?

Opinion Student Faculty Administration

Favor 252 107 43
Oppose 139 81 40

14.34 How would you rate yourself as a driver? According to a survey conducted by the Field
Institute,13 most Californians think that they are good drivers but have little respect for the
driving ability of others. The data in the following tables show the distribution of opinions,
according to gender, for two different questions. Data in the first table give the results obtained
when drivers rated themselves; the second table gives the results obtained when drivers rated
others. Although not stated in the source, we assume that there were 100 men and 100 women
in each of the surveyed groups.

Rating self as driver

Gender Excellent Good Fair

Male 43 48 9
Female 44 53 3

Rating others as drivers

Gender Excellent Good Fair Poor

Male 4 42 41 13
Female 3 48 35 14

a Refer to the table in which drivers rated themselves. Is there sufficient evidence to indicate
that there is a difference in the proportions in the three ratings categories for male and
female drivers? Give bounds for the p-value associated with the test.

b Refer to the table in which drivers rated others. Is there sufficient evidence to indicate that
there is a difference in the proportions in the four ratings categories when rating male and
female drivers? Give bounds for the p-value associated with the test.

c Have you violated any assumptions in your analyses in parts (a) and (b)? What effect might
these violations have on the validity of your conclusions?

13. Source: Dan Smith, “Motorists Have Little Respect for Others’ Skills,” Press-Enterprise (Riverside,
Calif.), 15 March 1991.
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738 Chapter 14 Analysis of Categorical Data

14.35 Is the chance of getting a cold influenced by the number of social contacts a person has? A
study by Sheldon Cohen, a psychology professor at Carnegie Melon University, seems to show
that the more social relationships a person has, the less susceptible the person is to colds. A
group of 276 healthy men and women were grouped according to their number of relationships
(such as parent, friend, church member, and neighbor). They were then exposed to a virus that
causes colds. A adaptation of the results is given in the following table.14

Number of Relationships

3 or fewer 4 or 5 6 or more

Cold 49 43 34
No cold 31 57 62

Total 80 100 96

a Do the data present sufficient evidence to indicate that susceptibility to colds is affected by
the number of relationships that people have? Test at the 5% level of significance.

b Give bounds for the p-value.

14.36 Knee injuries are a major problem for athletes in many contact sports. However, athletes who
play certain positions are more prone to knee injuries than other players. The prevalence and
patterns of knee injuries among female collegiate rugby players were investigated using a
simple questionnaire, to which 42 rugby clubs responded.15 A total of 76 knee injuries were
classified by type and the position (forward or back) played by the injured player.

Meniscal MCL ACL
Position Tear Tear Tear Other

Forward 13 14 7 4
Back 12 9 14 3

a Do the data provide sufficient evidence to indicate dependence between position played
and type of knee injury? Test using α = .05.

b Give bounds for the p-value associated with the value for X 2 obtained in part (a).

c Applet Exercise Use the applet Chi-Square Probability and Quantiles to determine the
p-value associated with the value of X 2 obtained in part (a).

14.37 It is often not clear whether all properties of a binomial experiment are actually met in a given
application. A goodness-of-fit test is desirable for such cases. Suppose that an experiment
consisting of four trials was repeated 100 times. The number of repetitions on which a given
number of successes was obtained is recorded in the accompanying table. Estimate p (assuming
that the experiment was binomial), obtain estimates of the expected cell frequencies, and test

14. Source: Adapted from David L. Wheeler, “More Social Roles Means Fewer Colds,” Chronicle of
Higher Education 43(44) (1997): A13.

15. Source: Andrew S. Levy, M. J. Wetzler, M. Lewars, and W. Laughlin, “Knee Injuries in Women
Collegiate Rugby Players,” American Journal of Sports Medicine 25(3) (1997): 360.
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for goodness of fit. To determine the appropriate number of degrees of freedom for X 2, notice
that p had to be estimated.

Possible Results Number of Times
(number of successes) Obtained

0 11
1 17
2 42
3 21
4 9

14.38 Counts on the number of items per cluster (or colony or group) must necessarily be greater than
or equal to 1. Thus, the Poisson distribution generally does not fit these kinds of counts. For
modeling counts on phenomena such as number of bacteria per colony, number of people per
household, and number of animals per litter, the logarithmic series distribution often proves
useful. This discrete distribution has probability function given by

p(y | θ) = − 1

ln(1 − θ)

θ y

y
, y = 1, 2, 3, . . . , 0 < θ < 1,

where θ is an unknown parameter.

a Show that the MLE θ̂ of θ satisfies the equation

Y = θ̂

−(1 − θ̂ ) ln(1 − θ̂ )
, where Y = 1

n

n∑
i=1

Yi .

14.39 Refer to the r × c contingency table of Section 14.4. Show that the MLE of the probability pi

for row i is p̂i = ri/n, for i = 1, 2, . . . , r .

*14.40 A genetic model states that the proportions of offspring in three classes should be p2,
2p(1 − p), and (1 − p)2 for a parameter p, 0 ≤ p ≤ 1. An experiment yielded frequen-
cies of 30, 40, and 30 for the respective classes.

a Does the model fit the data? (Use maximum likelihood to estimate p.)

b Suppose that the hypothesis states that the model holds with p = .5. Do the data contradict
this hypothesis?

*14.41 According to the genetic model for the relationship between sex and color blindness, the four
categories, male and normal, female and normal, male and color blind, female and color blind,

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Text not available due to copyright restrictions



740 Chapter 14 Analysis of Categorical Data

should have probabilities given by p/2, (p2/2) + pq, q/2, and q2/2, respectively, where
q = 1− p. A sample of 2000 people revealed 880, 1032, 80, and 8 in the respective categories.
Do these data agree with the model? Use α = .05. (Use maximum likelihood to estimate p.)

*14.42 Suppose that (Y1, Y2, . . . , Yk) has a multinomial distribution with parameters n, p1, p2, . . . ,

pk , and (X1, X2, . . . , Xk) has a multinomial distribution with parameters m, p∗
1 , p∗

2 , . . . , p∗
k .

Construct a test of the null hypothesis that the two multinomial distributions are identical; that
is, test H0:p1 = p∗

1 , p2 = p∗
2 , . . . , pk = p∗

k .

*14.43 In an experiment to evaluate an insecticide, the probability of insect survival was expected to
be linearly related to the dosage D over the region of experimentation; that is, p = 1+β D. An
experiment was conducted using four levels of dosage, 1, 2, 3, and 4 and 1000 insects in each
group. The resulting data were as shown in the following table. Do these data contradict the
hypothesis that p = 1 + β D? [Hint: Write the cell probabilities in terms of β and find the
MLE of β.]

Dosage Number of Survivors

1 820
2 650
3 310
4 50
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Nonparametric Statistics
15.1 Introduction

15.2 A General Two-Sample Shift Model

15.3 The Sign Test for a Matched-Pairs Experiment

15.4 The Wilcoxon Signed-Rank Test for a Matched-Pairs Experiment

15.5 Using Ranks for Comparing Two Population Distributions: Independent
Random Samples

15.6 The Mann–Whitney U Test: Independent Random Samples

15.7 The Kruskal–Wallis Test for the One-Way Layout

15.8 The Friedman Test for Randomized Block Designs

15.9 The Runs Test: A Test for Randomness

15.10 Rank Correlation Coefficient

15.11 Some General Comments on Nonparametric Statistical Tests

References and Further Readings

15.1 Introduction
Some experiments yield response measurements that defy exact quantification. For ex-
ample, suppose that a judge is employed to evaluate and rank the instructional abilities
of four teachers or the edibility and taste characteristics of five brands of cornflakes.
Because it clearly is impossible to give an exact measure of teacher competence or
food taste, the response measurements are of a completely different character than
those presented in preceding chapters. In instances like these, the experiments gener-
ate response measurements that can be ordered (ranked), but it is impossible to make
statements such as “teacher A is twice as good as teacher B.” Although experiments
of this type occur in almost all fields of study, they are particularly evident in social
science research and in studies of consumer preference. Nonparametric statistical
methods are useful for analyzing this type of data.

741
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742 Chapter 15 Nonparametric Statistics

Nonparametric statistical procedures apply not only to observations that are dif-
ficult to quantify but also are particularly useful in making inferences in situations
where serious doubt exists about the assumptions that underlie standard methodology.
For example, the t test for comparing a pair of means based on independent samples,
Section 10.8, is based on the assumption that both populations are normally distributed
with equal variances. The experimenter will never know whether these assumptions
hold in a practical situation but often will be reasonably certain that departures from
the assumptions will be small enough that the properties of the statistical procedure
will be undisturbed. That is, α and β will be approximately what the experimenter
thinks they are. On the other hand, it is not uncommon for the experimenter to have
serious questions about assumption validity and wonder whether he or she is using
a valid statistical procedure. Sometimes this difficulty can be circumvented by using
a nonparametric statistical test and thereby avoid using a statistical procedure that is
only appropriate under a very uncertain set of assumptions.

The term nonparametric statistics has no standard definition that is agreed on by
all statisticians. However, most would agree that nonparametric statistical methods
work well under fairly general assumptions about the nature of any probability dis-
tributions or parameters that are involved in an inferential problem. As a working
definition, we will define parametric methods as those that apply to problems where
the distribution(s) from which the sample(s) is (are) taken is (are) specified except for
the values of a finite number of parameters. Nonparametric methods apply in all other
instances. For example, the one-sample t test developed in Chapter 10 applies when
the population is normally distributed with unknown mean and variance. Because the
distribution from which the sample is taken is specified except for the values of two
parameters, μ and σ 2, the t test is a parametric procedure. Alternatively, suppose
that independent samples are taken from two populations and we wish to test the
hypothesis that the two population distributions are identical but of unspecified form.
In this case, the distribution is unspecified, and the hypothesis must be tested by using
nonparametric methods.

Valid employment of some of the parametric methods presented in preceding chap-
ters requires that certain distributional assumptions are at least approximately met.
Even if all assumptions are met, research has shown that nonparametric statistical
tests are almost as capable of detecting differences among populations as the appli-
cable parametric methods. They may be, and often are, more powerful in detecting
population differences when the assumptions are not satisfied. For this reason many
statisticians advocate the use of nonparametric statistical procedures in preference to
their parametric counterparts.

15.2 A General Two-Sample Shift Model
Many times, an experimenter takes observations from two populations with the ob-
jective of testing whether the populations have the same distribution. For example,
if independent random samples X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are taken from
normal populations with equal variances and respective means μX and μY , the
experimenter may wish to test H0 : μX − μY = 0 versus Ha : μX − μY < 0. In
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fX fY

X& &

amount of shift

Y

F I G U R E 15.1
Two normal

distributions with
equal variances but

unequal means

this case, if H0 is true, both populations are normally distributed with the same mean
and the same variance; that is, the population distributions are identical. If Ha is
true, then μY > μX and the distributions of X1 and Y1 are the same, except that
the location parameter (μY ) for Y1 is larger than the location parameter (μX ) for
X1. Hence, the distribution of Y1 is shifted to the right of the distribution of X1

(see Figure 15.1).
This is an example of a two-sample parametric shift (or location) model. The model

is parametric because the distributions are specified (normal) except for the values
of the parameters μX , μY , and σ 2. The amount that the distribution of Y1 is shifted
to the right of the distribution of X1 is μY − μX (see Figure 15.1). In the remainder
of this section, we define a shift model that applies for any distribution, normal or
otherwise.

Let X1, X2, . . . , Xn1 be a random sample from a population with distribution
function F(x) and let Y1, Y2, . . . , Yn2 be a random sample from a population with
distribution function G(y). If we wish to test whether the two populations have the
same distribution—that is, H0 : F(z) = G(z) versus Ha : F(z) 7= G(z), with the
actual form of F(z) and G(z) unspecified—a nonparametric method is required.
Notice that Ha is a very broad hypothesis. Many times, an experimenter may wish to
consider the more specific alternative hypothesis that Y1 has the same distribution as
X1 shifted by an (unknown) amount θ (see Figure 15.2)—that is, that the distributions
differ in location. Then, G(y) = P(Y1 ≤ y) = P(X1 ≤ y − θ) = F(y − θ) for
some unknown parameter value θ . Notice that the particular form of F(x) remains
unspecified.

Throughout this chapter if we refer to the two-sample shift (location) model, we
assume that X1, X2, . . . , Xn1 constitute a random sample from distribution function
F(x) and that Y1, Y2, . . . , Yn2 constitute a random sample from distribution function
G(y) = F(y − θ) for some unknown value θ . For the two-sample shift model,
H0 : F(z) = G(z) is equivalent to H0 : θ = 0. If θ is greater (less) than 0, then the
distribution of the Y -values is located to the right (left) of the distribution of the
X -values.

fX fY

%

F I G U R E 15.2
Two density

functions, with the
density for Y shifted

θ units to the right
of that for X
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15.3 The Sign Test for a
Matched-Pairs Experiment
Suppose that we have n pairs of observations of the form (X i , Yi ) and that we wish
to test the hypothesis that the distribution of the X ’s is the same as that of the Y ’s
versus the alternative that the distributions differ in location (see Section 15.2). Much
as we did in Section 12.3, we let Di = X i − Yi . One of the simplest nonparametric
tests is based on the signs of these differences and, reasonably enough, is called the
sign test. Under the null hypothesis that X i and Yi come from the same continuous
probability distributions, the probability that Di is positive is equal to 1/2 (as is
the probability that Di is negative). Let M denote the total number of positive (or
negative) differences. Then if the variables X i and Yi have the same distribution, M
has a binomial distribution with p = 1/2, and the rejection region for a test based
on M can be obtained by using the binomial probability distribution introduced in
Chapter 3. The sign test is summarized as follows.

The Sign Test for a Matched-Pairs Experiment

Let p = P(X > Y ).

Null hypothesis: H0 : p = 1/2.

Alternative hypothesis: Ha : p > 1/2 or (p < 1/2 or p 7= 1/2).

Test statistic: M = number of positive differences where Di = X i − Yi .

Rejection region: For Ha : p > 1/2, reject H0 for the largest values of M ;
for Ha : p < 1/2, reject H0 for the smallest values of M ; for Ha : p 7= 1/2,
reject H0 for very large or very small values of M .

Assumptions: The pairs (X i , Yi ) are randomly and independently selected.

The following example illustrates the use of the sign test.

EXAMPLE 15.1 The number of defective electrical fuses produced by each of two production lines, A
and B, was recorded daily for a period of 10 days, with the results shown in Table 15.1.
Assume that both production lines produced the same daily output. Compare the
number of defectives produced by A and B each day and let M equal the number of
days when A exceeded B. Do the data present sufficient evidence to indicate that either
production line produces more defectives than the other? State the null hypothesis to
be tested and use M as a test statistic.

Solution Pair the observations as they appear in the data tabulation and let M be the number of
days that the observed number of defectives for production line A exceeds that for line
B. Under the null hypothesis that the two distributions of defectives are identical, the
probability p that A exceeds B for a given pair is p = .5, given that there are no ties.
Consequently, the null hypothesis is equivalent to the hypothesis that the binomial
parameter p = .5.
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Table 15.1 Data for Example 15.1

Day A B

1 172 201
2 165 179
3 206 159
4 184 192
5 174 177
6 142 170
7 190 182
8 169 179
9 161 169

10 200 210

Very large or very small values of M are most contradictory to the null hypothesis.
Therefore, the rejection region for the test will be located by including the most
extreme values of M that at the same time provide a value of α that is suitable for
the test.

Suppose that we would like the value of α to be on the order of .05 or .10. We
commence the selection of the rejection region by including M = 0 and M = 10 and
calculate the α associated with this region, using p(y), the probability distribution
for the binomial random variable (see Chapter 3). With n = 10, p = .5, we have

α = p(0) + p(10) =
(

10

0

)
(.5)10 +

(
10

10

)
(.5)10 = .002.

Because this value of α is too small, the region will be expanded by including the next
pair of M-values most contradictory to the null hypothesis, M = 1 and M = 9. The
value of α for this region (M = 0, 1, 9, 10) can be obtained from Table 1, Appendix 3:

α = p(0) + p(1) + p(9) + p(10) = .022.

This also is too small, so we again expand the region to include M = 0, 1, 2, 8, 9, 10.
You can verify that the corresponding value of α is .11. Suppose that this value of α is
acceptable to the experimenter; then we employ M = 0, 1, 2, 8, 9, 10 as the rejection
region for the test.

From the data, we observe that m = 2, so we reject the null hypothesis. We
conclude that sufficient evidence exists to indicate that the population distributions
for numbers of defective fuses are not identical. The probability of rejecting the null
hypothesis when it is true is only α = .11, and we are therefore reasonably confident
of our conclusion.

The experimenter in this example is using the test procedure as a rough tool for
detecting faulty production lines. The rather large value of α is not likely to disturb
him because he can easily collect additional data if he is concerned about making a
type I error in reaching his conclusion.

Attained significance levels (p-values) for the sign test are calculated as outlined
in Section 10.6. Specifically, if n = 15 and we wish to test H0 : p = 1/2 versus
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746 Chapter 15 Nonparametric Statistics

Ha : p < 1/2 based on the observed value of M = 3, Table 1 of Appendix 3 can be
used to determine that (because n = 15, p = 1/2)

p-value = P(M ≤ 3) = .018.

For the two-tailed test (Ha : p 7= 1/2), p-value = 2(.018) = .036.

EXAMPLE 15.2 Find the p-value associated with the sign test performed in Example 15.1.

Solution The test in Example 15.1 is a two-tailed test of H0 : p = 1/2 versus Ha : p 7= 1/2.
The calculated value of M is m = 2, so the p-value is 2P(M ≤ 2). Under the
null hypothesis, M has a binomial distribution with n = 10, p = .5 and Table 1,
Appendix 3, gives

p-value = 2P(M ≤ 2) = 2(.055) = .11.

Thus, .11 is the smallest value of α for which the null hypothesis can be rejected.
Notice that the p-value approach yields the same decision at that reached in Example
15.1 where a formal α = .11 level test was used. However, the p-value approach
eliminated the necessity of trying various rejection regions until we found one with a
satisfactory value for α.

One problem that may arise in connection with a sign test is that the observations
associated with one or more pairs may be equal and therefore may result in ties. When
this situation occurs, delete the tied pairs and reduce n, the total number of pairs.

You will also encounter situations where n, the number of pairs, is large. Then,
the values of α associated with the sign test can be approximated by using the normal
approximation to the binomial probability distribution discussed in Section 7.5. You
can verify (by comparing exact probabilities with their approximations) that these
approximations will be quite adequate for n as small as 10 or 15. This result is due to
the symmetry of the binomial probability distribution for p = .5. For n ≥ 25, the Z
test of Chapter 10 will suffice, where

Z = M − np√
npq

= M − n/2

(1/2)
√

n
.

This statistic would be used for testing the null hypothesis p = .5 against the
alternative p 7= .5 for a two-tailed test or against the alternative p > .5 (or p < .5)
for a one-tailed test. The tests would use the familiar rejection regions of Chapter 10.

The data of Example 15.1 are the result of a matched-pairs experiment. Suppose
that the paired differences are normally distributed with a common variance σ 2.
Will the sign test detect a shift in location of the two populations as effectively
as the Student’s t test? Intuitively, we would suspect that the answer is no, and
this is correct because the Student’s t test uses comparatively more information.
In addition to giving the sign of the difference, the t test uses the magnitudes of
the observations to obtain more accurate values for sample means and variances.
Thus, we might say that the sign test is not as “efficient” as the Student’s t test; but
this statement is meaningful only if the populations conform to the assumption just
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stated: The differences in paired observations are normally distributed with a common
variance σ 2

D . The sign test might be more efficient when these assumptions are not
satisfied.

Sign Test for Large Samples: n > 25

Null hypothesis: H0 : p = .5 (neither treatment is preferred to the other).

Alternative hypothesis: Ha : p 7= .5 for a two-tailed test (Note: We use the
two-tailed test for an example. Many analyses require a one-tailed test.)

Test statistic: Z = [M − n/2]/[(1/2)
√

n].

Rejection region: Reject H0 if z ≥ zα/2 or if z ≤ −zα/2, where zα/2 is
obtained from Table 3, Appendix 3.

The sign test actually tests the null hypothesis that the median of the variables Di

is zero versus the alternative that it is different from zero. [The median of the variables
Di being zero does imply that P(Di < 0) = P(Di > 0).] If the variables X i and Yi

have the same distribution, the median of the variables Di will be zero, as previously
discussed. However, for models other than the shift model, there are other situations
in which the median of the variables Di is zero. In these instances, the null hypothesis
for the sign test is slightly more general than the statement that X i and Yi have the
same distribution.

Summarizing, the sign test is an easily applied nonparametric procedure for com-
paring two populations. No assumptions are made concerning the underlying popu-
lation distributions. The value of the test statistic can be obtained quickly by a visual
count, and the rejection region (or p-value) can be found easily by using a table of
binomial probabilities. Furthermore, we need not know the exact values of pairs of
responses, just whether X i > Yi for each pair (X i , Yi ). Exercise 15.5 provides an
example of the use of the sign test for data of this sort.

Exercises
15.1 What significance levels between α = .01 and α = .15 are available for a two-tailed sign test

with 25 paired observations? (Make use of tabulated values in Table 1, Appendix 3, n = 25.)
What are the corresponding rejection regions?

15.2 A study reported in the American Journal of Public Health (Science News)—the first to follow
lead levels in blood for law-abiding handgun hobbyists using indoor firing ranges—documents
a considerable risk of lead poisoning.1 Lead exposure measurements were made on 17 mem-
bers of a law enforcement trainee class before, during, and after a 3-month period of firearm
instruction at a state-owned indoor firing range. No trainees had elevated lead levels in their
blood before training, but 15 of the 17 ended training with blood lead levels deemed “elevated”
by the Occupational Safety and Health Administration (OSHA). Is there sufficient evidence to
claim that indoor firing range use increases blood-level readings?

1. Source: Science News, 136 (August 1989): 126.
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748 Chapter 15 Nonparametric Statistics

a Give the associated p-value.

b What would you conclude at the α = .01 significance level?

c Use the normal approximation to give the approximate p-value. Does the normal approxi-
mation appear to be adequate when n = 17?

15.3 Clinical data concerning the effectiveness of two drugs for treating a disease were collected
from ten hospitals. The number of patients treated with the drugs differed for the various
hospitals. The data are given in the table that follows.

Drug A Drug B

Number Number Percentage Number Number Percentage
Hospital Treated Recovered Recovered Treated Recovered Recovered

1 84 63 75.0 96 82 85.4
2 63 44 69.8 83 69 83.1
3 56 48 85.7 91 73 80.2
4 77 57 74.0 47 35 74.5
5 29 20 69.0 60 42 70.0
6 48 40 83.3 27 22 81.5
7 61 42 68.9 69 52 75.4
8 45 35 77.8 72 57 79.2
9 79 57 72.2 89 76 85.4

10 62 48 77.4 46 37 80.4

a Do the data indicate a difference in the recovery rates for the two drugs? Give the associated
p-value.

b Why might it be inappropriate to use the t test to analyze the data?

15.4 For a comparison of the academic effectiveness of two junior high schools A and B, an experi-
ment was designed using ten sets of identical twins, each twin having just completed the sixth
grade. In each case, the twins in the same set had obtained their previous schooling in the same
classrooms at each grade level. One child was selected at random from each set and assigned to
school A. The other was sent to school B. Near the end of the ninth grade, an achievement test
was given to each child in the experiment. The results are shown in the accompanying table.

Twin Pair A B Twin Pair A B

1 67 39 6 50 52
2 80 75 7 63 56
3 65 69 8 81 72
4 70 55 9 86 89
5 86 74 10 60 47

a Using the sign test, test the hypothesis that the two schools are the same in academic
effectiveness, as measured by scores on the achievement test, against the alternative that
the schools are not equally effective. Give the attained significance level. What would you
conclude with α = .05?

b Suppose it is suspected that junior high school A has a superior faculty and better learning
facilities. Test the hypothesis of equal academic effectiveness against the alternative that
school A is superior. What is the p-value associated with this test?

15.5 New food products are frequently subjected to taste tests by a panel of judges. The judges
are usually asked to state a preference for one food over another so that no quantitative scale
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need be employed. Suppose that two new mixtures, A and B, of an orange-flavored drink are
presented to ten judges. The preferences of the judges are given in the accompanying table.
Does this evidence indicate a significant difference between the tastes of A and B, at the 5%
significance level?

Judge Preference Judge Preference

1 A 6 A
2 A 7 B
3 A 8 A
4 A 9 B
5 A 10 A

15.6 On clear, cold nights in the central Florida citrus region, the precise location of below-freezing
temperatures is important because the methods of protecting trees from freezing conditions
are very expensive. One method of locating likely cold spots is by relating temperature to
elevation. It is conjectured that on calm nights the cold spots will be at low elevations. The
highest and lowest spots in a particular grove yielded the minimum temperatures listed in the
accompanying table for ten cold nights in a recent winter.

Night High Elevation Low Elevation

1 32.9 31.8
2 33.2 31.9
3 32.0 29.2
4 33.1 33.2
5 33.5 33.0
6 34.6 33.9
7 32.1 31.0
8 33.1 32.5
9 30.2 28.9

10 29.1 28.0

a Is there sufficient evidence to support the conjecture that low elevations tend to be colder?
(Use the sign test. Give the associated p-value.)

b Would it be reasonable to use a t test on the data? Why or why not?

15.7 A psychological experiment was conducted to compare the lengths of response time (in seconds)
for two different stimuli. To remove natural person-to-person variability in the responses, both
stimuli were applied to each of nine subjects, thus permitting an analysis of the difference
between response times within each person. The results are given in the following table.

Subject Stimulus 1 Stimulus 2

1 9.4 10.3
2 7.8 8.9
3 5.6 4.1
4 12.1 14.7
5 6.9 8.7
6 4.2 7.1
7 8.8 11.3
8 7.7 5.2
9 6.4 7.8
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750 Chapter 15 Nonparametric Statistics

a Use the sign test to determine whether sufficient evidence exists to indicate a difference in
mean response for the two stimuli. Use a rejection region for which α ≤ .05.

b Test the hypothesis of no difference in mean response, using Student’s t test.

15.8 Refer to Exercise 12.15. Using the sign test, do you find sufficient evidence to support con-
cluding that completion times differ for the two populations? Use α = .10.

15.9 The data set in the accompanying table represents the number of industrial accidents in 12
manufacturing plants for 1-week periods before and after an intensive promotion on safety.

Plant Before After Plant Before After

1 3 2 7 5 3
2 4 1 8 3 3
3 6 3 9 2 0
4 3 5 10 4 3
5 4 4 11 4 1
6 5 2 12 5 2

a Do the data support the claim that the campaign was successful? What is the attained
significance level? What would you conclude with α = .01?

b Discuss the problems associated with a parametric analysis designed to answer the question
in part (a).

15.4 The Wilcoxon Signed-Rank Test
for a Matched-Pairs Experiment
As in Section 15.3, assume that we have n paired observations of the form (X i , Yi )

and that Di = X i − Yi . Again we assume that we are interested in testing the hy-
pothesis that the X ’s and the Y ’s have the same distribution versus the alternative
that the distributions differ in location. Under the null hypothesis of no difference in
the distributions of the X ’s and Y ’s, you would expect (on the average) half of the
differences in pairs to be negative and half to be positive. That is, the expected number
of negative differences between pairs is n/2 (where n is the number of pairs). Further,
it would follow that positive and negative differences of equal absolute magnitude
should occur with equal probability. If we were to order the differences according to
their absolute values and rank them from smallest to largest, the expected rank sums
for the negative and positive differences would be equal. Sizable differences in the
sums of the ranks assigned to the positive and negative differences would provide
evidence to indicate a shift in location for the two distributions.

To carry out the Wilcoxon test, we calculate the differences (Di ) for each of the n
pairs. Differences equal to zero are eliminated, and the number of pairs, n, is reduced
accordingly. Then we rank the absolute values of the differences, assigning a 1 to the
smallest, a 2 to the second smallest, and so on. If two or more absolute differences are
tied for the same rank, then the average of the ranks that would have been assigned
to these differences is assigned to each member of the tied group. For example,
if two absolute differences are tied for ranks 3 and 4, then each receives rank 3.5, and
the next highest absolute difference is assigned rank 5. Then we calculate the sum
of the ranks (rank sum) for the negative differences and also calculate the rank sum
for the positive differences. For a two-tailed test, we use T , the smaller of these two
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quantities, as a test statistic to test the null hypothesis that the two population relative
frequency histograms are identical. The smaller the value of T is, the greater will be
the weight of evidence favoring rejection of the null hypothesis. Hence, we will reject
the null hypothesis if T is less than or equal to some value, say, T0.

To detect the one-sided alternative, that the distribution of the X ’s is shifted to the
right of that of the Y ’s, we use the rank sum T − of the negative differences, and we
reject the null hypothesis for small values of T −, say, T − ≤ T0. If we wish to detect a
shift of the distribution of the Y ’s to the right of the X ’s, we use the rank sum T + of the
positive differences as a test statistic, and we reject small values of T +, say, T + ≤ T0.

The probability that T is less than or equal to some value T0 has been calculated for
a combination of sample sizes and values of T0. These probabilities, given in Table 9,
Appendix 3, can be used to find the rejection region for the test based on T .

For example, suppose that you have n = 7 pairs and wish to conduct a two-tailed
test of the null hypothesis that the two population relative frequency distributions are
identical. Then, with α = .05, you would reject the null hypothesis for all values of
T less than or equal to 2. The rejection region for the Wilcoxon rank-sum test for a
paired experiment is always of this form: Reject the null hypothesis if T ≤ T0 where
T0 is the critical value for T . Bounds for the attained significance level (p-value)
are determined as follows. For a two-tailed test, if T = 3 is observed when n = 7,
Table 9, Appendix 3, indicates that H0 would be rejected if α = .1, but not if α = .05.
Thus, .05 < p-value < .1. For the one-sided alternative that the X ’s are shifted to
the right of the Y ’s with n = 7 and α = .05, H0 is rejected if T = T − ≤ 4. In this
case, if T = T − = 1, then .01 < p-value < .025. The test based on T , called the
Wilcoxon signed-rank test, is summarized as follows.

Wilcoxon Signed-Rank Test for a Matched-Pairs Experiment

H0 : The population distributions for the X ’s and Y ’s are identical.
Ha : (1) The two population distributions differ in location (two-tailed),

or (2) the population relative frequency distribution for the X ’s is
shifted to the right of that for the Y ’s (one-tailed).

Test statistic:

1. For a two-tailed test, use T = min(T +, T −), where T + = sum of the
ranks of the positive differences and T − = sum of the ranks of the
negative differences.

2. For a one-tailed test (to detect the one-tailed alternative just given), use
the rank sum T − of the negative differences.2

Rejection region:

1. For a two-tailed test, reject H0 if T ≤ T0, where T0 is the critical value
for the two-sided test given in Table 9, Appendix 3.

2. For a one-tailed test (as described earlier), reject H0 if T − ≤ T0, where
T0 is the critical value for the one-sided test.

2. To detect a shift of the distribution of the Y ’s to the right of the distribution of the X ’s, use the rank
sum T +, the sum of the ranks of the positive differences, and reject H0 if T + ≤ T0.
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EXAMPLE 15.3 Due to oven-to-oven variation, a matched-pairs experiment was used to test for dif-
ferences in cakes prepared using mix A and mix B. Two cakes, one prepared using
each mix, were baked in each of six different ovens (a total of 12 cakes). Test the
hypothesis that there is no difference in population distributions of cake densities
using the two mixes. What can be said about the attained significance level?

Solution The original data and differences in densities (in ounces per cubic inch) for the six
pairs of cakes are shown in Table 15.2.

As with our other nonparametric tests, the null hypothesis to be tested is that the
two population frequency distributions of cake densities are identical. The alternative
hypothesis is that the distributions differ in location, which implies that a two-tailed
test is required.

Because the amount of data is small, we will conduct our test by using α = .10.
From Table 9, Appendix 3, the critical value of T for a two-tailed test, α = .10, is
T0 = 2. Hence, we will reject H0 if T ≤ 2.

There is only one positive difference, and that difference has rank 3; therefore,
T + = 3. Because T + + T − = n(n + 1)/2 (why?), T − = 21 − 3 = 18 and the
observed value of T is min(3, 18) = 3. Notice that 3 exceeds the critical value of
T , implying that there is insufficient evidence to indicate a difference in the two
population frequency distributions of cake densities. Because we cannot reject H0 for
α = .10, we can only say that p-value > .10.

Table 15.2 Paired data and their differences for Example 15.3

Difference, Absolute Rank of
A B A − B Difference Absolute Difference

.135 .129 .006 .006 3

.102 .120 −.018 .018 5

.108 .112 −.004 .004 1.5

.141 .152 −.011 .011 4

.131 .135 −.004 .004 1.5

.144 .163 −.019 .019 6

Although Table 9, Appendix 3, is applicable for values of n (the number of data
pairs) as large as n = 50, it is worth noting that T + (or T −) will be approxi-
mately normally distributed when the null hypothesis is true and n is large (say,
25 or more). This enables us to construct a large-sample Z test, where if T = T +,

E(T +) = n(n + 1)

4
and V (T +) = n(n + 1)(2n + 1)

24
.

Then the Z statistic

Z = T + − E(T +)√
V (T +)

= T + − [n(n + 1)/4]√
n(n + 1)(2n + 1)/24
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can be used as a test statistic. Thus, for a two-tailed test and α = .05, we would reject
the hypothesis of identical population distributions when |z| ≥ 1.96. For a one-tailed
test that the distribution of the X ’s is shifted to the right (left) of the distribution of
the Y ’s, reject H0 when z > zα (z < −zα).

A Large-Sample Wilcoxon Signed-Rank Test for a Matched-Pairs
Experiment: n > 25

Null hypothesis: H0 : The population relative frequency distributions for
the X ’s and Y ’s are identical.

Alternative hypothesis: (1) Ha : The two population relative frequency dis-
tributions differ in location (a two-tailed test),

or (2) the population relative frequency distribution for the X ’s is shifted to
the right (or left) of the relative frequency distribution of the Y s (one-tailed
tests).

Test statistic: Z = T + − [n(n + 1)/4]√
n(n + 1)(2n + 1)/24

.

Rejection region: Reject H0 if z ≥ zα/2 or z ≤ −zα/2 for a two-tailed test.
To detect a shift in the distributions of the X ’s to the right of the Y ’s, reject
H0 when z ≥ zα . To detect a shift in the opposite direction, reject H0 if
z ≤ −zα .

Exercises
15.10 If a matched-pairs experiment using n pair of observations is conducted, if T + = the sum of

the ranks of the absolute values of the positive differences, and T − = the sum of the ranks of
the absolute values of the negative differences, why is T + + T − = n(n + 1)/2?

15.11 Refer to Exercise 15.10. If T + has been calculated, what is the easiest way to determine the
value of T −? If T + > n(n + 1)/4, is T = T + or T −? Why?

15.12 The accompanying table gives the scores of a group of 15 students in mathematics and art.

Student Math Art Student Math Art

1 22 53 9 62 55
2 37 68 10 65 74
3 36 42 11 66 68
4 38 49 12 56 64
5 42 51 13 66 67
6 58 65 14 67 73
7 58 51 15 62 65
8 60 71

a Use Wilcoxon’s signed-rank test to determine if the locations of the distributions of scores
for these students differ significantly for the two subjects. Give bounds for the p-value and
indicate the appropriate conclusion with α = .05.

b State specific null and alternative hypotheses for the test that you conducted in part (a).
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15.13 Refer to Exercise 15.4. What answers are obtained if Wilcoxon’s signed-rank test is used in
analyzing the data? Compare these answers with the answers obtained in Exercise 15.4.

15.14 Refer to Exercise 15.6(a). Answer the question by using the Wilcoxon signed-rank test.

15.15 Eight subjects were asked to perform a simple puzzle-assembly task under customary conditions
and under conditions of stress. During the stressful condition, the subjects were told that a
mild shock would be delivered 3 minutes after the start of the experiment and every
30 seconds thereafter until the task was completed. Blood pressure readings were taken
under both conditions. Data in the accompanying table represent the highest reading during
the experiment.

Subject Normal Stress

1 126 130
2 117 118
3 115 125
4 118 120
5 118 121
6 128 125
7 125 130
8 120 120

Do the data present sufficient evidence to indicate higher–blood pressure readings during
conditions of stress? Analyze the data by using the Wilcoxon signed-rank test for a matched-
pairs experiment. Give the appropriate p-value.

15.16 Two methods, A and B, for controlling traffic were employed at each of n = 12 intersections
for a period of 1 week. The numbers of accidents occurring during this time period are recorded
in the following table. The order of use (which method was employed for the first week) was
randomly chosen for each intersection.

Method Method Method Method

Intersection A B Intersection A B

1 5 4 7 2 3
2 6 4 8 4 1
3 8 9 9 7 9
4 3 2 10 5 2
5 6 3 11 6 5
6 1 0 12 1 1

a Analyze these data using the sign test.

b Analyze these data using the Wilcoxon signed-rank test for a matched-pairs experiment.

15.17 Dental researchers have developed a new material for preventing cavities, a plastic sealant that
is applied to the chewing surfaces of teeth. To determine whether the sealant is effective, it
was applied to half of the teeth of each of 12 school-age children. After 2 years, the number
of cavities in the sealant-coated teeth and in the untreated teeth were counted. The results are
given in the accompanying table. Is there sufficient evidence to indicate that sealant-coated
teeth are less prone to cavities than are untreated teeth? Test using α = 0.05.
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Child Sealant-Coated Untreated Child Sealant-Coated Untreated

1 3 3 7 1 5
2 1 3 8 2 0
3 0 2 9 1 6
4 4 5 10 0 0
5 1 0 11 0 3
6 0 1 12 4 3

15.18 Refer to Exercise 12.16. With α = .01, use the Wilcoxon signed-rank test to see if there was a
significant loss in muck depth between the beginning and end of the study.

15.19 Suppose that Y1, Y2, . . . , Yn is a random sample from a continuous distribution function F(y).
It is desired to test a hypothesis concerning the median ξ of F(y). Construct a test of H0 : ξ = ξ0

against Ha : ξ 7= ξ0, where ξ0 is a specified constant.

a Use the sign test.

b Use the Wilcoxon signed-rank test.

15.20 The spokesperson for an organization supporting property-tax reductions in a certain section
of a city stated that the median annual income for household heads in that section was $15,000.
A random sample of ten household heads from that section revealed the following annual
incomes:

14,800 16,900 18,000 19,100 13,200
18,500 20,000 19,200 15,100 16,500

With α = .10, test the hypothesis that the median income for the population from that section
is $15,000 against the alternative that it is greater than $15,000.

a Use the sign test.

b Use the Wilcoxon signed-rank test.

15.5 Using Ranks for Comparing
Two Population Distributions:
Independent Random Samples
A statistical test for comparing two populations based on independent random sam-
ples, the rank-sum test, was proposed by Frank Wilcoxon in 1945. Again, we assume
that we are interested in testing whether the two populations have the same distribu-
tion versus the shift (or location) alternative (see Section 15.2). Suppose that you were
to select independent random samples of n1 and n2 observations from populations I
and II, respectively. Wilcoxon’s idea was to combine the n1 + n2 = n observations
and rank them, in order of magnitude, from 1 (the smallest) to n (the largest). Ties
are treated as in Section 15.4. That is, if two or more observations are tied for the
same rank, the average of the ranks that would have been assigned to these observa-
tions is assigned to each member of the tied group. If the observations were selected
from identical populations, the rank sums for the samples should be more or less
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proportional to the sample sizes n1 and n2. For example, if n1 and n2 were equal, you
would expect the rank sums to be nearly equal. In contrast, if the observations in one
population—say, population I—tended to be larger than those in population II, the
observations in sample I would tend to receive the highest ranks and sample I would
have a larger than expected rank sum. Thus (sample sizes being equal), if one rank
sum is very large (and, correspondingly, the other is very small), it may indicate a
statistically significant difference between the locations of the two populations.

Mann and Whitney proposed an equivalent statistical test in 1947 that also used the
rank sums of two samples. Because the Mann–Whitney U test and tables of critical
values of U occur so often in the literature, we will explain its use in Section 15.6 and
will give several examples of its applications. In this section, we illustrate the logic
of the rank-sum test and demonstrate how to determine the rejection region for the
test and the value of α.

EXAMPLE 15.4 The bacteria counts per unit volume are shown in Table 15.3 for two types of cultures,
I and II. Four observations were made for each culture. Let n1 and n2 represent the
number of observations in samples I and II, respectively.

For the data given in Table 15.3, the corresponding ranks are as shown in Table 15.4.
Do these data present sufficient evidence to indicate a difference in the locations of
the population distributions for cultures I and II?

Table 15.3 Data for Example 15.4

I II

27 32
31 29
26 35
25 28

Solution Let W equal the rank sum for sample I (for this sample, W = 12). Certainly, very
small or very large values of W provide evidence to indicate a difference between the
locations of the two population distributions; hence W , the rank sum, can be employed
as a test statistic.

The rejection region for a given test is obtained in the same manner as for the sign
test. We start by selecting the most contradictory values of W as the rejection region
and add to these until α is of acceptable size.

Table 15.4 Ranks

I II

3 7
6 5
2 8
1 4

Rank Sum 12 24
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The minimum rank sum includes the ranks 1, 2, 3, 4, or W = 10. Similarly, the
maximum includes the ranks 5, 6, 7, 8, with W = 26. Therefore, we include these
two values of W in the rejection region. What is the corresponding value of α?

Finding the value of α is a probability problem that can be solved by using the
methods of Chapter 2. If the populations are identical, every permutation of the eight
ranks represents a sample point and is equally likely. Then, α is the sum of the
probabilities of the sample points (arrangements) that imply W = 10 or W = 26.
The total number of permutations of the eight ranks is 8! The number of different
arrangements of the ranks 1, 2, 3, 4 in sample I with the 5, 6, 7, 8 of sample II is
4! × 4!. Similarly, the number of arrangements that place the maximum value of W
in sample I (ranks 5, 6, 7, 8) is 4! × 4!. Then, the probability that W = 10 or W = 26
is

p(10) + p(26) = (2)(4!)(4!)

8!
= 2(8

4

) = 1

35
= .029.

If this value of α is too small, the rejection region can be enlarged to include
the next smallest and next largest rank sums, W = 11 and W = 25. The rank sum
W = 11 includes the ranks 1, 2, 3, 5, and

p(11) = 4! 4!

8!
= 1

70
.

Similarly,

p(25) = 1

70
.

Then,

α = p(10) + p(11) + p(25) + p(26) = 2

35
= .057.

Expansion of the rejection region to include 12 and 24 substantially increases the
value of α. The set of sample points giving a rank of 12 includes all sample points
associated with rankings of (1, 2, 3, 6) and (1, 2, 4, 5). Thus,

p(12) = (2)(4!)(4!)

8!
= 1

35
,

and

α = p(10) + p(11) + p(12) + p(24) + p(25) + p(26)

= 1

70
+ 1

70
+ 1

35
+ 1

35
+ 1

70
+ 1

70
= 4

35
= .114.

This value of α might be considered too large for practical purposes. Hence, we are
better satisfied with the rejection region W = 10, 11, 25, and 26.

The rank sum for the sample, W = 12, does not fall in this preferred rejection re-
gion, so we do not have sufficient evidence to reject the hypothesis that the population
distributions of bacteria counts for the two cultures are identical.
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15.6 The Mann–Whitney U Test:
Independent Random Samples
The Mann–Whitney statistic U is obtained by ordering all (n1 + n2) observations
according to their magnitude and counting the number of observations in sample
I that precede each observation in sample II. The statistic U is the sum of these
counts. In the remainder of this section, we denote the observations in sample I as
x1, x2, . . . , xn1 and the observations in sample II as y1, y2, . . . , yn2 .

For example, the eight ordered observations of Example 15.4 are

25 26 27 28 29 31 32 35
x(1) x(2) x(3) y(1) y(2) x(4) y(3) y(4)

The smallest y observation is y(1) = 28, and u1 = 3 x’s precede it. Similarly,
u2 = 3 x’s precede y(2) = 29 and u3 = 4, and u4 = 4 x’s precede y(3) = 32 and
y(4) = 35, respectively. Then,

U = u1 + u2 + u3 + u4 = 3 + 3 + 4 + 4 = 14.

Very large or very small values of U imply a separation of the ordered x’s and y’s
and thus provide evidence to indicate a difference (a shift of location) between the
distributions of populations I and II.

As noted in Section 15.5, the Mann–Whitney U statistic is related to Wilcoxon’s
rank sum. In fact, it can be shown (Exercise 15.75) that

Formula for the Mann–Whitney U Statistic

U = n1n2 + n1(n1 + 1)

2
− W,

where n1 = number of observations in sample I,
n2 = number of observations in sample II,
W = rank sum for sample I.

As you can see from the formula for U , U is small when W is large, a situation
likely to occur when the distribution of population I is shifted to the right of the
distribution of population II. Consequently, to conduct a one-tailed test to detect a
shift in the distribution of population I to the right of the distribution of population
II, you will reject the null hypothesis of no difference in population distributions if
U ≤ U0, where α = P(U ≤ U0) is of suitable size.

Some useful results about the distribution of U :

1. The possible values of U are 0, 1, 2, . . . , n1n2.
2. The distribution of U is symmetric about (n1n2)/2. That is, for any a > 0,

P[U ≤ (n1n2)/2 − a] = P[U ≥ (n1n2)/2 + a].
3. The result in (2) implies that P(U ≤ U0) = P(U ≥ n1n2 − U0).

If you wish to conduct a one-tailed test to detect a shift of the distribution of population
I to the left of distribution of population II, you would reject H0 if U is very large,
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specifically if U ≥ n1n2 − U0, where U0 is such that α = P(U ≥ n1n2 − U0) =
P(U ≤ U0) is of acceptable size.

Table 8, Appendix 3, gives the probability that an observed value of U is less than
various values, U0. This is the value of α for a one-tailed test. To conduct a two-tailed
test—that is, to detect difference in the locations of populations I and II—reject H0

if U ≤ U0 or U ≥ n1n2 − U0, where P(U ≤ U0) = α/2.
To see how to locate the rejection region for the Mann–Whitney U test, suppose that

n1 = 4 and n2 = 5. Then, you would consult the third section of Table 8, Appendix 3
(the one corresponding to n2 = 5). Notice that the table is constructed assuming that
n1 ≤ n2. That is, you must always identify the smaller sample as sample I. From the
table we see, for example, P(U ≤ 2) = .0317 and P(U ≤ 3) = .0556. So if you
want to conduct a lower-tail Mann–Whitney U test with n1 = 4 and n2 = 5 for α near
.05, you should reject the null hypothesis of equality of population relative frequency
distributions when U ≤ 3. The probability of a type I error for the test is α = .0556.

When applying the test to a set of data, you may find that some of the observations
are of equal value. Ties in the observations can be handled by averaging the ranks
that would have been assigned to the tied observations and assigning this average to
each. Thus, if three observations are tied and are due to receive ranks 3, 4, and 5, we
assign rank 4 to all three. The next observation in the sequence receives rank 6, and
ranks 3 and 5 do not appear. Similarly, if two observations are tied for ranks 3 and 4,
each receives rank 3.5, and ranks 3 and 4 do not appear.

Table 8, Appendix 3, can also be used to find the observed significance level for a
test. For example, if n1 = 5, n2 = 5, and U = 4, the p-value for a one-tailed test that
the distribution of population I is shifted the right of the distribution of population II is

P{U ≤ 4} = .0476.

If the test is two-tailed, the p-value is

2(.0476), or .0952.

The Mann–Whitney U Test

Population I is the population from which the smaller sample was taken.

Null hypothesis: H0 : The distributions of populations I and II are identical.

Alternative hypothesis: (1) Ha : The distributions of populations I and II
have different locations (a two-tailed test),

or (2) the distribution of population I is shifted to the right of the distribution
of population II, or (3) the distribution of population I is shifted to the left
of the distribution of population II.

Test statistic: U = n1n2 + [n1(n1 + 1)]/2 − W.

Rejection region: (1) For the two-tailed test and a given value of α, reject
H0 if U ≤ U0 or U ≥ n1n2−U0, where P(U ≤ U0) = α/2. [Note: Observe
that U0 is the value such that P(U ≤ U0) is equal to half of α.]

(2) To test that population I is shifted to the right of population II with a given
value
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of α, reject H0 if U ≤ U0, where P(U ≤ U0) = α.

(3) To test that population I is shifted to the left of population II with a given
value of α, reject H0 if U ≥ n1n2 − U0, where P(U ≤ U0) = α.

Assumptions: Samples have been randomly and independently selected
from their respective populations. Ties in the observations can be handled
by averaging the ranks that would have been assigned to the tied observations
and assigning this average rank to each. Thus, if three observations are tied
and are due to receive ranks 3, 4, and 5, we assign rank 4 to all three.

EXAMPLE 15.5 Test the hypothesis that there is no difference in the locations of the population
distributions for the bacteria count data of Example 15.4.

Solution We have already noted that the Mann–Whitney U test and the Wilcoxon rank-sum
test are equivalent, so we should reach the same conclusions here as we did in Exam-
ple 15.4. Recall that the alternative hypothesis was that the distributions of bacteria
counts for cultures I and II differed and that this implied a two-tailed test. Thus,
because Table 8, Appendix 3, gives values of P(U ≤ U0) for specified sample
sizes and values of U0, we must double the tabulated value to find α. Suppose, as in
Example 15.4, that we desire a value of α near .05. Checking Table 8 for n1 = n2 = 4,
we find P(U ≤ 1) = .0286. The appropriate rejection region for the two-tailed test
is U ≤ 1 or U ≥ n1n2 − 1 = 16 − 1 = 15, for which α = 2 (.0286) = .0572
or, rounding to three decimal places, α = .057 (the same value of α obtained for
Example 15.4).

For the bacteria data, the rank sum is W = 12. Then,

U = n1n2 + n1(n1 + 1)

2
− W = (4)(4) + 4(4 + 1)

2
− 12 = 14.

The calculated value of U does not fall in the rejection region. Hence, there is not
sufficient evidence to show a difference in the locations of the population distributions
of bacteria counts for cultures I and II. The p-value is given by 2P(U ≥ 14) =
2P(U ≤ 2) = 2 (.0571) = .1142.

EXAMPLE 15.6 An experiment was conducted to compare the strengths of two types of kraft papers,
one a standard kraft paper of a specified weight and the other the same standard kraft
paper treated with a chemical substance. Ten pieces of each type of paper, randomly
selected from production, produced the strength measurements shown in Table 15.5.
Test the hypothesis of no difference in the distributions of strengths for the two types
of paper against the alternative hypothesis that the treated paper tends to be stronger.

Solution Both samples are of size 10, so either population (standard or treated) may be desig-
nated as population I. We have identified the standard paper measurements as coming
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Table 15.5 Data for Example 15.6

Standard, I Treated, II

1.21 (2) 1.49 (15)
1.43 (12) 1.37 (7.5)
1.35 (6) 1.67 (20)
1.51 (17) 1.50 (16)
1.39 (9) 1.31 (5)
1.17 (1) 1.29 (3.5)
1.48 (14) 1.52 (18)
1.42 (11) 1.37 (7.5)
1.29 (3.5) 1.44 (13)
1.40 (10) 1.53 (19)

Rank Sum W = 85.5

from population I. In Table 15.5, the ranks are shown in parentheses alongside the
n1 + n2 = 10 + 10 = 20 strength measurements, and the rank sum W is given below
the first column. Because we wish to detect a shift in the distribution of population I
(standard) to the left of the distribution of the population II (treated), we will reject
the null hypothesis of no difference in population strength distributions when W is
excessively small. Because this situation occurs when U is large, we will conduct a
one-tailed statistical test and reject the null hypothesis when U ≥ n1n2 − U0.

Suppose that we choose a value of α near .05. Then we can find U0 by consulting
the portion of Table 8, Appendix 3, corresponding to n2 = 10. The probability
P(U ≤ U0) nearest .05 is .0526 and corresponds to U0 = 28. Hence, we will reject
if U ≥ (10)(10) − 28 = 72.

Calculating U , we have

U = n1n2 + n1(n1 + 1)

2
− W = (10)(10) + (10)(11)

2
− 85.5 = 69.5.

As you can see, U is not greater than 72. Therefore, we cannot reject the null hy-
pothesis. At the α = .0526 level of significance, there is not sufficient evidence to
indicate that the treated kraft paper is stronger than the standard. The p-value is given
by P(U ≥ 69.5) = P(U ≤ 30.5) = .0716.

A simplified large-sample test (n1 > 10 and n2 > 10) can be obtained by using
the familiar Z statistic of Chapter 10. When the population distributions are identical,
it can be shown that the U statistic has the following expected value and variance:

E(U ) = n1n2

2
and V (U ) = n1n2(n1 + n2 + 1)

12
.

Also, when n1 and n2 are large,

Z = U − E(U )

σU
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has approximately a standard normal distribution. This approximation is adequate
when n1 and n2 both are greater than or equal to 10. Thus, for a two-tailed test with
α = .05, we will reject the null hypothesis if |z| ≥ 1.96.

The Z statistic yields the same conclusion as the exact U test for Example 15.6:

z = 69.5 − [(10)(10)/2]√
[(10)(10)(10 + 10 + 1)]/12

= 69.5 − 50√
2100/12

= 19.5√
175

= 19.5

13.23
= 1.47.

For a one-tailed test with α = .05 located in the upper tail of the z distribution, we
will reject the null hypothesis if z > 1.645. You can see that z = 1.47 does not fall
in the rejection region and that this test reaches the same conclusion as the exact U
test of Example 15.6.

The Mann–Whitney U Test for Large Samples-n1 > 10 and n2 > 10

Null hypothesis: H0: The relative frequency distributions for populations
I and II are identical.

Alternative hypothesis: (1) Ha : The two populations’ relative frequency
distributions differ in location (a two-tailed test),

or (2) the relative frequency distribution for population I is shifted to the
right (or left) of the relative frequency distribution for population II (a one-
tailed test).

Test statistic: Z = U − (n1n2/2)√
n1n2(n1 + n2 + 1)/12

.

Rejection region: Reject H0 if z > zα/2 or z < −zα/2 for a two-tailed test.
For a one-tailed test, place all α in one tail of the z distribution. To detect
a shift in the distribution of population I to the right of the distribution of
population II, reject H0 when z < −zα . To detect a shift in the opposite
direction, reject H0 when z > zα . Tabulated values of z are given in Table 4,
Appendix 3.

It may seem to you that the Mann–Whitney U test and the equivalent Wilcoxon
rank-sum test are not very efficient because they do not appear to use all the informa-
tion in the sample. Actually, theoretical studies have shown that this is not the case.
Suppose, for example, that all of the assumptions for a two-sample t test are met
when testing H0 : μ1 − μ2 = 0 versus Ha : μ1 − μ2 > 0. Because the two-sample t
test simply tests for a difference in location (see Section 15.2), we can use the Mann–
Whitney U statistic to test these same hypotheses. For a given α and β, the total
sample size required for the t test is approximately .95 times the total sample size
required for the Mann–Whitney U . Thus, the nonparametric procedure is almost as
good as the t test for the situation in which the t test is optimal. For many non-
normal distributions, the nonparametric procedure requires fewer observations than
a corresponding parametric procedure would require to produce the same values
of α and β.
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Exercises
15.21 Find the p-values associated with each of the following scenarios for testing H0 : populations

I and II have the same distribution.

a Ha : distribution of population I is shifted to the right of the distribution of population II;
n1 = 4, n2 = 7, W = 34.

b Ha : distribution of population I is shifted to the left of the distribution of population II;
n1 = 5, n2 = 9, W = 38.

c Ha : populations I and II differ in location; n1 = 3, n2 = 6, W = 23.

15.22 In some tests of healthy, elderly men, a new drug has restored their memories almost to the level
of young adults. The medication will soon be tested on patients with Alzheimer’s disease, the
fatal brain disorder that eventually destroys the minds of those afflicted. According to Dr. Gary
Lynch of the University of California, Irvine, the drug, called ampakine CX-516, accelerates
signals between brain cells and appears to significantly sharpen memory.3 In a preliminary test
on students in their early 20s and on men aged 65–70, the results were particularly striking. The
accompanying data are the numbers of nonsense syllables recalled after 5 minutes for ten men
in their 20s and ten men aged 65–70 who had been given a mild dose of ampakine CX-516.
Do the data provide sufficient evidence to conclude that there is a difference in the number of
nonsense syllables recalled by men in the two age groups when older men have been given
ampakine CX-516? Give the associated p-value.

Age Group Number of syllables recalled

20s 11 7 6 8 6 9 2 10 3 6

65–70 1 9 6 8 7 8 5 7 10 3
(with ampakine CX-516)

15.23 Two plastics, each produced by a different process, were tested for ultimate strength. The
measurements in the accompanying table represent breaking loads in units of 1000 pounds
per square inch. Do the data present evidence of a difference between the locations of the
distributions of ultimate strengths for the two plastics? Test by using the Mann–Whitney U
test with a level of significance as near as possible to α = .10.

Plastic 1 Plastic 2

15.3 21.2
18.7 22.4
22.3 18.3
17.6 19.3
19.1 17.1
14.8 27.7

15.24 The coded values for a measure of brightness in paper (light reflectivity), prepared by two
different processes, are as shown in the accompanying table for samples of size 9 drawn
randomly from each of the two processes. Do the data present sufficient evidence to indicate
a difference in locations of brightness measurements for the two processes? Give the attained
significance level.

3. Source: “Alzheimer’s Test Set for New Memory Drug,” Press Enterprise (Riverside, Calif.), 18
November 1997, p. A-4.
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A B

6.1 9.1
9.2 8.2
8.7 8.6
8.9 6.9
7.6 7.5
7.1 7.9
9.5 8.3
8.3 7.8
9.0 8.9

a Use the Mann–Whitney U test.

b Use Student’s t test.

c Give specific null and alternative hypotheses, along with any assumptions, for the tests
used in parts (a) and (b).

15.25 Fifteen experimental batteries were selected at random from a lot at pilot plant A, and 15
standard batteries were selected at random from production at plant B. All 30 batteries were
simultaneously placed under an electrical load of the same magnitude. The first battery to fail
was an A, the second a B, the third a B, and so on. The following sequence shows the order of
failure for the 30 batteries:

A B B B A B A A B B B B A B A
B B B B A A B A A A B A A A A

Using the large-sample theory for the U test, determine whether there is sufficient evidence to
permit the experimenter to conclude that the lengths of life for the experimental batteries tend
to be greater than the lengths of life for the standard batteries. Use α = .05.

15.26 Refer to Exercises 8.88 and 8.89. Is there sufficient evidence to indicate a difference in the
populations of LC50 measurements for DDT and Diazinon? What is the attained significance
level associated with the U statistic. What do you conclude when α = .10?

15.27 Given below are wing stroke frequencies4 for samples of two species of Euglossine bees. Four
bees of the species Euglossa mandibularis Friese and six of the species Euglossa imperialis
Cockerell are shown in the accompanying table.

Wing Stroke Frequencies

E. mandibularis Friese E. imperialis Cockerell

235 180
225 169
190 180
188 185

178
183

4. Source: T. M. Casey, M. L. May, and K. R. Morgan, “Flight Energetics of Euglossine Bees in Relation
to Morphology and Wing Stroke Frequency,” Journal of Experimental Biology 116 (1985).
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a Do the data present sufficient evidence to indicate that the distributions of wing stroke
frequencies differ for the two species? Use the test based on the Mann–Whitney U statistic
with α as close to, but not exceeding, .10.

b Give the approximate p-value associated with the test.

15.28 Cancer treatment using chemotherapy employs chemicals that kill both cancer cells and normal
cells. In some instances, the toxicity of the cancer drug—that is, its effect on normal cells—
can be reduced by the simultaneous injection of a second drug. A study was conducted to
determine whether a particular drug injection was beneficial in reducing the harmful effects
of a chemotherapy treatment on the survival time for rats. Two randomly selected groups of
rats, 12 rats in each group, were used for the experiment. Both groups, call them A and B,
received the toxic drug in a dosage large enough to cause death, but group B also received
the antitoxin that was intended to reduce the toxic effect of the chemotherapy on normal cells.
The test was terminated at the end of 20 days, or 480 hours. The lengths of survival time for
the two groups of rats, to the nearest 4 hours, are shown in the following table. Do the data
provide sufficient evidence to indicate that rats receiving the antitoxin tended to survive longer
after chemotherapy than those not receiving the antitoxin? Use the Mann–Whitney U test with
a value of α near .05.

Only Chemotherapy (A) Chemotherapy plus Drug (B)

84 140
128 184
168 368
92 96

184 480
92 188
76 480

104 244
72 440

180 380
144 480
120 196

15.7 The Kruskal–Wallis Test
for the One-Way Layout
In Section 13.3, we presented an analysis of variance (ANOVA) procedure to com-
pare the means of k populations. The resultant F test was based on the assumption
that independent random samples were taken from normal populations with equal
variances. That is, as discussed in Section 15.2, we were interested in testing whether
all the populations had the same distribution versus the alternative that the popula-
tions differed in location. A key element in the development of the procedure was the
quantity identified as the sum of squares for treatments, SST. As we pointed out in the
discussion in Section 13.3, the larger the value of SST, the greater will be the weight
of evidence favoring rejection of the null hypothesis that the means are all equal. In
this section, we present a nonparametric technique to test whether the populations
differ in location. Like the other nonparametric techniques discussed in this chapter,
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766 Chapter 15 Nonparametric Statistics

the Kruskal–Wallis procedure requires no assumptions about the actual form of the
probability distributions.

As in Section 13.3, we assume that independent random samples have been drawn
from k populations that differ only in location. However, we need not assume that
these populations possess normal distributions. For complete generality, we permit
the sample sizes to be unequal, and we let ni , for i = 1, 2, . . . , k, represent the
size of the sample drawn from the i th population. Analogously to the procedure of
Section 15.5, combine all the n1 +n2 +· · ·+nk = n observations and rank them from
1 (the smallest) to n (the largest). Ties are treated as in previous sections. That is, if
two or more observations are tied for the same rank, then the average of the ranks that
would have been assigned to these observations is assigned to each member of the
tied group. Let Ri denote the sum of the ranks of the observations from population
i and let Ri = Ri/ni denote the corresponding average of the ranks. If R equals
the overall average of all of the ranks, consider the rank analogue of SST, which is
computed by using the ranks rather than the actual values of the measurements:

V =
k∑

i=1

ni (Ri − R)2.

If the null hypothesis is true and the populations do not differ in location, we would
expect the Ri values to be approximately equal and the resulting value of V to be
relatively small. If the alternative hypothesis is true, we would expect this to be
exhibited in differences among the values of the Ri values, leading to a large value
for V . Notice that R = (sum of the first n integers)/n = [n(n +1)/2]/n = (n +1)/2
and thus that

V =
k∑

i=1

ni

(
Ri − n + 1

2

)2

.

Instead of focusing on V , Kruskal and Wallis (1952) considered the statistic H =
12V/[n(n + 1)], which may be rewritten (see Exercise 15.35) as

H = 12

n(n + 1)

k∑
i=1

R2
i

ni
− 3(n + 1).

As previously noted, the null hypothesis of equal locations is rejected in favor of the
alternative that the populations differ in location if the value of H is large. Thus, the
corresponding α-level test calls for rejection of the null hypothesis in favor of the al-
ternative if H > h(α), where h(α) is such that, when H0 is true, P[H > h(α)] = α.

If the underlying distributions are continuous and if there are no ties among the n
observations, the null distribution of H can (tediously) be found by using the methods
of Chapter 2. We can find the distribution of H for any values of k and n1, n2, . . . , nk

by calculating the value of H for each of the n! equally likely permutations of the ranks
of the n observations (see Exercise 15.36). These calculations have been performed
and tables developed for some relatively small values of k and for n1, n2, . . . , nk [see,
for example, Table A.12 of Hollander and Wolfe (1999)].

Kruskal and Wallis showed that if the ni values are “large” the null distribution of
H can be approximated by a χ2 distribution with k − 1 degrees of freedom (df). This
approximation is generally accepted to be adequate if each of the ni values is greater
than or equal to 5. Our examples and exercises are all such that this large sample
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15.7 The Kruskal–Wallis Test for the One-Way Layout 767

approximation is adequate. If you wish to use the Kruskal–Wallis analysis for smaller
data sets, where this large-sample approximation is not adequate, refer to Hollander
and Wolfe (1999) to obtain the appropriate critical values.

We summarize the large sample Kruskal–Wallis procedure as follows.

Kruskal–Wallis Test Based on H for Comparing k Population Distributions

Null hypothesis: H0: The k population distributions are identical.

Alternative hypothesis: Ha : At least two of the population distributions
differ in location.

Test statistic: H = {12/[n(n + 1)]}
k∑

i=1

R2
i /ni − 3(n + 1), where

ni = number of measurements in the sample from population i ,
Ri = rank sum for sample i , where the rank of each measurement is com-
puted according to its relative size in the overall set of n = n1 +n2 +· · ·+nk

observations formed by combining the data from all k samples.

Rejection region: Reject H0 if H > χ2
α with (k − 1) df.

Assumptions: The k samples are randomly and independently drawn. There
are five or more measurements in each sample.

EXAMPLE 15.7 A quality control engineer has selected independent samples from the output of three
assembly lines in an electronics plant. For each line, the output of ten randomly
selected hours of production was examined for defects. Do the data in Table 15.6
provide evidence that the probability distributions of the number of defects per hour
of output differ in location for at least two of the lines? Use α = .05. Also give the
p-value associated with the test.

Solution In this case, n1 = 10 = n2 = n3 and n = 30. Thus,

H = 12

30(31)

[
(120)2

10
+ (210.5)2

10
+ (134.5)2

10

]
− 3(31) = 6.097.

Table 15.6 Data for Example 15.7

Line 1 Line 2 Line 3
Defects Rank Defects Rank Defects Rank

6 5 34 25 13 9.5
38 27 28 19 35 26

3 2 42 30 19 15
17 13 13 9.5 4 3
11 8 40 29 29 20
30 21 31 22 0 1
15 11 9 7 7 6
16 12 32 23 33 24
25 17 39 28 18 14

5 4 27 18 24 16
R1 = 120 R2 = 210.5 R3 = 134.5
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768 Chapter 15 Nonparametric Statistics

Because all the ni values are greater than or equal to 5, we may use the approximation
for the null distribution of H and reject the null hypothesis of equal locations if
H > χ2

α based on k − 1 = 2 df. We consult Table 6, Appendix 3, to determine that
χ2

.05 = 5.99147. Thus, we reject the null hypothesis at the α = .05 level and conclude
that at least one of the three lines tends to produce a greater number of defects than
the others.

According to Table 6, Appendix 3, the value of H = 6.097 leads to rejection of
the null hypothesis if α = .05 but not if α = .025. Thus, .025 < p-value < .05.
The applet Chi-Square Probability and Quantiles can be used to establish that the
approximate p-value = P(χ2 > 6.097) = .0474.

It can be shown that, if we wish to compare only k = 2 populations, the Kruskal–
Wallis test is equivalent to the Wilcoxon rank-sum two-sided test presented in Sec-
tion 15.5. If data are obtained from a one-way layout involving k > 2 populations but
we wish to compare a particular pair of populations, the Wilcoxon rank-sum test (or
the equivalent Mann–Whitney U test of Section 15.6) can be used for this purpose.
Notice that the analysis based on the Kruskal–Wallis H statistic does not require
knowledge of the actual values of the observations. We need only know the ranks
of the observations to complete the analysis. Exercise 15.32 illustrates the use of the
Kruskal–Wallis analysis for such a case.

Exercises
15.29 The table that follows contains data on the leaf length for plants of the same species at each of

four swampy underdeveloped sites. At each site, six plants were randomly selected. For each
plant, ten leaves were randomly selected, and the mean of the ten measurements (in centimeters)
was recorded for each plant from each site. Use the Kruskal–Wallis H test to determine whether
there is sufficient evidence to claim that the distribution of mean leaf lengths differ in location
for at least two of the sites. Use α = .05. Bound or find the approximate p-value.

Site Mean Leaf Length (cm)

1 5.7 6.3 6.1 6.0 5.8 6.2
2 6.2 5.3 5.7 6.0 5.2 5.5
3 5.4 5.0 6.0 5.6 4.0 5.2
4 3.7 3.2 3.9 4.0 3.5 3.6

15.30 A company plans to promote a new product by using one of three advertising campaigns. To
investigate the extent of product recognition resulting from the campaigns, 15 market areas
were selected, and 5 were randomly assigned to each campaign. At the end of the campaigns,
random samples of 400 adults were selected in each area, and the proportions who indicated
familiarity with the product appear in the following table.
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Campaign

1 2 3

.33 .28 .21

.29 .41 .30

.21 .34 .26

.32 .39 .33

.25 .27 .31

a What type of experimental design was used?

b Is there sufficient evidence to indicate a difference in locations of the distributions of product
recognition scores for the three campaigns? Bound or give the approximate p-value.

c Campaigns 2 and 3 were, respectively, the most and least expensive. Is there sufficient
evidence to indicate that campaign 2 is more successful than campaign 3? Test using the
Mann–Whitney U procedure. Give the associated p-value.

15.31 Three different brands of magnetron tubes (the key components in microwave ovens) were
subjected to stressful testing, and the number of hours each operated without repair was recorded
(see the accompanying table). Although these times do not represent typical life lengths, they
do indicate how well the tubes can withstand extreme stress.

Brand A Brand B Brand C

36 49 71
48 33 31

5 60 140
67 2 59
53 55 42

a Use the F test for a one-way layout (Chapter 13) to test the hypothesis that the mean length
of life under stress is the same for the three brands. Use α = .05. What assumptions are
necessary for the validity of this procedure? Is there any reason to doubt these assumptions?

b Use the Kruskal–Wallis test to determine whether evidence exists to conclude that the
brands of magnetron tubes tend to differ in length of life under stress. Test using α = .05.

15.32 An experiment was conducted to compare the length of time it takes a person to recover from
each of the three types of influenza—Victoria A, Texas, and Russian. Twenty-one human
subjects were selected at random from a group of volunteers and divided into three groups of 7
each. Each group was randomly assigned a strain of the virus and the influenza was induced in
the subjects. All of the subjects were then cared for under identical conditions, and the recovery
time (in days) was recorded. The ranks of the results appear in the following table.

Victoria A Texas Russian

20 14.5 9
6.5 16.5 1

21 4.5 9
16.5 2.5 4.5
12 14.5 6.5
18.5 12 2.5

9 18.5 12
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a Do the data provide sufficient evidence to indicate that the recovery times for one (or more)
type(s) of influenza tend(s) to be longer than for the other types? Give the associated p-value.

b Do the data provide sufficient evidence to indicate a difference in locations of the distribu-
tions of recovery times for the Victoria A and Russian types? Give the associated p-value.

15.33 The EPA wants to determine whether temperature changes in the ocean’s water caused by a
nuclear power plant will have a significant effect on the animal life in the region. Recently
hatched specimens of a certain species of fish are randomly divided into four groups. The
groups are placed in separate simulated ocean environments that are identical in every way
except for water temperature. Six months later, the specimens are weighed. The results (in
ounces) are given in the accompanying table. Do the data provide sufficient evidence to indicate
that one (or more) of the temperatures tend(s) to produce larger weight increases than the other
temperatures? Test using α = .10.

Weights of Specimens

38◦F 42◦F 46◦F 50◦F

22 15 14 17
24 21 28 18
16 26 21 13
18 16 19 20
19 25 24 21

17 23

15.34 Weevils cause millions of dollars worth of damage each year to cotton crops. Three chemicals
designed to control weevil populations are applied, one to each of three cotton fields. After
3 months, ten plots of equal size are randomly selected within each field and the percentage
of cotton plants with weevil damage is recorded for each. Do the data in the accompanying
table provide sufficient evidence to indicate a difference in location among the distributions of
damage rates corresponding to the three treatments? Give bounds for the associated p-value.

Chemical A Chemical B Chemical C

10.8 22.3 9.8
15.6 19.5 12.3
19.2 18.6 16.2
17.9 24.3 14.1
18.3 19.9 15.3

9.8 20.4 10.8
16.7 23.6 12.2
19.0 21.2 17.3
20.3 19.8 15.1
19.4 22.6 11.3

15.35 The Kruskal–Wallis statistic is

H = 12

n(n + 1)

k∑
i=1

ni

(
Ri − n + 1

2

)2

.

Perform the indicated squaring of each term in the sum and add the resulting values to show that

H = 12

n(n + 1)

k∑
i=1

R2
i

ni
− 3(n + 1).

[Hint: Recall that Ri = Ri/ni and that
∑k

i=1 Ri = sum of the first n integers = n(n + 1)/2.]
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15.36 Assuming no ties, obtain the exact null distribution of the Kruskal–Wallis H statistic for the
case k = 3, n1 = n2 = n3 = 2. [Because the sample sizes are all equal, if ranks 1 and 2
are assigned to treatment 1, ranks 3 and 4 are assigned to treatment 2, and ranks 5 and 6 are
assigned to treatment 3, the value of H is exactly the same as if ranks 3 and 4 are assigned
to treatment 1, ranks 5 and 6 are assigned to treatment 2, and ranks 1 and 2 are assigned to
treatment 3. That is, for any particular set of ranks, we may interchange the roles of the k
populations and obtain the same values of the H statistic. Thus, the number of cases that we
must consider can be reduced by a factor of 1/k!. Consequently, H must be evaluated only for
(6!/[2! · 2! · 2!])/3! = 15 distinct arrangements of ranks.]

15.8 The Friedman Test for Randomized
Block Designs
In Section 12.4, we discussed the merits of a randomized block design for an experi-
ment to compare the performance of several treatments. We assume that b blocks are
used in the experiment, which is designed to compare the locations of the distribu-
tions of the responses corresponding to each of k treatments. The ANOVA, discussed
in Section 13.9, was based on the assumptions that the observations in each block-
treatment combination were normally distributed with equal variances. As in the case
of the one-way layout, SST was the key quantity in the analysis.

The Friedman test, developed by Nobel Prize–winning economist Milton Fried-
man (1937), is designed to test the null hypothesis that the probability distributions of
the k treatments are identical versus the alternative that at least two of the distributions
differ in location. The test is based on a statistic that is a rank analogue of SST for the
randomized block design (see Section 13.9) and is computed in the following man-
ner. After the data from a randomized block design are obtained, within each block
the observed values of the responses to each of the k treatments are ranked from 1 (the
smallest in the block) to k (the largest in the block). If two or more observations in the
same block are tied for the same rank, then the average of the ranks that would have
been assigned to these observations is assigned to each member of the tied group. How-
ever, ties need to be dealt with in this manner only if they occur within the same block.

Let Ri denote the sum of the ranks of the observations corresponding to treatment
i and let Ri = Ri/b denote the corresponding average of the ranks (recall that in
a randomized block design, each treatment is applied exactly once in each block,
resulting in a total of b observations per treatment and hence in a total of bk total
observations). Because ranks of 1 to k are assigned within each block, the sum of the
ranks assigned in each block is 1 + 2 + · · · + k = k(k + 1)/2. Thus, the sum of all
the ranks assigned in the analysis is bk(k + 1)/2. If R denotes the overall average of
the ranks of all the bk observations, it follows that R = (k + 1)/2. Consider the rank
analog of SST for a randomized block design given by

W = b
k∑

i=1

(Ri − R)2.

If the null hypothesis is true and the probability distributions of the treatment responses
do not differ in location, we expect the Ri -values to be approximately equal and the
resulting value for W to be small. If the alternative hypothesis were true, we would
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772 Chapter 15 Nonparametric Statistics

expect this to lead to differences among the Ri -values and corresponding large values
of W . Instead of W , Friedman considered the statistic Fr = 12W/[k(k + 1)], which
may be rewritten (see Exercise 15.44) as

Fr = 12

bk(k + 1)

k∑
i=1

R2
i − 3b(k + 1).

As previously noted, the null hypothesis of equal locations is rejected in favor of the
alternative that the treatment distributions differ in location if the value of Fr is large.
That is, the corresponding α-level test rejects the null hypothesis in favor of the alter-
native if Fr > fr (α), where fr (α) is such that, when H0 is true, P[Fr > fr (α)] = α.

If there are no ties among the observations within the blocks, the null distribution of
Fr can (tediously) be found by using the methods of Chapter 2. For any values of b and
k, the distribution of Fr is found as follows. If the null hypothesis is true, then each of
the k! permutations of the ranks 1, 2, . . . , k within each block is equally likely. Further,
because we assume that the observations in different blocks are mutually independent,
it follows that each of the (k!)b possible combinations of the b sets of permutations
for the within-block ranks are equally likely when H0 is true. Consequently, we can
evaluate the value of Fr for each possible case and thereby give the null distribution
of Fr (see Exercise 15.45). Selected values for fr (α) for various choices of k and b
are given in Table A.22 of Hollander and Wolfe (1999). Like the other nonparametric
procedures discussed in this chapter, the real advantage of this procedure is that
it can be used regardless of the form of the actual distributions of the populations
corresponding to the treatments.

As with the Kruskal–Wallis statistic, the null distribution of the Friedman Fr

statistic can be approximated by a χ2 distribution with k − 1 df as long as b is
“large.” Empirical evidence indicates that the approximation is adequate if either b
(the number of blocks) or k (the number of treatments) exceeds 5. Again, our examples
and exercises deal with situations where this large-sample approximation is adequate.
If you need to implement a Friedman analysis for small samples, refer to Hollander
and Wolfe (1999) to obtain appropriate critical values.

Friedman Test Based on Fr for a Randomized Block Design

Null hypothesis: H0: The probability distributions for the k treatments are
identical.

Alternative hypothesis: Ha : At least two of the distributions differ in loca-
tion.

Test statistic: Fr = {12/[bk(k + 1)]}
k∑

i=1

R2
i − 3b(k + 1), where

b = number of blocks,
k = number of treatments,
Ri = sum of the ranks for the i th treatment, where the rank of each mea-
surement is computed relative to its size within its own block.

Rejection region: Fr > χ2
α with (k − 1) df.

Assumptions: The treatments are randomly assigned to experimental units
within blocks. Either the number of blocks (b) or the number of treatments
(k) exceeds 5.
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EXAMPLE 15.8 An experiment to compare completion times for three technical tasks was performed
in the following manner. Because completion times may vary considerably from
person to person, each of the six technicians was asked to perform all three tasks.
The tasks were presented to each technician in a random order with suitable time lags
between the tasks. Do the data in Table 15.7 present sufficient evidence to indicate
that the distributions of completion times for the three tasks differ in location? Use
α = .05. Give bounds for the associated p-value.

Table 15.7 Completion times for three tasks

Technician Task A Rank Task B Rank Task C Rank

1 1.21 1 1.56 3 1.48 2
2 1.63 1.5 2.01 3 1.63 1.5
3 1.42 1 1.70 2 2.06 3
4 1.16 1 1.27 2.5 1.27 2.5
5 2.43 2 2.64 3 1.98 1
6 1.94 1 2.81 3 2.44 2

R1 = 7.5 R2 = 16.5 R3 = 12

Solution The experiment was run according to a randomized block design with technicians
playing the role of blocks. In this case, k = 3 treatments are compared using b = 6
blocks. Because the number of blocks exceeds 5, we may use the Friedman analysis
and compare the value of Fr to χ2

α , based on k − 1 = 2 df. Consulting Table 6,
Appendix 3, we find χ2

.05 = 5.99147. For the data given in Table 15.7,

Fr = 12

6(3)(4)
[(7.5)2 + (16.5)2 + (12)2] − 3(6)(4) = 6.75.

Because Fr = 6.75, which exceeds 5.99147, we conclude at the α = .05 level that
the completion times of at least two of the three tasks possess probability distributions
that differ in location.

Because Fr = 6.75 is the observed value of a statistic that has approximately a
χ2 distribution with 2 df, it follows that (approximately) .025 < p-value < .05. The
applet Chi-Square Probability and Quantiles applies to establish that the approximate
p-value = P(χ2 > 6.75) = .0342.

In some situations, it might be easy to rank the responses within each block
but much more difficult to assign a meaningful numerical value to the response to
each treatment in the blocks. An example illustrating this scenario is provided in
Exercise 15.42.

It can be seen (see Exercise 15.43) that, if we wish to compare only k = 2
treatments using a randomized block design (so that the blocks are of size 2), the
Friedman statistic is the square of the standardized sign statistic (that is, the square
of the Z statistic given in Section 15.3). Thus, for k = 2, the Friedman analysis is
equivalent to a two-tailed sign test.
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Exercises
15.37 In a study of palatability of antibiotics for children, Doreen Matsui and her colleagues used a

voluntary sample of healthy children to assess their reactions to the taste of four antibiotics.5 The
children’s responses were measured on a 10-centimeter visual analog scale that incorporated
the use of faces, from sad (low score) to happy (high score). The minimum and maximum
scores were, respectively, 0 and 10. The data in the following table (simulated from the results
given in Matsui’s report) were obtained when each of five children were asked to rate the taste
of all four antibiotics.

Antibiotic

Child I II III IV

1 4.8 2.2 6.8 6.2
2 8.1 9.2 6.6 9.6
3 5.0 2.6 3.6 6.5
4 7.9 9.4 5.3 8.5
5 3.9 7.4 2.1 2.0

a Is there sufficient evidence to conclude that there are differences in the perceived taste of
the different antibiotics? Bound or find the approximate p-value.

b What would you conclude at the α = .05 level of significance.

c Why did Matsui have each child rank all four antibiotics instead of using 20 different chil-
dren, randomly selecting 5 to receive only antibiotic I, another 5 to receive only antibiotic
II, 5 of those remaining to receive only antibiotic III, with the 5 remaining receiving only
antibiotic IV?

15.38 An experiment was performed to assess whether heavy metals accumulate in plants grown in
soils amended with sludge and if there is an associated accumulation of those metals in aphids
feeding on those plants.6 The data in the accompanying table are cadmium concentrations (in
micrograms/kilogram) in plants grown under six different rates of sludge application for three
different harvests. The application rates are the treatments, and the three harvests represent
blocks of time.

Harvest

Rate 1 2 3

Control 162.1 153.7 200.4
1 199.8 199.6 278.2
2 220.0 210.7 294.8
3 194.4 179.0 341.1
4 204.3 203.7 330.2
5 218.9 236.1 344.2

5. Source: D. Matsui et al., “Assessment of the Palatability of β−Lactamase-Resistant Antibiotics in
Children,” Archives of Pediatric Adolescent Medicine 151 (1997): 559–601.

6. Source: G. Merrington, L. Winder, and I. Green, “The Uptake of Cadmium and Zinc by the Birdcherry
Oat Aphid Rhopalosiphum Padi (Homoptera:Aphididae) Feeding on Wheat Grown on Sewage Sludge
Amended Agricultural Soil,” Environmental Pollution 96(1) (1997): 111–114.
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a Is there sufficient evidence to indicate a difference in cadmium accumulation in plants
grown in plots subjected to different levels of sludge application? Bound or determine the
approximate p-value.

b What would you conclude at the α = .01 significance level?

15.39 Corrosion of metals is a problem in many mechanical devices. Three sealants used to help
retard the corrosion of metals were tested to see whether there were any differences among
them. Samples from ten different ingots of the same metal composition were treated with each
of the three sealants, and the amount of corrosion was measured after exposure to the same
environmental conditions for 1 month. The data are given in the accompanying table. Is there
any evidence of a difference in the abilities of the sealants to prevent corrosion? Test using
α = .05.

Sealant

Ingot I II III

1 4.6 4.2 4.9
2 7.2 6.4 7.0
3 3.4 3.5 3.4
4 6.2 5.3 5.9
5 8.4 6.8 7.8
6 5.6 4.8 5.7
7 3.7 3.7 4.1
8 6.1 6.2 6.4
9 4.9 4.1 4.2

10 5.2 5.0 5.1

15.40 A serious drought-related problem for farmers is the spread of aflatoxin, a highly toxic substance
caused by mold, which contaminates field corn. In higher levels of contamination, aflatoxin is
hazardous to animal and possibly human health. (Officials of the FDA have set a maximum
limit of 20 parts per billion aflatoxin as safe for interstate marketing.) Three sprays, A, B, and
C, have been developed to control aflatoxin in field corn. To determine whether differences
exist among the sprays, ten ears of corn are randomly chosen from a contaminated corn field,
and each is divided into three pieces of equal size. The sprays are then randomly assigned to the
pieces for each ear of corn, thus setting up a randomized block design. The accompanying table
gives the amount (in parts per billion) of aflatoxin present in the corn samples after spraying.
Use the Friedman test based on Fr to determine whether there are differences among the sprays
for control of aflatoxin. Give approximate bounds for the p-value.

Spray Spray

Ear A B C Ear A B C

1 21 23 15 6 5 12 6
2 29 30 21 7 18 18 12
3 16 19 18 8 26 32 21
4 20 19 18 9 17 20 9
5 13 10 14 10 4 10 2

15.41 A study was performed to compare the preferences of eight “expert listeners” regarding 15
models (with approximately equal list prices) of a particular component in a stereo system.
Every effort was made to ensure that differences perceived by the listeners were due to the
component of interest and no other cause (all other components in the system were identical,
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the same type of music was used, the music was played in the same room, etc.). Thus, the
results of the listening test reflect the audio preferences of the judges and not judgments re-
garding quality, reliability, or other variables. Further, the results pertain only to the models
of the components used in the study and not to any other models that may be offered by the
various manufacturers. The data in the accompanying table give the results of the listening
tests. The models are depicted simply as models A, B, . . . , O. Under each column heading
are the numbers of judges who ranked each brand of component from 1 (lowest rank) to 15
(highest rank).

Rank

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
B 0 0 0 1 0 2 1 1 1 0 0 0 0 2 0
C 0 1 1 1 4 0 0 1 0 0 0 0 0 0 0
D 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0
E 0 2 1 3 0 2 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 1 2 2 3 0 0 0
G 0 0 0 0 0 0 0 0 0 1 0 2 4 1 0
H 1 2 1 1 0 0 2 1 0 0 0 0 0 0 0
I 3 2 1 0 0 0 0 0 0 1 0 1 0 0 0
J 0 0 1 0 2 0 2 0 0 0 2 0 1 0 0
K 0 0 0 0 0 0 1 1 0 2 1 1 1 1 0
L 0 0 0 0 0 0 1 1 4 0 1 0 1 0 0
M 1 1 2 1 1 2 0 0 0 0 0 0 0 0 0
N 2 0 0 0 0 0 1 1 0 0 0 1 0 3 0
O 0 0 0 0 1 1 0 2 1 2 1 0 0 0 0

a Use the Friedman procedure to test whether the distributions of the preference scores differ
in location for the 15 component models. Give bounds for the attained significance level.
What would you conclude at the α = .01 level of significance? [Hint: The sum of the ranks
associated with the component of model O is 5 + 6 + 8 + 8 + 9 + 10 + 10 + 11 = 67; other
rank sums can be computed in an analogous manner.]

b If, prior to running the experiment, we desired to compare components of models G and H,
this comparison could be made by using the sign test presented in Section 15.3. Using the
information just given, we can determine that model G was preferred to model H by all eight
judges. Explain why. Give the attained significance level if the sign test is used to compare
components of models G and H.

c Explain why there is not enough information given to use the sign test in a comparison of
only models H and M.

15.42 An experiment is conducted to investigate the toxic effect of three chemicals, A, B, and C,
on the skin of rats. Three adjacent 1

2 -inch squares are marked on the backs of eight rats, and
each of the three chemicals is applied to each rat. The squares of skin on each rat are ranked
according to severity of irritation (1 = least severe, 3 = most severe). The resulting data are
given in the accompanying table. Is there sufficient evidence to support the research hypothesis
that the probability distributions of skin irritation scores corresponding to the three chemicals
differ in location? Use α = .01. (Note: Ranking the severity of reactions to the chemicals for
each rat is probably much more meaningful than assigning an arbitrary “irritation score” to
each portion of skin.)
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Chemical
Rat A B C

1 3 2 1
2 3 2 1
3 2 3 1
4 1 3 2
5 1 2 3
6 1 3 2
7 2 3 1
8 2 1 3

15.43 Consider the Friedman statistic Fr when k = 2 and b = (number of blocks) = n. Then,
Fr = (2/n)(R2

1 + R2
2)− 9n. Let M be the number of blocks (pairs) in which treatment one has

rank 1. If there are no ties, then treatment 1 has rank 2 in the remaining n− M pairs. Thus, R1 =
M +2(n−M) = 2n−M . Analogously, R2 = n+M . Substitute these values into the preceding
expression for Fr and show that the resulting value is 4(M − .5n)2/n. Compare this result with
the square of the Z statistic in Section 15.3. This procedure demonstrates that Fr = Z 2.

15.44 Consider the Friedman statistic

Fr = 12b

k(k + 1)

k∑
i=1

(Ri − R)2.

Square each term in the sum, and show that an alternative form of Fr is

Fr = 12

bk(k + 1)

k∑
i=1

R2
i − 3b(k + 1).

[Hint: Recall that Ri = Ri/b, R = (k +1)/2 and note that
∑k

i=1 Ri = sum of all of the ranks =
bk(k + 1)/2].

15.45 If there are no ties and b = 2, k = 3, derive the exact null distribution of Fr .

15.9 The Runs Test: A Test for Randomness
Consider a production process in which manufactured items emerge in sequence and
each is classified as either defective (D) or nondefective (N ). We have studied how
we might compare the fraction of defectives for two equal time intervals by using a
Z test (Chapter 10) and extended this to test the hypothesis of constant p over two or
more time intervals by using the χ2 test of Chapter 14. The purposes of these tests
were to detect a change or trend in the fraction of defectives, p. Evidence to indicate
an increasing fraction of defectives might indicate the need for a process study to
locate the source of difficulty. A decreasing value might suggest that a process quality
control program was having a beneficial effect in reducing the fraction of defectives.

Trends in the fraction of defective items (or other quality measures) are not the
only indication of lack of process control. A process might be causing periodic runs of
defective items even though the average fraction of defective items remains constant,
for all practical purposes, over long periods of time. For example, spotlight bulbs
are manufactured on a rotating machine with a fixed number of positions for bulbs.
A bulb is placed on the machine at a given position, the air is removed, gases are
pumped into the bulb, and the glass base is flame-sealed. If a machine contains 20
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positions and several adjacent positions are faulty (perhaps due to too much heat used
in the sealing process), surges of defective bulbs will emerge from the process in a
periodic manner. Tests that compare the process fraction of defective items produced
during equal intervals of time will not detect this periodic difficulty in the process.
This periodicity, indicated by runs of defectives, indicates nonrandomness in the
occurrence of defective items over time and can be detected by a test for randomness.
The statistical test we present, known as the runs test, is discussed in detail by Wald
and Wolfowitz (1940). Other practical applications of the runs test will follow.

As the name implies, the runs test is used to study a sequence of events where
each element in the sequence can assume one of two outcomes, success (S) or failure
(F). If we think of the sequence of items emerging from a manufacturing process as
defective (F) or nondefective (S), the observation of twenty items might yield

S S S S S F F S S S
F F F S S S S S S S.

We notice the groupings of defectives and nondefectives and wonder whether this
grouping implies nonrandomness and, consequently, lack of process control.

DEFINITION 15.1 A run is a maximal subsequence of like elements.

For example, the first five successes constitute a maximal subsequence of 5 like
elements (that is, it includes the maximum number of like elements before encoun-
tering an F). (The first 4 elements form a subsequence of like elements, but it is
not maximal because the 5th element also could be included.) Consequently, the 20
elements are arranged in five runs, the first containing five S’s, the second containing
two F’s, and so on.

A very small or very large number of runs in a sequence indicates nonrandomness.
Therefore, let R (the number of runs in a sequence) be the test statistic and let the
rejection region be R ≤ k1 and R ≥ k2, as indicated in Figure 15.3. We must then find
the probability distribution for R, P(R = r), to calculate α and to locate a suitable
rejection region for the test.

Suppose that the complete sequence contains n1 S elements and n2 F elements, re-
sulting in Y1 runs of S’s and Y2 runs of F’s, where (Y1+Y2) = R. Then, for a given Y1,
Y2 can equal Y1, (Y1 −1), or (Y1 +1). Let m denote the maximum possible number of
runs. Notice that m = 2n1 if n1 = n2, and that m = (2n1 +1) if n1 < n2. We will sup-
pose that every distinguishable arrangement of the (n1 +n2) elements in the sequence
constitutes a simple event for the experiment and that the sample points are equiprob-
able. It then remains for us to count the number of sample points that imply R runs.

The total number of distinguishable arrangements of n1 S elements and n2 F
elements is (

n1 + n2

n1

)
,

2 3 4 k1 k2

Reject RejectNumber of Runs R

m

F I G U R E 15.3
The rejection region

for the runs test
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. . .S SSSS SS SS SSS SF I G U R E 15.4
The distribution of

n1 S elements in y1

cells (none empty)

and therefore the probability per sample point is

1(
n1 + n2

n1

) .

The number of ways of achieving y1 S runs is equal to the number of identifiable
arrangements of n1 indistinguishable elements in y1 cells, none of which is empty,
as represented in Figure 15.4. This is equal to the number of ways of distributing the
(y1 − 1) inner bars in the (n1 − 1) spaces between the S elements (the outer two bars
remain fixed). Consequently, it is equal to the number of ways of selecting (y1 − 1)

spaces (for the bars) out of the (n1 − 1) spaces available, or(
n1 − 1

y1 − 1

)
.

The number of ways of observing y1 S runs and y2 F runs, obtained by applying
the mn rule, is (

n1 − 1

y1 − 1

)(
n2 − 1

y2 − 1

)
.

This gives the number of sample points in the event “y1 runs of S’s and y2 runs of
F’s.” Then, multiplying this number by the probability per sample point, we obtain
the probability of exactly y1 runs of S’s and y2 runs of F’s:

p(y1, y2) =

(
n1 − 1

y1 − 1

)(
n2 − 1

y2 − 1

)
(

n1 + n2

n1

) .

Then, P(R = r) equals the sum of p(y1, y2) over all values of y1 and y2 such that
(y1 + y2) = r .

To illustrate the use of the formula, the event R = 4 could occur when y1 = 2 and
y2 = 2 with either the S or F elements commencing the sequences. Consequently,

P(R = 4) = 2P(Y1 = 2, Y2 = 2).

On the other hand, R = 5 could occur when y1 = 2 and y2 = 3 or when y1 = 3 and
y2 = 2, and these occurrences are mutually exclusive. Then,

P(R = 5) = P(Y1 = 3, Y2 = 2) + P(Y1 = 2, Y2 = 3).

EXAMPLE 15.9 Suppose that a sequence consists of n1 = 5 S elements and n2 = 3 F elements.
Calculate the probability of observing R = 3 runs. Also, calculate P(R ≤ 3).
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Solution Three runs could occur when y1 = 2 and y2 = 1, or when y1 = 1 and y2 = 2. Then,

P(R = 3) = P(Y1 = 2, Y2 = 1) + P(Y1 = 1, Y2 = 2)

=

(
4

1

)(
2

0

)
(

8

5

) +

(
4

0

)(
2

1

)
(

8

5

) = 4

56
+ 2

56
= .107.

Next, we require that P(R ≤ 3) = P(R = 2) + P(R = 3). Accordingly,

P(R = 2) = 2P(Y1 = 1, Y2 = 1) = (2)

(
4

0

)(
2

0

)
(

8

5

) = 2

56
= .036.

Thus, the probability of 3 or fewer runs is .107 + .036 = .143.

The values of P(R ≤ a) are given in Table 10, Appendix 3, for all combinations
of n1 and n2, where n1 and n2 are less than or equal to 10. These can be used to locate
the rejection regions of one- or two-tailed tests. We illustrate with an example.

EXAMPLE 15.10 A true–false examination was constructed with the answers running in the following
sequence:

T F F T F T F T T F T F F T F T F T T F.

Does this sequence indicate a departure from randomness in the arrangement of T
and F answers?

Solution The sequence contains n1 = 10 T and n2 = 10 F answers, with y = 16 runs.
Nonrandomness can be indicated by either an unusually small or an unusually large
number of runs; consequently, we will be using a two-tailed test.

Suppose that we wish to use α approximately equal to .05 with .025 or less in each
tail of the rejection region. Then, from Table 10, Appendix 3, with n1 = n2 = 10,
we see that P(R ≤ 6) = .019 and P(R ≤ 15) = .981. Then, P(R ≥ 16) =
1 − P(R ≤ 15) = .019, and we would reject the hypothesis of randomness at the
α = .038 significance level if R ≤ 6 or R ≥ 16. Because R = 16 for the observed
data, we conclude that evidence exists to indicate nonrandomness in the professor’s
arrangement of answers. The attempt to mix the answers was overdone.

A second application of the runs test is in detecting nonrandomness of a sequence
of quantitative measurements over time. These sequences, known as time series,
occur in many fields. For example, the measurement of a quality characteristic of an
industrial product, blood pressure of a person, and the price of a stock on the stock
market all vary over time. Departures from randomness in a series, caused either by
trends or periodicities, can be detected by examining the deviations of the time series
measurements from their average. Negative and positive deviations could be denoted
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by S and F , respectively, and we could then test this time sequence of deviations for
nonrandomness. We illustrate with an example.

EXAMPLE 15.11 Paper is produced in a continuous process. Suppose that a brightness measurement
Y is made on the paper once every hour and that the results appear as shown in
Figure 15.5.

The average y for the 15 sample measurements appears as shown. Notice the
deviations about y. Do these data indicate a lack of randomness and thereby suggest
periodicity and lack of control in the process?

Brightness

Time (hours)

y

y

x

F I G U R E 15.5
Paper brightness

versus time

Solution The sequence of negative (S) and positive (F) deviations as indicated in Figure 15.5
is

S S S S F F S F F S F S S S S.

Then, n1 = 10, n2 = 5, and R = 7. Consulting Table 10 in Appendix 3, we find
P(R ≤ 7) = .455. This value of R is not improbable, assuming the hypothesis
of randomness to be true. Consequently, there is not sufficient evidence to indicate
nonrandomness in the sequence of brightness measurements.

The runs test can also be used to compare two population frequency distributions
for a two-sample unpaired experiment. Thus, it provides an alternative to the Mann–
Whitney U test (Section 15.6). If the measurements for the two samples are arranged
in order of magnitude, they form a sequence. The measurements for samples 1 and 2
can be denoted as S and F , respectively, and once again we are concerned with a test
for randomness. If all measurements for sample 1 are smaller than those for sample
2, the sequence will result in SSSS . . . SF F F . . . F , or R = 2 runs. A small value
of R provides evidence of a difference in population frequency distributions, and the
rejection region chosen is R ≤ a. This rejection region implies a one-tailed statistical
test. An illustration of the application of the runs test to compare two population
frequency distributions is left as an exercise.
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As in the case of the other nonparametric test statistics studied in earlier sections
of this chapter, the probability distribution for R tends toward normality as n1 and n2

become large. The approximation is good when n1 and n2 are both greater than 10.
Consequently, we may use the Z statistic as a large-sample test statistic, where

Z = R − E(R)√
V (R)

,

and

E(R) = 2n1n2

n1 + n2
+ 1,

V (R) = 2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)

are the expected value and variance of R, respectively. The rejection region for a
two-tailed test, with α = .05, is |z| ≥ 1.96. If α is the desired probability of a type
I error, for an upper-tail test, we reject the null hypothesis if z > zα (for a lower-tail
test, we reject H0 if z < −zα).

Exercises
15.46 Consider a runs test based on n1 = n2 = 5 elements. Assuming H0 to be true, use Table 10,

Appendix 3, to find the following:

a P(R = 2).

b P(R ≤ 3).

c P(R ≤ 4).

15.47 A union supervisor claims that applicants for jobs are selected without regard to race. The
hiring records of the local—one that contains all male members—gave the following sequence
of White (W ) and Black (B) hirings:

W W W W B W W W B B W B B

Do these data suggest a nonrandom racial selection in the hiring of the union’s members?

15.48 The conditions (D for diseased, S for sound) of the individual trees in a row of ten poplars
were found to be, from left to right:

S S D D S D D D S S

Is there sufficient evidence to indicate nonrandomness in the sequence and therefore the pos-
sibility of contagion?

15.49 Items emerging from a continuous production process were classified as defective (D) or
nondefective (N ). A sequence of items observed over time was as follows:

D N N N N N N D D N N N N N N D D
D N N N N N D N N N D D N N N D D.

a Compute the probability that R ≤ 11, where n1 = 11 and n2 = 23.

b Do these data suggest lack of randomness in the occurrence of defectives and nondefectives?
Use the large-sample approximation for the runs test.
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15.50 A quality control chart has been maintained for a measurable characteristic of items taken from
a conveyor belt at a fixed point in a production line. The measurements obtained today, in order
of time, are as follows:

68.2 71.6 69.3 71.6 70.4 65.0 63.6 64.7
65.3 64.2 67.6 68.6 66.8 68.9 66.8 70.1

a Classify the measurements in this time series as above or below the sample mean and
determine (using the runs test) whether consecutive observations suggest lack of stability
in the production process.

b Divide the time period into two equal parts and compare the means, using Student’s t test.
Do the data provide evidence of a shift in the mean level of the quality characteristics?
Explain.

15.51 Refer to Exercise 15.24. Use the runs test to analyze the data. Compare your answer here with
your answer to Exercise 15.24.

15.52 Refer to Exercise 15.25. If indeed the experimental batteries have a greater mean life, what
would be the effect of this on the expected number of runs? Using the large-sample theory for
the runs test, test (using α = .05) whether there is a difference in the distributions of battery
life for the two populations. Give the approximate p-value.

15.10 Rank Correlation Coefficient
In the preceding sections, we used ranks to indicate the relative magnitude of observa-
tions in nonparametric tests for comparison of treatments. We now employ the same
technique in testing for a correlation between two ranked variables. Two common
rank correlation coefficients are Spearman’s statistic rS and Kendall’s τ . We present
the Spearman rS because its computation is analogous to that of the sample correla-
tion coefficient r of Section 11.8. Kendall’s rank correlation coefficient is discussed
in detail in Kendall and Stuart (1979).

Suppose that eight elementary-science teachers have been ranked by a judge
according to their teaching ability, and all have taken a national teachers’ exami-
nation. The data are given in Table 15.8. Do the data suggest agreement between
the judge’s ranking and the examination score? Alternatively, we might express this
question by asking whether a correlation exists between the judge’s ranking and the
ranks of examination scores.

The two variables of interest are rank and test score. The former is already in
rank form, and the test scores may be ranked similarly, as shown in parentheses in

Table 15.8 Data for science teachers

Teacher Judge’s Rank Examination Score

1 7 44 (1)
2 4 72 (5)
3 2 69 (3)
4 6 70 (4)
5 1 93 (8)
6 3 82 (7)
7 8 67 (2)
8 5 80 (6)
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Table 15.8. The ranks for tied observations are obtained by averaging the ranks that
the tied observations would occupy, as is done for the Mann–Whitney U statistic.

Recall that the sample correlation coefficient (Section 11.8) for observations
(x1, y1), (x2, y2), . . . , (xn, yn) is given by

r = Sxy√
Sxx Syy

=

n∑
i=1

xi yi − 1

n

(
n∑

i=1

xi

) (
n∑

i=1

yi

)
√√√√√

⎡⎣ n∑
i=1

x2
i − 1

n

(
n∑

i=1

xi

)2
⎤⎦ ⎡⎣ n∑

i=1

y2
i − 1

n

(
n∑

i=1

yi

)2
⎤⎦

.

Let R(xi ) denote the rank of xi among x1, x2, . . . , xn and R(yi ) denote the rank of
yi among y1, y2, . . . , yn . The Spearman rank correlation coefficient, rS , is calculated
by substituting the ranks as the paired measurements in the above formula. Thus,

rS =

n∑
i=1

R(xi )R(yi ) − 1

n

[
n∑

i=1

R(xi )

] [
n∑

i=1

R(yi )

]
√√√√√

⎧⎨⎩ n∑
i=1

[R(xi )]
2 − 1

n

[
n∑

i=1

R(xi )

]2
⎫⎬⎭

⎧⎨⎩ n∑
i=1

[R(yi )]
2 − 1

n

[
n∑

i=1

R(yi )

]2
⎫⎬⎭

.

When there are no ties in either the x observations or the y observations, this
expression for rS algebraically reduces to a simpler expression:

rS = 1 −
6

n∑
i=1

d2
i

n(n2 − 1)
, where di = R(xi ) − R(yi ).

If the number of ties is small in comparison with the number of data pairs, little
error will result from using this shortcut formula. We leave proof of this simplification
as an exercise (Exercise 15.78) and illustrate the use of the formula by an example.

EXAMPLE 15.12 Calculate rS for the judge’s ranking and examination score data from Table 15.8.

Solution The differences and squares of differences between the two rankings are shown in
Table 15.9.

Substituting into the formula for rS , we obtain

rS = 1 −
6

n∑
i=1

d2
i

n(n2 − 1)
= 1 − 6(144)

8(64 − 1)
= −.714.
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Table 15.9 Data and calculations for Example 15.12

Teacher R(xi ) R(yi ) di d2
i

1 7 1 6 36
2 4 5 −1 1
3 2 3 −1 1
4 6 4 2 4
5 1 8 −7 49
6 3 7 −4 16
7 8 2 6 36
8 5 6 −1 1

Total 144

The Spearman rank correlation coefficient may be employed as a test statistic to test
the hypothesis of no association between two populations. We assume that the n pairs
of observations (xi , yi ) have been randomly selected, and the absence of any associ-
ation between the populations therefore implies a random assignment of the n ranks
within each sample. Each random assignment (for the two samples) represents a sam-
ple point associated with the experiment, and a value of rS can be calculated for each. It
is possible to calculate the probability that rS assumes a large absolute value due solely
to chance and thereby suggests an association between populations when none exists.

The rejection region for a two-tailed test includes values of rS near +1 and near
−1. If the alternative is that the correlation between X and Y is negative, we reject H0

for values of rS near −1. Similarly, if the alternative is that the correlation between
X and Y is positive, we reject H0 for large positive values of rS .

The critical values of rS are given in Table 11, Appendix 3. Recorded across the top
of the table are values of α that you might wish to use for a one-tailed test of the null
hypothesis of no association between X and Y . The number of rank pairs n appears
at the left side of the table. The table entries give the critical value r0 for a one-tailed
test. Thus, P(rS ≥ r0) = α. For example, suppose that you have n = 8 rank pairs
and the research hypothesis is that the correlation between the ranks is positive. Then,
you want to reject the null hypothesis of no association only for large positive values
of rS , and you will use a one-tailed test. Referring to Table 11 and using the row
corresponding to n = 8 and the column for α = .05, you read r0 = .643. Therefore,
you reject H0 for all values of rS greater than or equal to .643.

If you wish to give the p-value associated with an observed value of r = .82,
Table 11 gives that H0 would be rejected with α = .025 but not with α = .01. Thus,
.01 < p-value < .025.

The test is conducted in exactly the same manner if you wish to test the alternative
hypothesis that the ranks are negatively correlated. The only difference is that you
reject the null hypothesis if rS ≤ −.643. That is, you just place a minus sign in front
of the tabulated value of r0 to get the lower-tail critical value. Similarly, if r = −.82,
then .01 < p-value < .025.

To conduct a two-tailed test, you reject the null hypothesis if rS ≥ r0 or rS ≤ −r0.
The value of α for the test is double the value shown at the top of the table. For
example, if n = 8 and you choose the .025 column, you reject H0 if rS ≥ .738 or
rS ≤ −.738. The α-value for the test is 2(.025) = .05.
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The p-value associated with a two-tailed test based on an observed value of r = .82
is twice (because of the two tails) the one-tailed p-value; that is, .02 < p-value < .05.

EXAMPLE 15.13 Test the hypothesis of no association between populations for Example 15.12. Give
bounds for the associated p-value.

Solution The critical value of rS for a one-tailed test with α = .05 and n = 8 is .643.
Let us assume that a correlation between judge’s rank and the ranks of teachers’
examination scores could not possibly be positive. (Low rank means good teaching
and should be associated with a high test score if the judge and the test both measure
teaching ability.) The alternative hypothesis is that the population rank correlation
coefficient ρS is less than zero, so we are concerned with a one-tailed statistical test.
Thus, α for the test is the tabulated value .05, and we reject the null hypothesis
if rS ≤ −.643.

The calculated value of the test statistic, rS = −.714, is less than the critical
value for α = .05. Because H0 is rejected for α = .05 but not for α = .025, the
p-value associated with the test lies in the interval .025 < p-value < .05. Hence, the
null hypothesis is rejected at the α = .05 level of significance. It appears that some
agreement does exist between the judge’s rankings and the test scores. However, this
agreement could exist when neither provides an adequate yardstick for measuring
teaching ability. For example, the association could exist if both the judge and those
who constructed the teachers’ examination possessed a completely erroneous but
similar concept of the characteristics of good teaching.

Spearman’s Rank Correlation Test

Null hypothesis: H0 : There is no association between the rank pairs.

Alternative hypothesis: (1) Ha : There is an association between the rank
pairs (a two-tailed test),

or (2) the correlation between the rank pairs is positive (or negative) (a
one-tailed test).

Test statistic:

rS = n
∑n

i=1 R(xi )R(yi ) − [∑n
i=1 R(xi )

] [∑n
i=1 R(yi )

]√{
n

∑n
i=1[R(xi )]2 − [∑n

i=1 R(xi )
]2 } {

n
∑n

i=1[R(yi )]2 − [∑n
i=1 R(yi )

]2
} ,

where R(xi ) and R(yi ) denote the rank of xi among x1, x2, . . . , xn and yi

among y1, y2, . . . , yn , respectively.

Rejection region: For a two-tailed test, reject H0 if rS ≥ r0 or rS ≤ −r0,
where r0 is given in Table 11, Appendix 3. Double the tabulated probability
to obtain the α-value for the two-tailed test. For a one-tailed test, reject H0

if rS ≥ r0 (for an upper-tailed test) or rS ≤ −r0 (for a lower-tailed test). The
α-value for a one-tailed test is the value shown in Table 11, Appendix 3.
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Exercises
15.53 An experiment was conducted to study the relationship between the ratings of tobacco-leaf

graders and the moisture content of the corresponding tobacco leaves. Twelve leaves were
rated by the grader on a scale of 1 to 10, and corresponding measurements on moisture content
were made on the same leaves. The data are shown in the following table. Calculate rS . Do the
data provide sufficient evidence to indicate an association between the grader’s rating and the
moisture content of the leaves? Explain.

Leaf Grader’s Rating Moisture Content

1 9 .22
2 6 .16
3 7 .17
4 7 .14
5 5 .12
6 8 .19
7 2 .10
8 6 .12
9 1 .05

10 10 .20
11 9 .16
12 3 .09

15.54 Manufacturers of perishable foods often use preservatives to retard spoilage. One concern is
that too much preservative will change the flavor of the food. An experiment is conducted using
portions of food products with varying amounts of preservative added. The length of time until
the food begins to spoil and a taste rating are recorded for each portion of food. The taste rating
is the average rating for three tasters, each of whom rated each food portion on a scale from 1
(bad) to 5 (good). Twelve measurements are shown in the following table. Use a nonparametric
test to determine whether spoilage times and taste ratings are correlated. Give the associated
p-value and indicate the appropriate conclusion for an α = .05 level test.

Food Portion Days until Spoilage Taste Rating

1 30 4.3
2 47 3.6
3 26 4.5
4 94 2.8
5 67 3.3
6 83 2.7
7 36 4.2
8 77 3.9
9 43 3.6

10 109 2.2
11 56 3.1
12 70 2.9

15.55 A large corporation selects graduates for employment by using both interviews and a psycho-
logical achievement test. Interviews conducted at the home office of the company were far more
expensive than the test, which could be conducted on campus. Consequently, the personnel
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office was interested in determining whether the test scores were correlated with interview
ratings and whether the tests could be substituted for interviews. The idea was not to eliminate
interviews but to reduce their number. Ten prospects were ranked during interviews and then
tested. The paired scores were as shown in the accompanying table.

Subject Interview Rank Test Score

1 8 74
2 5 81
3 10 66
4 3 83
5 6 66
6 1 94
7 4 96
8 7 70
9 9 61

10 2 86

a Calculate the Spearman rank correlation coefficient rS . Rank 1 is assigned to the candidate
judged to be the best.

b Do the data present sufficient evidence to indicate that the correlation between interview
rankings and test scores is less than zero? If such evidence does exist, can we say that tests
could be used to reduce the number of interviews?

15.56 A political scientist wished to examine the relationship of the voter image of a conservative
political candidate and the distance in miles between the residence of the voter and the residence
of the candidate. Each of 12 voters rated the candidate on a scale of 1 to 20. The resulting data
are shown in the following table.

Voter Rating Distance

1 12 75
2 7 165
3 5 300
4 19 15
5 17 180
6 12 240
7 9 120
8 18 60
9 3 230

10 8 200
11 15 130
12 4 130

a Calculate the Spearman rank correlation coefficient, rS .

b Do these data provide sufficient evidence to indicate a negative correlation between rating
and distance?

15.57 Refer to Exercise 15.12. Compute Spearman’s rank correlation coefficient for these data and
test H0 : ρS = 0 at the 10% level of significance.

15.58 The data shown in the accompanying table give measures of bending and twisting stiffness as
measured by engineering tests for 12 tennis racquets.
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Bending Twisting
Racquet Stiffness Stiffness

1 419 227
2 407 231
3 363 200
4 360 211
5 257 182
6 622 304
7 424 384
8 359 194
9 346 158

10 556 225
11 474 305
12 441 235

a Calculate the value of the rank correlation coefficient rS between bending stiffness and
twisting stiffness.

b Use the test based on the rank correlation coefficient to determine whether there is a signif-
icant positive relationship between bending stiffness and twisting stiffness. Use α = .05.

15.59 Refer to Exercise 11.4. Regard both book and audited values as random variables and test for
positive correlation between the two by using Spearman’s rank correlation coefficient. Give
bounds for the p-value associated with the test.

15.60 Refer to Exercise 11.8. Treating both flow-through and static values as random variables, test for
the presence of a correlation between the two by using Spearman’s rank correlation coefficient,
with α = .10.

15.11 Some General Comments on
Nonparametric Statistical Tests
The nonparametric statistical tests presented in the preceding pages represent only
a few of the many nonparametric statistical methods of inference available. A much
larger collection of nonparametric procedures, along with worked examples, is given
in the texts listed in the references [for instance, see Conover (1999), Hollander and
Wolfe (1999), and Daniel (2000)]. Many of the nonparametric hypotheses-testing
procedures can be adapted to provide associated point and interval estimators for
location parameters and differences in location parameters. Nonparametric proce-
dures are also available for handling some of the inferential problems associated with
the linear model.

We have indicated that nonparametric testing procedures are particularly useful
when experimental observations are susceptible to ordering but cannot be measured
on a quantitative scale. Parametric statistical procedures can rarely be applied to
this type of data. Hence, any inferential procedures must be based on nonparametric
methods.
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A second application of nonparametric statistical methods is in testing hypotheses
associated with populations of quantitative data when uncertainty exists concerning
the satisfaction of assumptions about the form of the population distributions. Just
how useful are nonparametric methods for this situation? Nonparametric statistical
methods are rapid and often lead to an immediate decision in testing hypotheses. When
experimental conditions depart substantially from the basic assumptions underlying
parametric tests, the response measurements often can be transformed to alleviate
the condition, but an unfortunate consequence frequently develops: The transformed
response is no longer meaningful from a practical point of view, and analysis of the
transformed data no longer answers the objectives of the experimenter. The use of
nonparametric methods often circumvent this difficulty. Finally, notice that many non-
parametric methods are nearly as efficient as their parametric counterparts when the
assumptions underlying the parametric procedures are true; and as noted earlier, they
could be more efficient when the assumptions are not satisfied. These reasons suggest
that nonparametric techniques play a very useful role in statistical methodology.
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Supplementary Exercises

15.62 Two gourmets, A and B, rated 20 meals on a scale of 1 to 10. The data are shown in the
accompanying table. Do the data provide sufficient evidence to indicate that one of the gourmets
tends to give higher ratings than the other? Test by using the sign test with a value of α near .05.

Meal A B Meal A B
1 6 8 11 6 9
2 4 5 12 8 5
3 7 4 13 4 2
4 8 7 14 3 3
5 2 3 15 6 8
6 7 4 16 9 10
7 9 9 17 9 8
8 7 8 18 4 6
9 2 5 19 4 3

10 4 3 20 5 5

15.63 Refer to the comparison of gourmet meal ratings in Exercise 15.62 and use the Wilcoxon
signed-rank test to determine whether the data provide sufficient evidence to indicate a differ-
ence in the ratings of the two gourmets. Test by using a value of α near .05. Compare the results
of this test with the results of the sign test in Exercise 15.62. Are the test conclusions consistent?
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15.64 In an investigation of the visual-scanning behavior of deaf children, measurements of eye-
movement rates, were taken on nine deaf and nine hearing children. From the data given in
the table, is there sufficient evidence to justify claiming that the distributions of eye-movement
rates differ for deaf children A and hearing children B?

Deaf Children Hearing Children
A B

2.75 (15) .89 (1)
2.14 (11) 1.43 (7)
3.23 (18) 1.06 (4)
2.07 (10) 1.01 (3)
2.49 (14) .94 (2)
2.18 (12) 1.79 (8)
3.16 (17) 1.12 (5.5)
2.93 (16) 2.01 (9)
2.20 (13) 1.12 (5.5)

Rank Sum 126 45

15.65 A comparison of reaction (in seconds) to two different stimuli in a psychological word-
association experiment produced the results in the accompanying table when applied to a
random sample of 16 people. Do the data present sufficient evidence to indicate a difference
in location for the distributions of reaction times for the two stimuli? Use the Mann–Whitney
U statistic and test with α = .05. (Note: This test was conducted by using Student’s t in
Exercise 13.3. Compare your results.)

Stimulus 1 Stimulus 2

1 4
3 2
2 3
1 3
2 1
1 2
3 3
2 3

15.66 If (as in the case of measurements produced by two well-calibrated instruments) the means
of two populations are equal, the Mann–Whitney U statistic can be used to test hypothe-
ses concerning the population variances (or more general measures of variability) as follows.
As in Section 15.6, identify population I as the population from which the smaller sample
size is taken. Rank the combined sample. Number the ranked observations from the outside
in; that is, number the smallest observation 1; the largest, 2; the next to smallest, 3; the next
to largest, 4; and so on. This final sequence of numbers induces an ordering on the symbols
x (sample I observations) and y (sample II observations). If σ 2

X < σ 2
Y , one would expect to

find a preponderance of x’s with high ranks and thus a relatively large sum of ranks for the x
observations. Conversely, if σ 2

X > σ 2
Y , most x’s would have low ranks, and the sum of the ranks

of the x observations would be small.

a Given the measurements in the accompanying table, produced by well-calibrated precision
instruments, A and B, test at near the α = .05 level to determine whether the more expen-
sive instrument B is more precise than A. (Notice that this implies a one-tailed test.) Use
the Mann–Whitney U test.
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Instrument A Instrument B

1060.21 1060.24
1060.34 1060.28
1060.27 1060.32
1060.36 1060.30
1060.40

b Test by using the F statistic of Section 10.9.

15.67 Calculate the probability that U ≤ 2 for n1 = n2 = 5. Assume that no ties occur and that H0

is true.

15.68 Calculate the probability that the Wilcoxon T (Section 15.4) is less than or equal to 2 for n = 3
pairs. Assume that no ties occur and that H0 is true.

15.69 To investigate possible differences among production rates for three production lines turning
out similar items, examiners took independent random samples of total production figures for
7 days for each line. The resulting data appear in the following table. Do the data provide suf-
ficient evidence to indicate any differences in location for the three sets of production figures,
at the 5% significance level?

Line 1 Line 2 Line 3

48 41 18
43 36 42
39 29 28
57 40 38
21 35 15
47 45 33
58 32 31

15.70 a Suppose that a company wants to study how personality relates to leadership. Four
supervisors—I, II, III, and IV—with different types of personalities are selected. Several
employees are then selected from the group supervised by each, and these employees are
asked to rate the leader of their group on a scale from 1 to 20 (20 signifies highly favorable).
The accompanying table shows the resulting data. Is there sufficient evidence to indicate that
one or more of the supervisors tend to receive higher ratings than the others? Use α = 0.05.

I II III IV

20 17 16 8
19 11 15 12
20 13 13 10
18 15 18 14
17 14 11 9

16 10

b Suppose that the company is particularly interested in comparing the ratings of the person-
ality types represented by supervisors I and III. Make this comparison, using α = .05.

15.71 The leaders of a labor union want to determine its members’ preferences before negotiating
with management. Ten union members are randomly selected, and each member completed an
extensive questionnaire. The responses to the various aspects of the questionnaire will enable
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the union to rank, in order of importance, the items to be negotiated. The sample rankings are
shown in the accompanying table. Is there sufficient evidence to indicate that one or more of
the items are preferred to the others? Test using α = .05.

Person More Pay Job Stability Fringe Benefits Shorter Hours

1 2 1 3 4
2 1 2 3 4
3 4 3 2 1
4 1 4 2 3
5 1 2 3 4
6 1 3 4 2
7 2.5 1 2.5 4
8 3 1 4 2
9 1.5 1.5 3 4

10 2 3 1 4

15.72 Six groups of three children matched for IQ and age were formed. Each child was taught the
concept of time by using one of three methods: lecture, demonstration, or teaching machine.
The scores shown in the following table indicate the students’ performance when they were
tested on how well they had grasped the concept. Is there sufficient evidence to indicate that
the teaching methods differ in effectiveness? Give bounds for the p-value.

Group Lecture Demonstration Teaching Machine

1 20 22 24
2 25 25 27
3 30 40 39
4 37 26 41
5 24 20 21
6 16 18 25

15.73 Calculate P(R ≤ 6) for the runs test, where n1 = n2 = 8 and H0 is true. Do not use Table 10,
Appendix 3.

15.74 Consider a Wilcoxon rank-sum test for the comparison of two probability distributions based
on independent random samples of n1 = n2 = 5. Find P(W ≤ 17), assuming that H0 is true.

*15.75 For the sample from population I, let U denote the Mann–Whitney statistic and let W denote
the Wilcoxon rank-sum statistic.8 Show that

U = n1n2 + (1/2)n1(n1 + 1) − W.

*15.76 Refer to Exercise 15.75.

a Show that E(U ) = (1/2)n1n2 when H0 is true.

b Show that V (U ) = (1/12)[n1n2(n1 + n2 + 1)] when H0 is true, where H0 states that the
two populations have identical distributions.

*15.77 Let T denote the Wilcoxon signed-rank statistic for n pairs of observations. Show that E(T ) =
(1/4)n(n + 1) and V (T ) = (1/24)[n(n + 1)(2n + 1)] when the two populations are identical.
Observe that these properties do not depend on whether T is constructed from negative or
positive differences.

8. Exercises preceded by an asterisk are optional.
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*15.78 Refer to the Spearman rank correlation coefficient of Section 15.10. Show that, when there are
no ties in either the x observations or the y observations, then

rS = n
∑n

i=1 R(xi )R(yi ) − [∑n
i=1 R(xi )

] [∑n
i=1 R(yi )

]√{
n

∑n
i=1[R(xi )]2 − [∑n

i=1 R(xi )
]2

} {
n

∑n
i=1[R(yi )]2 − [∑n

i=1 R(yi )
]2

}
= 1 − 6

∑n
i=1 d2

i

n(n2 − 1)
,

where di = R(xi ) − R(yi ).
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CHAPTER 16

Introduction to Bayesian
Methods for Inference
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16.4 Bayesian Tests of Hypotheses

16.5 Summary and Additional Comments

References and Further Readings

16.1 Introduction
We begin this chapter with an example that illustrates the concepts and an application
of the Bayesian approach to inference making. Suppose that we are interested in
estimating the proportion of responders to a new therapy for treating a disease that
is serious and difficult to cure (such a disease is said to be virulent). If p denotes
the probability that any single person with the disease responds to the treatment, the
number of responders Y in a sample of size n might reasonably be assumed to have
a binomial distribution with parameter p. In previous chapters, we have viewed the
parameter p as having a fixed but unknown value and have discussed point estimators,
interval estimators, and tests of hypotheses for this parameter. Before we even collect
any data, our knowledge that the disease is virulent might lead us to believe that the
value of p is likely to be relatively small, perhaps in the neighborhood of .25. How
can we use this information in the process of making inferences about p?

One way to use this prior information about p is to utilize a Bayesian approach. In
this approach, we model the conditional distribution of Y given p, Y | p, as binomial:

p(y | p) =
(

n

y

)
pyqn−y, y = 0, 1, 2, . . . , n.

Uncertainty about the parameter p is handled by treating it as a random variable
and, before observing any data, assigning a prior distribution to p. Because we know
that 0 < p < 1 and the beta density function has the interval (0, 1) as support, it is
convenient to use a beta distribution as a prior for p. But which beta distribution

796
      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16.2 Bayesian Priors, Posteriors, and Estimators 797

should we use? Since the mean of a beta-distributed random variable with parameters
α and β is μ = α/(α + β) and we thought p might be in the neighborhood of .25,
we might choose to use a beta distribution with α = 1 and β = 3 (and μ = .25) as
the prior for p. Thus, the density assigned to p is

g(p) = 1

3
(1 − p)2, 0 < p < 1.

Since we have specified the conditional distribution of Y | p and the distribution
of p, we have also specified the joint distribution of (Y, p) and can determine the
marginal distribution of Y and the conditional distribution of p | Y . After observing
Y = y, the posterior density of p given Y = y, g=(p | y), can be determined. In the
next section, we derive a general result that, in our virulent-disease example, implies
that the posterior density of p given Y = y is

g=(p | y) = "(n + 4)

"(y + 1)"(n − y + 3)
py(1 − p)n−y+2, 0 < p < 1.

Notice that the posterior density for p | y is a beta density with α = y + 1 and β =
n − y + 3. This posterior density is the “updated” (by the data) density of p and is the
basis for all Bayesian inferences regarding p. In the following sections, we describe
the general Bayesian approach and specify how to use the posterior density to obtain
estimates, credible intervals, and hypothesis tests for p and for parameters associated
with other distributions.

16.2 Bayesian Priors, Posteriors, and Estimators
If Y1, Y2, . . . , Yn denote the random variables associated with a sample of size n,
we previously used the notation L(y1, y2, . . . , yn | θ) to denote the likelihood of the
sample. In the discrete case, this function is defined to be the joint probability P(Y1 =
y1, Y2 = y2, . . . , Yn = yn), and in the continuous case, it is the joint density of
Y1, Y2, . . . , Yn evaluated at y1, y2, . . . , yn . The parameter θ is included among the
arguments of L(y1, y2, . . . , yn | θ) to denote that this function depends explicitly on
the value of some parameter θ . In the Bayesian approach, the unknown parameter
θ is viewed to be a random variable with a probability distribution, called the prior
distribution of θ . This prior distribution is specified before any data are collected and
provides a theoretical description of information about θ that was available before
any data were obtained. In our initial discussion, we will assume that the parameter
θ has a continuous distribution with density g(θ) that has no unknown parameters.

Using the likelihood of the data and the prior on θ , it follows that the joint likelihood
of Y1, Y2, . . . , Yn, θ is

f (y1, y2, . . . , yn, θ) = L(y1, y2, . . . , yn | θ) × g(θ)

and that the marginal density or mass function of Y1, Y2, . . . , Yn is

m(y1, y2, . . . , yn) =
∫ ∞

−∞
L(y1, y2, . . . , yn | θ) × g(θ) dθ.
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798 Chapter 16 Introduction to Bayesian Methods for Inference

Finally, the posterior density of θ | y1, y2, . . . , yn is

g=(θ | y1, y2, . . . , yn) = L(y1, y2, . . . , yn | θ) × g(θ)∫ ∞
−∞ L(y1, y2, . . . , yn | θ) × g(θ) dθ

.

The posterior density summarizes all of the pertinent information about the
parameter θ by making use of the information contained in the prior for θ and the
information in the data.

EXAMPLE 16.1 Let Y1, Y2, . . . , Yn denote a random sample from a Bernoulli distribution where
P(Yi = 1) = p and P(Yi = 0) = 1 − p and assume that the prior distribution for p
is beta (α, β). Find the posterior distribution for p.

Solution Since the Bernoulli probability function can be written as

p(yi | p) = pyi (1 − p)1−yi , yi = 0, 1,

the likelihood L(y1, y2, . . . , yn | p) is

L(y1, y2, . . . , yn | p) = p(y1, y2, . . . , yn | p)

= py1(1 − p)1−y1 × py2(1 − p)1−y2 × · · · × pyn (1 − p)1−yn

= p
∑

yi (1 − p)n−∑
yi , yi = 0, 1 and 0 < p < 1.

Thus,

f (y1, y2, . . . , yn, p) = L(y1, y2, . . . , yn | p) × g(p)

= p
∑

yi (1 − p)n−∑
yi × "(α + β)

"(α)"(β)
pα−1(1 − p)β−1

= "(α + β)

"(α)"(β)
p

∑
yi +α−1(1 − p)n−∑

yi +β−1

and

m(y1, y2, . . . , yn) =
∫ 1

0

"(α + β)

"(α)"(β)
p

∑
yi +α−1(1 − p)n−∑

yi +β−1 dp

= "(α + β)

"(α)"(β)

"
( ∑

yi + α
)
"

(
n − ∑

yi + β
)

"(n + α + β)
.

Finally, the posterior density of p is

g=(p | y1, y2, . . . , yn) =
"(α + β)

"(α)"(β)
p

∑
yi +α−1(1 − p)n−∑

yi +β−1

"(α + β)

"(α)"(β)

"
(∑

yi + α
)
"

(
n − ∑

yi + β
)

"(n + α + β)

, 0 < p < 1

= "(n + α + β)

"
(∑

yi + α
)
"

(
n−∑

yi + β
) ×

p
∑

yi +α−1(1 − p)n−∑
yi +β−1, 0 < p < 1,

a beta density with parameters α= = ∑
yi + α and β= = n − ∑

yi + β.
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16.2 Bayesian Priors, Posteriors, and Estimators 799

Before we proceed, let’s look at some of the implications of the result in Example
16.1. In the following example, we’ll compare the prior and posterior distributions
for some (for now) arbitrary choices of the parameters of the prior and the results of
the experiment.

EXAMPLE 16.2 Consider the virulent-disease scenario and the results of Example 16.1. Compare
the prior and posterior distributions of the Bernoulli parameter p (the proportion of
responders to the new therapy) if we chose the values for α and β and observed the
hypothetical data given below:

a α = 1 , β = 3 , n = 5 ,
∑

yi = 2.
b α = 1 , β = 3 , n = 25 ,

∑
yi = 10.

c α = 10 , β = 30 , n = 5 ,
∑

yi = 2.
d α = 10 , β = 30 , n = 25 ,

∑
yi = 10.

Solution Before we proceed, notice that both beta priors have mean

μ = α

α + β
= 1

1 + 3
= 10

10 + 30
= .25

and that both hypothetical samples result in the same value of the maximum likelihood
estimates (MLEs) for p:

p̂ = 1

n

∑
yi = 2

5
= 10

25
= .40.

As derived in Example 16.1, if y1, y2, . . . , yn denote the values in a random sample
from a Bernoulli distribution, where P(Yi = 1) = p and P(Yi = 0) = 1− p, and the
prior distribution for p is beta (α, β), the posterior distribution for p is beta (α∗ =∑

yi + α, β∗ = n − ∑
yi + β). Therefore, for the choices in this example,

a when the prior is beta (1, 3), n = 5,
∑

yi = 2, the posterior is beta with

α∗ =
∑

yi + α = 2 + 1 = 3 and β∗ = n −
∑

yi + β = 5 − 2 + 3 = 6.

b when the prior is beta (1, 3), n = 25,
∑

yi = 10, the posterior is beta with

α∗ = 10 + 1 = 11 and β∗ = 25 − 10 + 3 = 18.

c when the prior is beta (10, 30), n = 5,
∑

yi = 2, the posterior is beta with

α∗ = 2 + 10 = 12 and β∗ = 5 − 2 + 30 = 33.

d when the prior is beta (10, 30), n = 25,
∑

yi = 10, the posterior is beta with

α∗ = 20 and β∗ = 45.

Recall that the mean and variance of a beta (α, β) distributed random variable are

μ = α

α + β
and σ 2 = αβ

(α + β)2(α + β + 1)
.

The parameters of the previous beta priors and posteriors, along with their means
and variances are summarized Table 16.1. Figure 16.1(a) contains graphs of the beta
distributions (priors and posteriors) associated with the beta prior with parameters
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800 Chapter 16 Introduction to Bayesian Methods for Inference

Table 16.1 Beta priors and posteriors for Example 16.2

Parameters of
Distribution n

∑
yi Beta Distribution Mean Variance

Prior — — α = 1, β = 3 .2500 .0375
Posterior 5 2 α∗ = 3, β∗ = 6 .3333 .0222
Posterior 25 10 α∗ = 11, β∗ = 18 .4074 .0078

Prior — — α = 10, β = 30 .2500 .0046
Posterior 5 2 α∗ = 12, β∗ = 33 .2667 .0043
Posterior 25 10 α∗ = 20, β∗ = 45 .3077 .0032
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16.2 Bayesian Priors, Posteriors, and Estimators 801

α = 1, β = 3. Graphs of the beta distributions associated with the beta (10, 30) prior
are given in Figure 16.1(b).

In Examples 16.1 and 16.2, we obtained posterior densities that, like the prior, are
beta densities but with altered (by the data) parameter values.

DEFINITION 16.1 Prior distributions that result in posterior distributions that are of the same func-
tional form as the prior but with altered parameter values are called conjugate
priors.

Any beta distribution is a conjugate prior distribution for a Bernoulli (or a bino-
mial) distribution. When the prior is updated (using the data), the result is a beta pos-
terior with altered parameter values. This is computationally convenient since we can
determine the exact formula for the posterior and thereafter use previously developed
properties of a familiar distribution. For the distributions that we use in this chapter,
there are conjugate priors associated with the relevant parameters. These families
of conjugate priors are often viewed to be broad enough to handle most practical
situations. As a result, conjugate priors are often used in practice.

Since the posterior is a bona fide probability density function, some summary
characteristic of this density provides an estimate for θ . For example, we could use
the mean, the median, or the mode of the posterior density as our estimator. If we
are interested in estimating some function of θ—say, t (θ)—we will use the posterior
expected value of t (θ) as our estimator for this function of θ .

DEFINITION 16.2 Let Y1, Y2, . . . , Yn be a random sample with likelihood function L(y1, y2, . . . ,

yn | θ), and let θ have prior density g(θ). The posterior Bayes estimator for t (θ)

is given by

t̂ (θ)B = E(t (θ) | Y1, Y2, . . . , Yn).

EXAMPLE 16.3 In Example 16.1, we found the posterior distribution of the Bernoulli parameter p
based on a beta prior with parameters (α, β). Find the Bayes estimators for p and
p(1 − p). [Recall that p(1 − p) is the variance of a Bernoulli random variable with
parameter p].

Solution In Example 16.1, we found the posterior density of p to be a beta density with
parameters α= = ∑

yi + α and β= = n − ∑
yi + β:

g=(p | y1, y2, . . . , yn) = "(α= + β=)

"(α=)"(β=)
pα=−1(1 − p)β

=−1, 0 < p < 1.
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802 Chapter 16 Introduction to Bayesian Methods for Inference

The estimate for p is the posterior mean of p. From our previous study of the beta
distribution, we know that

p̂B = E(p | y1, y2, . . . , yn)

= α=

α= + β=

=
∑

yi + α∑
yi + α + n − ∑

yi + β
=

∑
yi + α

n + α + β
.

Similarly,

̂[p(1 − p)]B = E(p(1 − p) | y1, y2, . . . , yn)

=
∫ 1

0
p(1 − p)

"(α= + β=)

"(α=)"(β=)
pα=−1(1 − p)β

=−1 dp

=
∫ 1

0

"(α= + β=)

"(α=)"(β=)
pα=

(1 − p)β
=

dp

= "(α= + β=)

"(α=)"(β=)
× "(α= + 1)"(β= + 1)

"(α= + β= + 2)

= "(α= + β=)

"(α=)"(β=)
× α="(α=)β="(β=)

(α= + β= + 1)(α= + β=)"(α= + β=)

= α=β=

(α= + β= + 1)(α= + β=)

=
( ∑

yi + α
)(

n − ∑
yi + β

)
(n + α + β + 1)(n + α + β)

.

So, the Bayes estimators for p and p(1 − p) are

p̂B =
∑

Yi + α

n + α + β
and ̂[p(1 − p)]B =

( ∑
Yi + α

)(
n − ∑

Yi + β
)

(n + α + β + 1)(n + α + β)
.

Further examination of the Bayes estimator for p given in Example 16.3 yields

p̂B =
∑

Yi + α

n + α + β

=
(

n

n + α + β

) (∑
Yi

n

)
+

(
α + β

n + α + β

) (
α

α + β

)
=

(
n

n + α + β

)
Y +

(
α + β

n + α + β

) (
α

α + β

)
.

Thus, we see that the Bayes estimator for p is a weighted average of the sample mean,
Y (the MLE for p) and the mean of the beta prior assigned to p. Notice that the prior
mean of p is given less weight for larger sample sizes whereas the weight given to the
sample mean increases for larger sample sizes. Also, since E(Y ) = p, it is easy to
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16.2 Bayesian Priors, Posteriors, and Estimators 803

see that the Bayes estimator for p is not an unbiased estimator. Generally speaking,
Bayes estimators are not unbiased.

Notice that the estimators obtained in Example 16.3 are both functions of the
sufficient statistic

∑
Yi . This is no coincidence since a Bayes estimator is always a

function of a sufficient statistic, a result that follows from the factorization criterion
(see Theorem 9.4).

If U is a sufficient statistic for the parameter θ based on a random sample Y1,

Y2, . . . , Yn , then

L(y1, y2, . . . , yn | θ) = k(u, θ) × h(y1, y2, . . . , yn),

where k(u, θ) is a function only of u and θ and h(y1, y2, . . . , yn) is not a function
of θ . In addition (see Hogg, McKean, and Craig, 2005), the function k(u, θ) can (but
need not) be chosen to be the probability mass or density function of the statistic U .
In accord with the notation in this chapter, we write the conditional density of U | θ
as k(u | θ). Then, because h(y1, y2, . . . , yn) is not a function of θ ,

g=(θ | y1, y2, . . . , yn) = L(y1, y2, . . . , yn | θ) × g(θ)∫ ∞
−∞ L(y1, y2, . . . , yn | θ) × g(θ) dθ

= k(u | θ) × h(y1, y2, . . . , yn) × g(θ)∫ ∞
−∞ k(u | θ) × h(y1, y2, . . . , yn) × g(θ) dθ

= k(u | θ) × g(θ)∫ ∞
−∞ k(u | θ)) × g(θ) dθ

.

Therefore, in cases where the distribution of a sufficient statistic U is known, the
posterior can be determined by using the conditional density of U | θ . We illustrate
with the following example.

EXAMPLE 16.4 Let Y1, Y2, . . . , Yn denote a random sample from a normal population with unknown
mean μ and known variance σ 2

o . The conjugate prior distribution for μ is a normal
distribution with known mean η and known variance δ2. Find the posterior distribution
and the Bayes estimator for μ.

Solution Since U = ∑
Yi is a sufficient statistic forμ and is known to have a normal distribution

with mean nμ and variance nσ 2
o ,

L(u | μ) = 1√
2πnσ 2

o

exp

[
1

2nσ 2
o

(u − nμ)2

]
, −∞< u < ∞

and the joint density of U and μ is

f (u, μ) = L(u | μ) × g(μ)

= 1√
2πnσ 2

o

√
2πδ2

exp

[
− 1

2nσ 2
o

(u − nμ)2 − 1

2δ2
(μ − η)2

]
,

− ∞ < u < ∞, −∞ < μ < ∞.
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804 Chapter 16 Introduction to Bayesian Methods for Inference

Let us look at the quantity in the above exponent:

− 1

2nσ 2
o

(u − nμ)2 − 1

2δ2
(μ − η)2

= − 1

2nσ 2
o δ2

[
δ2(u − nμ)2 + nσ 2

o (μ − η)2
]

= − 1

2nσ 2
o δ2

[
δ2u2 − 2δ2unμ + δ2n2μ2 + nσ 2

o μ2 − 2nσ 2
o μη + nσ 2

o η2
]

= − 1

2nσ 2
o δ2

[
(n2δ2 + nσ 2

o )μ2 − 2(nδ2u + nσ 2
o η)μ + δ2u2 + nσ 2

o η2
]

= − 1

2σ 2
o δ2

[
(nδ2 + σ 2

o )μ2 − 2(δ2u + σ 2
o η)μ

] − 1

2nσ 2
o δ2

(δ2u2 + nσ 2
o η2)

= −nδ2 + σ 2
o

2σ 2
o δ2

[
μ2 − 2

(
δ2u + σ 2

o η

nδ2 + σ 2
o

)
μ +

(
δ2u + σ 2

o η

nδ2 + σ 2
o

)2
]

− 1

2nσ 2
o δ2

[
δ2u2 + nσ 2

o η2 − n(δ2u + σ 2
o η)2

nδ2 + σ 2
o

]
.

Finally, we obtain:

− 1

2nσ 2
o

(u − nμ)2 − 1

2δ2
(μ − η)2 = −nδ2 + σ 2

o

2σ 2
o δ2

(
μ − δ2u + σ 2

o η

nδ2 + σ 2
o

)2

− 1

2(n2δ2 + nσ 2
o )

(u − nη)2.

Therefore,

f (u, μ) = 1√
2πnσ 2

o

√
2πδ2

exp

[
− 1

2nσ 2
o

(u − nμ)2 − 1

2δ2
(μ − η)2

]

= 1√
2πnσ 2

o

√
2πδ2

exp

[
−nδ2 + σ 2

o

2σ 2
o δ2

(
μ − δ2u + σ 2

o η

nδ2 + σ 2
o

)2
]

× exp

[
− 1

2(n2δ2 + nσ 2
o )

(u − nη)2

]
and

m(u) =

exp

[
− 1

2(n2δ2 + nσ 2
o )

(u − nη)2

]
√

2πnσ 2
o

√
2πδ2

∫ ∞

−∞
exp

[
−nδ2 + σ 2

o

2σ 2
o δ2

(
μ−δ2u + σ 2

o η

nδ2 + σ 2
o

)2
]

dμ

=
exp

[
− 1

2(n2δ2 + nσ 2
o )

(u − nη)2

]
√

2πn(nδ2 + σ 2
o )

∫ ∞

−∞

exp

[
−nδ2 + σ 2

o

2σ 2
o δ2

(
μ−δ2u + σ 2

o η

nδ2 + σ 2
o

)2
]

√
2πσ 2

o δ2

nδ2 + σ 2
o

dμ.
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Recognizing the above integral as that of a normal density function and hence equal
to 1, we obtain that the marginal density function for U is normal with mean nη and
variance (n2δ2 + nσ 2

o ). Further, the posterior density of μ given U = u is

g=(μ | u) = f (u, μ)

m(u)
= 1√

2πσ 2
o δ2

nδ2+σ 2
o

exp

[
−nδ2 + σ 2

o

2σ 2
o δ2

(
μ − δ2u + σ 2

o η

nδ2 + σ 2
o

)2
]
,

−∞< μ < ∞,

a normal density with mean

η= =
(

δ2u + σ 2
o η

nδ2 + σ 2
o

)
and variance δ=2 =

(
σ 2

o δ2

nδ2 + σ 2
o

)
.

It follows that the Bayes estimator for μ is

μ̂B = δ2U + σ 2
o η

nδ2 + σ 2
o

= nδ2

nδ2 + σ 2
o

Y + σ 2
o

nδ2 + σ 2
o

η.

Again, this Bayes estimator is a weighted average of the MLE, Y , the sample mean,
and the mean of the prior η. As the size of the sample n increases, the weight assigned
to the sample mean Y increases whereas the weight assigned to the prior mean η

decreases.

Exercises
16.1 Refer to the results of Example 16.2 given in Table 16.1.

a Which of the two priors has the smaller variance?

b Compare the means and variances of the two posteriors associated with the beta (1, 3) prior.
Which of the posteriors has mean and variance that differ more from the mean and variance
of the beta (1, 3) prior?

c Answer the questions in parts (a) and (b) for the beta (10, 30) prior.

d Are your answers to parts (a)–(c) supported by the graphs presented in Figure 16.1(a)
and (b)?

e Compare the posteriors based on n = 5 for the two priors. Which of the two posteriors
has mean and variance that differs more from the mean and variance of the corresponding
priors?

16.2 Define each of the following:

a Prior distribution for a parameter θ

b Posterior distribution for a parameter θ

c Conjugate prior distribution

d Bayes estimator for a function of θ , t (θ)

16.3 Applet Exercise The applet Binomial Revision can be used to explore the impact of data and
the prior on the posterior distribution of the Bernoulli parameter p. The demonstration at the
top of the screen uses the beta prior with α = β = 1.
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806 Chapter 16 Introduction to Bayesian Methods for Inference

a Click the button “Next Trial” to observe the result of taking a sample of size n = 1 from a
Bernoulli population with p = .4. Did you observe a success or a failure? Does the posterior
look different than the prior? Are the parameters of the posterior what you expected based
on the theoretical results of Example 16.1?

b Click the button “Next Trial” once again to observe the result of taking a sample of total
size n = 2 from a Bernoulli population with p = .4. How many successes and failures
have you observed so far ? Does the posterior look different than the posterior that you
obtained in part (a)? Are the parameters of the posterior what you expected based on the
theoretical results of Example 16.1?

c Click the button “Next Trial” several times to observe the result of taking samples of larger
sizes from a Bernoulli population with p = .4. Pay attention to the mean and variance of
the posterior distributions that you obtain by taking successively larger samples. What do
you observe about the values of the means of the posteriors? What do you observe about
the standard deviations of posteriors based on larger sample sizes?

d On the initial demonstration on the applet, you were told that the true value of the Bernoulli
parameter is p = .4. The mean of the beta prior with α = β = 1 is .5. How many trials
are necessary to obtain a posterior with mean close to .4, the true value of the Bernoulli
parameter?

e Click on the button “50 Trials” to see the effect of the results of an additional 50 trials on
the posterior. What do you observe about the shape of the posterior distributions based on
a large number of trials?

16.4 Applet Exercise Scroll down to the section “Applet with Controls” on the applet Binomial
Revision. Here, you can set the true value of the Bernoulli parameter p to any value 0 < p < 1
(any value of “real” interest) and you can also choose any α > 0 and β > 0 as the values of the
parameters of the conjugate beta prior. What will happen if the true value of p = .1 and you
choose a beta prior with mean 1/4? In Example 16.1, one such sets of values for α and β was
illustrated: α = 1, β = 3. Set up the applet to simulate sampling from a Bernoulli distribution
with p = .1 and use the beta (1, 3) prior. (Be sure to press Enter after entering the appropriate
values in the boxes.)

a Click the button “Next Trial” to observe the result of taking a sample of size n = 1 from
a Bernoulli population with p = .1. Did you observe a success or a failure? Does the
posterior look different than the prior?

b Click the button “Next Trial” once again to observe the result of taking a sample of total
size n = 2 from a Bernoulli population with p = .1. How many successes and failures
have you observed so far? Does the posterior look different than the posterior you obtained
in part (a)?

c If you observed a success on either of the first two trials, click the “Reset” button and start
over. Next, click the button “Next Trial” until you observe the first success. What happens
to the shape of the posterior upon observation of the first success?

d In this demonstration, we assumed that the true value of the Bernoulli parameter is p = .1.
The mean of the beta prior with α = 1, β = 3 is .25. Click the button “Next Trial” until
you obtain a posterior that has mean close to .1. How many trials are necessary?

16.5 Repeat the directions in Exercise 16.4, using a beta prior with α = 10, β = 30. How does the
number of trials necessary to obtain a posterior with mean close to .1 compare to the number
you found in Exercise 16.4(d)?

16.6 Suppose that Y is a binomial random variable based on n trials and success probability p (this
is the case for the virulent-disease example in Section 16.1). Use the conjugate beta prior with
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parameters α and β to derive the posterior distribution of p | y. Compare this posterior with
that found in Example 16.1.

16.7 In Section 16.1 and Exercise 16.6, we considered an example where the number of responders
to a treatment for a virulent disease in a sample of size n had a binomial distribution with
parameter p and used a beta prior for p with parameters α = 1 and β = 3.

a Find the Bayes estimator for p = the proportion of those with the virulent disease who
respond to the therapy.

b Derive the mean and variance of the Bayes estimator found in part (a).

16.8 Refer to Exercise 16.6. If Y is a binomial random variable based on n trials and success
probability p and p has the conjugate beta prior with parameters α = 1 and β = 1,

a determine the Bayes estimator for p, p̂B .

b what is another name for the beta distribution with α = 1 and β = 1?

c find the mean square for error (MSE) of the Bayes estimator found in part (a). [Hint: Recall
Exercise 8.17].

d For what values of p is the MSE of the Bayes estimator smaller than that of the unbiased
estimator p̂ = Y/n?

16.9 Suppose that we conduct independent Bernoulli trials and record Y , the number of the trial
on which the first success occurs. As discussed in Section 3.5, the random variable Y has a
geometric distribution with success probability p. A beta distribution is again a conjugate prior
for p.

a If we choose a beta prior with parameters α and β, show that the posterior distribution of
p | y is beta with parameters α= = α + 1 and β= = β + y − 1.

b Find the Bayes estimators for p and p(1 − p).

16.10 Let Y1, Y2, . . . , Yn denote a random sample from an exponentially distributed population with
density f (y | θ) = θe−θy, 0 < y. (Note: the mean of this population is μ = 1/θ .) Use the
conjugate gamma (α, β) prior for θ to do the following.

a Show that the joint density of Y1, Y2, . . . , Yn, θ is

f (y1, y2, . . . , yn, θ) = θ n+α−1

"(α)βα
exp

[
−θ

/(
β

β
∑

yi + 1

)]
.

b Show that the marginal density of Y1, Y2, . . . , Yn is

m(y1, y2, . . . , yn) = "(n + α)

"(α)βα

(
β

β
∑

yi + 1

)α+n

.

c Show that the posterior density for θ | (y1, y2, . . . , yn) is a gamma density with parameters
α= = n + α and β= = β/

(
β

∑
yi + 1

)
.

d Show that the Bayes estimator for μ = 1/θ is

μ̂B =
∑

Yi

n + α − 1
+ 1

β(n + α − 1)
.

[Hint: Recall Exercise 4.111(e).]

e Show that the Bayes estimator in part (d) can be written as a weighted average of Y and
the prior mean for 1/θ . [Hint: Recall Exercise 4.111(e).]

f Show that the Bayes estimator in part (d) is a biased but consistent estimator for μ = 1/θ .
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808 Chapter 16 Introduction to Bayesian Methods for Inference

16.11 Let Y1, Y2, . . . , Yn denote a random sample from a Poisson-distributed population with mean
λ. In this case, U = ∑

Yi is a sufficient statistic for λ, and U has a Poisson distribution with
mean nλ. Use the conjugate gamma (α, β) prior for λ to do the following.

a Show that the joint likelihood of U, λ is

L(u, λ) = nu

u!βα"(α)
λu+α−1exp

[
−λ

/(
β

nβ + 1

)]
.

b Show that the marginal mass function of U is

m(u) = nu"(u + α)

u!βα"(α)

(
β

nβ + 1

)u+α

.

c Show that the posterior density for λ | u is a gamma density with parameters α= = u + α

and β= = β/(nβ + 1).

d Show that the Bayes estimator for λ is

λ̂B =
(∑

Yi + α
)
β

nβ + 1
.

e Show that the Bayes estimator in part (d) can be written as a weighted average of Y and
the prior mean for λ.

f Show that the Bayes estimator in part (d) is a biased but consistent estimator for λ.

16.12 Let Y1, Y2, . . . , Yn denote a random sample from a normal population with known mean μo

and unknown variance 1/v . In this case, U = ∑
(Yi − μo)

2 is a sufficient statistic for v , and
W = vU has a χ 2 distribution with n degrees of freedom. Use the conjugate gamma (α, β)

prior for v to do the following.

a Show that the joint density of U, v is

f (u, v) = u(n/2)−1v (n/2)+α−1

"(α)" (n/2) βα2(n/2)
exp

[
−v

/(
2β

uβ + 2

)]
.

b Show that the marginal density of U is

m(u) = u(n/2)−1

"(α)" (n/2) βα2(n/2)

(
2β

uβ + 2

)(n/2)+α

"
(n

2
+ α

)
.

c Show that the posterior density for v | u is a gamma density with parameters α= = (n/2) + α

and β= = 2β/(uβ + 2).

d Show that the Bayes estimator for σ 2 = 1/v is σ̂ 2
B = (Uβ + 2)/[β(n + 2α − 2)]. [Hint:

Recall Exercise 4.111(e).]

e The MLE for σ 2 is U/n. Show that the Bayes estimator in part (d) can be written as a
weighted average of the MLE and the prior mean of 1/v . [Hint: Recall Exercise 4.111(e).]

16.3 Bayesian Credible Intervals
In previous sections, we have determined how to derive classical confidence intervals
for various parameters of interest. In our previous approach, the parameter of interest
θ had a fixed but unknown value. We constructed intervals by finding two random
variables θ̂L and θ̂U , the lower and upper confidence limits, such that θ̂L < θ̂U and
so that the probability that the random interval

(
θ̂L , θ̂U

)
enclosed the fixed value θ
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16.3 Bayesian Credible Intervals 809

was equal to the prescribed confidence coefficient 1 − α. We also considered how
to form one-sided confidence regions. The key realization in our pre-Bayesian work
was that the interval was random and the parameter was fixed. In Example 8.11, we
constructed a confidence interval for the mean of a normally distributed population
with unknown variance using the formula

Y ± tα/2

(
S√
n

)
=

{
Y − tα/2

(
S√
n

)
, Y + tα/2

(
S√
n

)}
.

In this case, the upper and lower endpoints of the interval are clearly random variables.
Upon obtaining data, calculating the realized values of the sample mean y = 2959
and the sample variance s = 39.1 and using n = 8 and t.025 = 2.365, we determined
that our realized confidence interval for the mean muzzle velocity for shells of the
type considered is (2926.3, 2991.7). This is a fixed interval that either contains the
true mean muzzle velocity or does not. We say that the interval is a 95% confidence
interval because if independent and separate samples, each of size n = 8 were taken
and the resulting (different) intervals were determined, in the long run, 95% of the
intervals would contain the true mean. The parameter is fixed, the endpoints of the
interval are random, and different samples will yield different realized intervals.

In the Bayesian context, the parameter θ is a random variable with posterior density
function g=(θ). If we consider the interval (a, b), the posterior probability that the
random variable θ is in this interval is

P=(a ≤ θ ≤ b) =
∫ b

a
g=(θ) dθ.

If the posterior probability P=(a ≤ θ ≤ b) = .90, we say that (a, b) is a 90% credible
interval for θ .

EXAMPLE 16.5 In Example 8.11, it was reasonable to assume that muzzle velocities were normally
distributed with unknown mean μ. In that example, we assumed that the variance of
muzzle velocities σ 2 was unknown. Assume now that we are interested in forming
a Bayesian credible interval for μ and believe that there is a high probability that
the muzzle velocities will be within 30 feet per second of their mean μ. Because
a normally distributed population is such that approximately 95% of its values are
within 2 standard deviations of its mean, it might be reasonable to assume that the
underlying distribution of muzzle velocities is normally distributed with mean μ and
variance σ 2

o such that 2σo = 30, that is with σ 2
o = 225.

If, prior to observing any data, we believed that there was a high probability that
μ was between 2700 and 2900, we might choose to use a conjugate normal prior for
μ with mean η and variance δ2 chosen such that η − 2δ = 2700 and η + 2δ = 2900,
or η = 2800 and δ2 = 502 = 2500. Note that we have assumed considerably more
knowledge of muzzle velocities than we did in Example 8.11 where we assumed only
that muzzle velocities were normally distributed (with unknown variance). If we are
comfortable with this additional structure, we now take our sample of size n = 8 and
obtain the muzzle velocities given below:

3005 2925 2935 2965
2995 3005 2937 2905
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810 Chapter 16 Introduction to Bayesian Methods for Inference

Use the general form for the posterior density for μ | u developed in Example 16.4 to
give a 95% credible interval for μ.

Solution This scenario is a special case of that dealt with in Example 16.4. In this application
of that general result,

n = 8, u =
∑

yi = 23,672, σ 2
o = 225, η = 2800, δ2 = 2500.

In Example 16.4, we determined that the posterior density of μ | u is a normal density
with mean η= and variance δ=2 given by

η= = δ2u + σ 2
o η

nδ2 + σ 2
o

= (2500)(23672) + (225)(2800)

8(2500) + 225
= 2957.23,

δ=2 = σ 2
o δ2

nδ2 + σ 2
o

= (225)(2500)

8(2500) + 225
= 27.81.

Finally, recall that any normally distributed random variable W with mean μW and
variance σ 2

W is such that

P(μW − 1.96 σW ≤ W ≤ μW + 1.96 σW ) = .95.

It follows that a 95% credible interval for μ is

(η= − 1.96 δ=, η= + 1.96 δ=) = (2957.23 − 1.96
√

27.81, 2957.23 + 1.96
√

27.81)

= (2946.89, 2967.57).

It is important to note that different individuals constructing credible intervals for
μ using the data in Example 16.5 will obtain different intervals if they choose different
values for any of the parameters η, δ2, and σ 2

o . Nevertheless, for the choices used in
Example 16.5, upon combining her prior knowledge with the information in the data,
the analyst can say that the posterior probability is .95 that the (random) μ is in the
(fixed) interval (2946.89, 2967.57).

EXAMPLE 16.6 In Exercise 16.10, it was stated that if Y1, Y2, . . . , Yn denote a random sample from
an exponentially distributed population with density f (y | θ) = θe−θy , 0 < y, and
the conjugate gamma prior (with parameters α and β) for θ was employed, then the
posterior density for θ is a gamma density with parameters α= = n + α and β= =
β/(β

∑
yi + 1). Assume that an analyst chose α = 3 and β = 5 as appropriate pa-

rameter values for the prior and that a sample of size n = 10 yielded that
∑

yi = 1.26.
Construct 90% credible intervals for θ and the mean of the population, μ = 1/θ .

Solution In this application of the general result given in Exercise 16.10,

n = 10, u =
∑

yi = 1.26, α = 3, β = 5.

The resulting posterior density of θ is a gamma density with α= and β= given by

α= = n + α = 10 + 3 = 13,

β= = β

β
∑

yi + 1
= 5

5(1.26) + 1
= .685.
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To complete our calculations, we need to find two values a and b such that

P=(a ≤ θ ≤ b) = .90.

If we do so, a 90% credible interval for θ is (a, b). Further, because

a ≤ θ ≤ b if and only if 1/b ≤ 1/θ ≤ 1/a,

it follows that a 90% credible interval for μ = 1/θ is (1/b, 1/a).
Although we do not have a table giving probabilities associated with gamma-

distributed random variables with different parameter values, such probabilities
can be found using one of the applets accessible at academic.cengage.com/statistics/
wackerly. R, S-Plus, and other statistical software can also be used to compute proba-
bilities associated with gamma-distributed variables. Even so, there will be infinitely
many choices for a and b such that P=(a ≤ θ ≤ b) = .90. If we find values a and b
such that

P=(θ ≥ a) = .95 and P=(θ ≥ b) = .05,

these values necessarily satisfy our initial requirement that P=(a ≤ θ ≤ b) = .90.
In our present application, we determined that θ has a gamma posterior with param-

eters α= = 13 and β= = .685. Using the applet Gamma Probabilities and Quantiles
on the Cengage website, we determine that

P=(θ ≥ 5.2674) = .95 and P=(θ ≥ 13.3182) = .05.

Thus, for the data observed and the prior that we selected, (5.2674, 13.3182) is a 90%
credible interval for θ whereas [1/(13.3182), (1/5.2674)] = (.0751, .1898) is a
90% credible interval for μ = 1/θ .

The R (or S-Plus) command qgamma(.05,13,1/.685)also yields the value
a = 5.2674 given above, whereasqgamma(.95,13,1/.685)gives b = 13.3182.

Exercises
16.13 Applet Exercise Activate the applet Binomial Revision and scroll down to the section labeled

“Credible Interval.” Change the value of the Bernoulli proportion to 0.45 and the parameters
of the beta prior to α = 3 and β = 5 and press Enter on your computer.

a What is the data-free credible interval for p based on the beta (3, 5) prior?

b Use the applet Beta Probabilities and Quantiles (accessible at the academic.cengage.com/
statistics/wackerly) to calculate the prior probability that p is larger than the upper endpoint
of the interval that you obtained in part (a). Also calculate the probability that p is smaller
than the lower endpoint of the interval that you obtained in part (a).

c Based on your answers to part (b), what is the prior probability that p is in the interval
that you obtained in part (a)? Do you agree that the interval obtained in part (a) is a 95%
credible interval for p based on the beta (3, 5) prior?

d Click the button “Next Trial” once. Is the posterior based on the sample of size 1 different
than the prior? How does the posterior differ from the prior?
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812 Chapter 16 Introduction to Bayesian Methods for Inference

e What is a 95% credible interval based on the prior and the result of your sample of size 1?
Is it longer or shorter than the interval obtained (with no data) in part (a)?

f Click the button “Next Trial” once again. Compare the length of this interval (based on the
results of a sample of size 2) to the intervals obtained in parts (a) and (e).

g Use the applet Beta Probabilities and Quantiles to calculate the posterior probability that
p is larger than the upper endpoint of the interval that you obtained in part (f ). Does the
value of this posterior probability surprise you?

h Click the button “Next Trial” several times. Describe how the posterior is changed by
additional data. What do you observe about the lengths of the credible intervals obtained
using posteriors based on larger sample sizes?

16.14 Applet Exercise Refer to Exercise 16.13. Select a value for the true value of the Bernoulli
proportion p and values for the parameters of the conjugate beta prior.

a Repeat Exercise 16.13(a)–(h), using the values you selected.

b Also click the button “50 Trials” a few times. Observe the values of the successive posterior
standard deviations and the lengths of the successive credible intervals.

i What do you observe about the standard deviations of the successive posterior distri-
butions?

ii Based on your answer to part (i), what effect do you expect to observe about the lengths
of successive credible intervals?

iii Did the lengths of the successive credible intervals behave as you anticipated in
part (ii)?

16.15 Applet Exercise In Exercise 16.7, we reconsidered our introductory example where the num-
ber of responders to a treatment for a virulent disease in a sample of size n had a binomial
distribution with parameter p and used a beta prior for p with parameters α = 1 and β = 3. We
subsequently found that, upon observing Y = y responders, the posterior density function for
p | y is a beta density with parameters α= = y + α = y + 1 and β= = n − y + β = n − y + 3.
If we obtained a sample of size n = 25 that contained 4 people who responded to the new
treatment, find a 95% credible interval for p. [Use the applet Beta Probabilities and Quantiles
at academic.cengage.com/statistics/wackerly. Alternatively, if W is a beta-distributed random
variable with parameters α and β, the R (or S-Plus) command qbeta(p,α,β) gives the
value w such that P(W ≤ w) = p.]

16.16 Applet Exercise Repeat the instructions for Exercise 16.15, assuming a beta prior with
parameters α = 1 and β = 1 [a prior that is uniform on the interval (0, 1)]. (See the re-
sult of Exercise 16.8.) Compare this interval with the one obtained in Exercise 16.15.

16.17 Applet Exercise In Exercise 16.9, we used a beta prior with parameters α and β and found the
posterior density for the parameter p associated with a geometric distribution. We determined
that the posterior distribution of p | y is beta with parameters α= = α + 1 and β= = β + y − 1.
Suppose we used α = 10 and β = 5 in our beta prior and observed the first success on trial 6.
Determine an 80% credible interval for p.

16.18 Applet Exercise In Exercise 16.10, we found the posterior density for θ based on a sample
of size n from an exponentially distributed population with mean 1/θ . Specifically, using the
gamma density with parameters α and β as the prior for θ , we found that the posterior density for
θ | (y1, y2, . . . , yn) is a gamma density with parameters α= = n +α and β= = β/

(
β

∑
yi + 1

)
.

Assuming that a sample of size n = 15 produced a sample such that
∑

yi = 30.27 and
that the parameters of the gamma prior are α = 2.3 and β = 0.4, use the applet Gamma
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Probabilities and Quantiles to find 80% credible intervals for θ and 1/θ , the mean of the
exponential population.

16.19 Applet Exercise In Exercise 16.11, we found the posterior density for λ, the mean of a Poisson-
distributed population. Assuming a sample of size n and a conjugate gamma (α, β) prior for
λ, we showed that the posterior density of λ | ∑

yi is gamma with parameters α= = ∑
yi + α

and β= = β/(nβ + 1). If a sample of size n = 25 is such that
∑

yi = 174 and the prior
parameters were (α = 2, β = 3), use the applet Gamma Probabilities and Quantiles to find a
95% credible interval for λ.

16.20 Applet Exercise In Exercise 16.12, we used a gamma (α, β) prior for v and a sample of size
n from a normal population with known mean μo and variance 1/v to derive the posterior for
v . Specifically, if u = ∑

(yi − μo)
2, we determined the posterior of v | u to be gamma with

parameters α= = (n/2) + α and β= = 2β/(uβ + 2). If we choose the parameters of the prior
to be (α = 5, β = 2) and a sample of size n = 8 yields the value u = .8579, use the applet
Gamma Probabilities and Quantiles to determine 90% credible intervals for v and 1/v , the
variance of the population from which the sample was obtained.

16.4 Bayesian Tests of Hypotheses
Tests of hypotheses can also be approached from a Bayesian perspective. As we
have seen in previous sections, the Bayesian approach uses prior information about
a parameter and information in the data about that parameter to obtain the posterior
distribution. If, as in Section 10.11 where likelihood ratio tests were considered, we
are interested in testing that the parameter θ lies in one of two sets of values, #0 and
#a , we can use the posterior distribution of θ to calculate the posterior probability
that θ is in each of these sets of values. When testing H0 : θ ∈ #0 versus Ha : θ ∈ #a ,
one often-used approach is to compute the posterior probabilities P=(θ ∈ #0) and
P=(θ ∈ #a) and accept the hypothesis with the higher posterior probability. That is,
for testing H0 : θ ∈ #0 versus Ha : θ ∈ #a ,

accept H0 if P=(θ ∈ #0) > P=(θ ∈ #a),

accept Ha if P=(θ ∈ #a) > P=(θ ∈ #0).

EXAMPLE 16.7 In Example 16.5, we obtained a 95% credible interval for the mean muzzle velocity
associated with shells prepared with a reformulated gunpowder. We assumed that
the associated muzzle velocities are normally distributed with mean μ and variance
σ 2

o = 225 and that a reasonable prior density for μ is normal with mean η = 2800
and variance δ2 = 2500. We then used the data

3005 2925 2935 2965
2995 3005 2937 2905

to obtain that the posterior density for μ is normal with mean η= = 2957.23 and
standard deviation δ= = 5.274. Conduct the Bayesian test for

H0 : μ ≤ 2950 versus Ha : μ > 2950.
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814 Chapter 16 Introduction to Bayesian Methods for Inference

Solution In this case, if Z has a standard normal distribution,

P=(θ ∈ #0) = P=(μ ≤ 2950)

= P

(
Z ≤ 2950 − η=

δ=

)
= P

(
Z ≤ 2950 − 2957.23

5.274

)
= P(Z ≤ −1.37) = .0951,

and P=(θ ∈ #a) = P=(μ > 2950) = 1 − P=(μ ≤ 2950) = .9049. Thus, we see that
the posterior probability of Ha is much larger than the posterior probability of H0 and
our decision is to accept Ha : μ > 2950.

Again, we note that if a different analyst uses the same data to conduct a Bayesian
test for the same hypotheses but different values for any of η, δ2, and σ 2

o , she will
obtain posterior probabilities of the hypotheses that are different than those obtained
in Example 16.7. Thus, different analysts with different choices of values for the prior
parameters might reach different conclusions.

In the frequentist settings discussed in the previous chapters, the parameter θ has
a fixed but unknown value, and any hypothesis is either true or false. If θ ∈ #0,
then the null hypothesis is certainly true (with probability 1), and the alternative
is certainly false. If θ ∈ #a , then the alternative hypothesis is certainly true (with
probability 1), and the null is certainly false. The only way we could know whether or
not θ ∈ #0 is if we knew the true value of θ . If this were the case, conducting a test of
hypotheses would be superfluous. For this reason, the frequentist makes no reference
to the probabilities of the hypotheses but focuses on the probability of a type I error, α,
and the power of the test, power (θ) = 1−β(θ). Conversely, the frequentist concepts
of size and power are not of concern to an analyst using a Bayesian test.

EXAMPLE 16.8 In Example 16.6, we used a result given in Exercise 16.7 to obtain credible intervals
for θ and the population mean μ based on Y1, Y2, . . . , Yn , a random sample from an
exponentially distributed population with density f (y | θ) = θe−θy, 0 < y. Using a
conjugate gamma prior for θ with parameters α = 3 and β = 5, we obtained that the
posterior density for θ is a gamma density with parameters α= = 13 and β= = .685.
Conduct the Bayesian test for

H0 : μ > .12 versus Ha : μ ≤ .12.

Solution Since the mean of the exponential distribution is μ = 1/θ , the hypotheses are equiv-
alent to

H0 : θ < 1/(.12) = 8.333 versus Ha : θ ≥ 8.333.

Because the posterior density for θ is a gamma density with parameters α= = 13 and
β= = .685,

P=(θ ∈ #0) = P=(θ < 8.333) and P=(θ ∈ #a) = P=(θ ≥ 8.333).
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In our present application, we determined that θ has a gamma posterior with param-
eters α= = 13 and β= = .685. Using the applet Gamma Probabilities and Quantiles,

P=(θ ∈ #a) = P=(θ ≥ 8.333) = 0.5570,

and

P=(θ ∈ #0) = P=(θ < 8.333) = 1 − P=(θ ≥ 8.333) = 0.4430.

In this case, the posterior probability of Ha is somewhat larger than the posterior
probability of H0. It is up to the analyst to decide whether the probabilities are
sufficiently different to merit the decision to accept Ha : μ ≤ .12.

If you prefer to use R or S-Plus to compute the posterior probabilities of the
hypotheses, pgamma(8.333,13,1/.685) yields P=(θ ∈ #0) = P=(θ < 8.333)

and P=(θ ∈ #a) = P=(θ ≥ 8.333) = 1 − P=(θ ∈ #0).

Exercises
16.21 Applet Exercise In Exercise 16.15, we determined that the posterior density for p, the propor-

tion of responders to the new treatment for a virulent disease, is a beta density with parameters
α= = 5 and β= = 24. What is the conclusion of a Bayesian test for H0 : p < .3 versus Ha :
p ≥ .3? [Use the applet Beta Probabilities and Quantiles at academic.cengage.com/statistics/
wackerly. Alternatively, if W is a beta-distributed random variable with parameters α and β,
the R or S-Plus command pbeta(w,α,β) gives P(W ≤ w).]

16.22 Applet Exercise Exercise 16.16 used different prior parameters but the same data to determine
that the posterior density for p, the proportion of responders to the new treatment for a virulent
disease, is a beta density with parameters α= = 5 and β= = 22. What is the conclusion of a
Bayesian test for H0 : p < .3 versus Ha : p ≥ .3? Compare your conclusion to the one obtained
in Exercise 16.21.

16.23 Applet Exercise In Exercise 16.17, we obtained a beta posterior with parameters α= = 11 and
β= = 10 for the parameter p associated with a geometric distribution. What is the conclusion
of a Bayesian test for H0 : p < .4 versus Ha : p ≥ .4?

16.24 Applet Exercise In Exercise 16.18, we found the posterior density for θ to be a gamma density
with parameters α= = 17.3 and β= = .0305. Because the mean of the underlying exponential
population is μ = 1/θ , testing the hypotheses H0 : μ < 2 versus Ha : μ ≥ 2 is equivalent to
testing H0 : θ > .5 versus Ha : θ ≤ .5. What is the conclusion of a Bayesian test for these
hypotheses?

16.25 Applet Exercise In Exercise 16.19, we found the posterior density for λ, the mean of a Poisson-
distributed population, to be a gamma density with parameters α= = 176 and β= = .0395. What
is the conclusion of a Bayesian test for H0 : λ > 6 versus Ha : λ ≤ 6?

16.26 Applet Exercise In Exercise 16.20, we determined the posterior of v | u to be a gamma density
with parameters α= = 9 and β= = 1.0765. Recall that v = 1/σ 2, where σ 2 is the variance of the
underlying population that is normally distributed with known mean μo. Testing the hypotheses
H0 : σ 2 > 0.1 versus Ha : σ 2 ≤ 0.1 is equivalent to testing H0 : v < 10 versus Ha : v ≥ 10.
What is the conclusion of a Bayesian test for these hypotheses?
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16.5 Summary and Additional Comments
As we have seen in the previous sections, the key to Bayesian inferential methods
(finding estimators, credible intervals, or implementing tests of hypotheses) is finding
the posterior distribution of the parameter θ . Especially when there are little data, this
posterior is heavily dependent on the prior and the underlying distribution of the
population from which the sample is taken. We have focused on the use of conjugate
priors because of the resulting simplicity of finding the requisite posterior distribution
of the parameter of interest. Of course, conjugate priors are not the only priors that
can be used, but they do have the advantage of resulting in easy computations. This
does not mean that a conjugate prior is necessarily the correct choice for the prior.
Even if we correctly select the family from which the prior is taken (we have made
repeated use of beta and gamma priors), there remains the difficulty of selecting the
appropriate values associated with the parameters of the prior. We have seen, however,
that the choice of the parameter values for the prior has decreasing impact for larger
sample sizes.

It is probably appropriate to make a few more comments about selecting values
of the parameters of the prior density. If we use a normal prior with mean ν and
variance δ2 and think that the population parameter is likely (unlikely) to be close to
ν, we would use a relatively small (large) value for δ2. When using a beta prior with
parameters α and β for a parameter that we thought had value close to c, we might
select α and β such that the mean of the prior, α/(α + β), equals c and the variance of
the prior, αβ/[(α + β)2(α + β + 1)], is small. In the introductory example, we used
a beta prior with α = 1 and β = 3 because we thought that about 25% of those given
the new treatment would favorably respond. The mean and standard deviation of the
posterior are, respectively, .25 and .1936. Note that these are not the only choices
for α and β that give .25 as the mean of the prior. In general, if α/(α + β) = c,
then for any k > 0, α′ = kα and β ′ = kβ also satisfy α′/(α′ + β ′) = c. However,
for a beta density with parameters α′ = kα and β ′ = kβ, the variance of the prior
is α′β ′[(α′ + β ′)2(α′ + β ′ + 1)] = αβ/[(α + β)2(kα + kβ + 1)]. Therefore, if our
initial choice of α and β give an appropriate value for the mean of the prior but we
prefer a smaller variance, we can achieve this by selecting some k > 1 and using
α′ = kα and β ′ = kβ as the prior parameters. Conversely, choosing some k < 1 and
using α′ = kα and β ′ = kβ as the prior parameters gives the same prior mean but
larger prior variance. Hence, a more vague prior results from choosing small values
of α and β that are such that α/(α + β) = c, the desired prior mean.

One of the steps in determining the prior is to determine the marginal distribu-
tion of the data. For continuous priors, this is accomplished by integrating the joint
likelihood of the data and the parameter over the region of support for the prior. In
our previous work, we denoted the resulting marginal mass or density function for
the random variables Y1, Y2, . . . , Yn in a sample of size n as m(y1, y2, . . . , yn) or as
m(u) if U is a sufficient statistic for θ . This marginal mass or density function is
called the predictive mass or density function of the data. We have explicitly given
these predictive distributions in all of our applications. This is because, to paraphrase
Berger (1985, p. 95), interest in the predictive distribution centers on the fact that this
is the distribution according to which the data will actually occur. As discussed in Box
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16.5 Summary and Additional Comments 817

(1980, pp. 385–386), potential evidence of inappropriate model selection is provided
by the predictive distribution of the data, not the posterior distribution for the pa-
rameter. Some expert Bayesian analysts choose to model the predictive distribution
directly and select the prior that leads to the requisite predictive distribution. The
Reverend Thomas Bayes (1784) used a uniform (0, 1) prior for the Bernoulli (or
binomial) parameter p because this prior leads to the predictive distribution that he
thought to be most appropriate. Additional comments relevant to the choice of some
prior parameters can be found in Kepner and Wackerly (2002).

The preceding paragraph notwithstanding, it is true that there is a shortcut to finding
the all-important posterior density for θ . As previously indicated, if L(y1, y2, . . . , yn |
θ) is the conditional likelihood of the data and θ has continuous prior density g(θ),
then the posterior density of θ is

g=(θ | y1, y2, . . . , yn) = L(y1, y2, . . . , yn | θ) × g(θ)∫ ∞
−∞ L(y1, y2, . . . , yn | θ) × g(θ) dθ

.

Notice that the denominator on the right hand side of the expression depends on
y1, y2, . . . , yn , but does not depend on θ . (Definite integration with respect to θ

produces a result that is free of θ .) Realizing that, with respect to θ , the denominator
is a constant, we can write

g=(θ | y1, y2, . . . , yn) = c(y1, y2, . . . , yn)L(y1, y2, . . . , yn | θ) × g(θ),

where

c(y1, y2, . . . , yn) = 1∫ ∞
−∞ L(y1, y2, . . . , yn | θ) × g(θ) dθ

does not depend on θ . Further, notice that, because the posterior density is a bona fide
density function, the quantity c(y1, y2, . . . , yn) must be such that∫ ∞

−∞
g=(θ | y1, y2, . . . , yn) dθ

= c(y1, y2, . . . , yn)

∫ ∞

−∞
L(y1, y2, . . . , yn | θ) × g(θ) dθ = 1.

Finally, we see that the posterior density is proportional to the product of the condi-
tional likelihood of the data and the prior density for θ :

g=(θ | y1, y2, . . . , yn) ∝ L(y1, y2, . . . , yn | θ) × g(θ),

where the proportionally constant is chosen so that the integral of the posterior density
function is 1. We illustrate by reconsidering Example 16.1.

EXAMPLE 16.9 Let Y1, Y2, . . . , Yn denote a random sample from a Bernoulli distribution where
P(Yi = 1) = p and P(Yi = 0) = 1 − p and assume that the prior distribution for p
is beta (α, β). Find the posterior distribution for p.
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818 Chapter 16 Introduction to Bayesian Methods for Inference

Solution As before,

L(y1, y2, . . . , yn | p)g(p) = p(y1, y2, . . . , yn | p)g(p)

= p
∑

yi (1 − p)n−∑
yi

[
"(α + β)

"(α)"(β)
pα−1(1 − p)β−1

]
,

g∗(p | y1, y2, . . . , yn, p) ∝ p
∑

yi +α−1(1 − p)n−∑
yi +β−1.

From the above, we recognize that the resultant posterior for p must be beta with
parameters α= = ∑

yi + α and β= = n − ∑
yi + β.

What was the advantage of finding the previous posterior using this “proportion-
ality” argument? Considerably less work! Disadvantage? We never exhibited the
predictive mass function for the data and lost the opportunity to critique the Bayesian
model.

Priors other than conjugate priors could well be more appropriate in specific ap-
plications. The posterior is found using the same procedure given in Section 16.2, but
we might obtain a posterior distribution with which we are unfamiliar. Finding the
mean of the posterior, credible intervals, and the probabilities of relevant hypotheses
could be more problematic. For the examples in the previous sections, we obtained
posteriors with which we were well acquainted. Posterior means were easy to find be-
cause we had already determined properties of normal, beta- and gamma-distributed
random variables. Additionally, tables for these posteriors were readily available (in
the appendix or easily accessed with many software packages). There is an ever-
emerging set of computer procedures in which the posterior is determined based on
user input of the likelihood function for the data and the prior for the parameter.
Once the posterior is obtained via use of the software, this posterior is used exactly
as previously described.

Bayes estimators can be evaluated using classical frequentist criteria. We have
already seen that Bayes estimators are biased. However, they are usually consistent
and, depending on the criteria used, can be superior to the corresponding frequentist
estimators. In Exercise 16.8, you determined that the MSE of the Bayes estimator
was sometimes smaller than the MSE of the unbiased MLE. Further, the influence of
the choice of the prior parameter values decreases as the size of the sample increases.

In Example 8.11, we determined that the realized frequentist confidence interval
for the mean of a normally distributed population was (2926.3, 2991.7). Using the
frequentist perspective, the true population mean is fixed but unknown. As a result,
this realized interval either captures the true value of μ or it does not. We said that
this interval was a 95% confidence interval because the procedure (formula) used to
produce it yields intervals that do capture the fixed mean about 95% of the time if
samples of size 8 are repeatedly and independently taken and used to construct many
intervals. If 100 samples of size 8 are taken and used to produce (different) realized
confidence intervals, we expect approximately 95 of them to capture the parameter.
We do not know which of the 100 intervals capture the unknown fixed mean. The
same data was used in Example 16.5 to obtain (2946.89, 2967.57) as a 95% credible
interval for μ, now viewed as a random variable. From the Bayesian perspective, it
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makes full sense to state that the posterior probability is .95 that the (random) mean
is in this (fixed) interval.

The goodness of classical hypothesis tests is measured by α and β, the probabilities
of type I and type II errors, respectively. If tests with α = .05 are repeatedly (using
different, independently selected samples) implemented, then when H0 is true, H0 is
rejected 5% of the time. If H0 is really true and 100 samples of the same size are
independently taken, we expect to reject the (true) null hypothesis about five times. It
makes no sense to even try to compute the probabilities of the hypotheses. From the
Bayesian perspective, the parameter of interest is a random variable with posterior
distribution derived by the analyst. Computing the posterior probabilities for each of
the hypotheses is completely appropriate and is the basis for the decision in a Bayesian
test.

Which is the better approach, Bayesian or frequentist? It is impossible to provide
a universal answer to this question. In some applications, the Bayesian approach will
be superior; in others, the frequentist approach is better.
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APPENDIX 1

Matrices and Other
Useful Mathematical
Results
A1.1 Matrices and Matrix Algebra

A1.2 Addition of Matrices

A1.3 Multiplication of a Matrix by a Real Number

A1.4 Matrix Multiplication

A1.5 Identity Elements

A1.6 The Inverse of a Matrix

A1.7 The Transpose of a Matrix

A1.8 A Matrix Expression for a System of Simultaneous Linear Equations

A1.9 Inverting a Matrix

A1.10 Solving a System of Simultaneous Linear Equations

A1.11 Other Useful Mathematical Results

A1.1 Matrices and Matrix Algebra
The following presentation represents a very elementary and condensed discussion
of matrices and matrix operations. If you seek a more comprehensive introduction
to the subject, consult the books listed in the references indicated at the end of
Chapter 11.

We will define a matrix as a rectangular array (arrangement) of real numbers and
will indicate specific matrices symbolically with bold capital letters. The numbers
in the matrix, elements, appear in specific row-column positions, all of which are
filled. The number of rows and columns may vary from one matrix to another, so
we conveniently describe the size of a matrix by giving its dimensions—that is, the
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822 Appendix 1 Matrices and Other Useful Mathematical Results

number of its rows and columns. Thus matrix A

A
2×3

=
[

6 0 −1
4 2 7

]
possesses dimensions 2 × 3 because it contains two rows and three columns. Simi-
larly, for

B
4×1

=

⎡⎢⎢⎣
1

−3
0
7

⎤⎥⎥⎦ and C
2×2

=
[

2 0
−1 4

]

the dimensions of B and C are 4 × 1 and 2 × 2, respectively. Note that the row
dimension always appears first and that the dimensions may be written below the
identifying symbol of the matrix as indicated for matrices A, B, and C.

As in ordinary algebra, an element of a matrix may be indicated by a symbol,
a, b, . . . , and its row-column position identified by means of a double subscript.
Thus a21 would be the element in the second row, first column. Rows are numbered
in order from top to bottom and columns from left to right. In matrix A, a21 = 4,
a13 = −1, and so on.

Elements in a particular row are identified by their column subscript and hence
are numbered from left to right. The first element in a row is on the left. Likewise,
elements in a particular column are identified by their row subscript and therefore are
identified from the top element in the column to the bottom. For example, the first
element in column 2 of matrix A is 0, the second is 2. The first, second, and third
elements of row 1 are 6, 0, and −1, respectively.

The term matrix algebra involves, as the name implies, an algebra dealing with
matrices, much as the ordinary algebra deals with real numbers or symbols represent-
ing real numbers. Hence, we will wish to state rules for the addition and multiplication
of matrices as well as to define other elements of an algebra. In so doing we will point
out the similarities as well as the dissimilarities between matrix and ordinary algebra.
Finally, we will use our matrix operations to state and solve a very simple matrix
equation. This, as you may suspect, will be the solution that we desire for the least
squares equations.

A1.2 Addition of Matrices
Two matrices, say A and B, can be added only if they are of the same dimensions. The
sum of the two matrices will be a matrix obtained by adding corresponding elements
of matrices A and B—that is, elements in corresponding positions. This being the
case, the resulting sum will be a matrix of the same dimensions as A and B.

EXAMPLE A1.1 Find the indicated sum of matrices A and B:

A
2×3

=
[

2 1 4
−1 6 0

]
B

2×3
=

[
0 −1 1
6 −3 2

]
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Solution
A + B =

[
2 1 4

−1 6 0

]
+

[
0 −1 1
6 −3 2

]
=

[
(2 + 0) (1 − 1) (4 + 1)

(−1 + 6) (6 − 3) (0 + 2)

]
=

[
2 0 5
5 3 2

]
.

EXAMPLE A1.2 Find the sum of the matrices

A
3×3

=
⎡⎣ 1 0 3

1 −1 4
2 −1 0

⎤⎦ and B
3×3

=
⎡⎣ 4 2 −1

1 0 6
3 1 4

⎤⎦.

Solution
A + B =

⎡⎣ 5 2 2
2 −1 10
5 0 4

⎤⎦.

Note that (A + B) = (B + A), as in ordinary algebra, and remember that we never
add matrices of unlike dimensions.

A1.3 Multiplication of a Matrix
by a Real Number
We desire a rule for multiplying a matrix by a real number, for example, 3A, where

A =
⎡⎣ 2 1

4 6
−1 0

⎤⎦.

Certainly we would want 3A to equal (A+ A+ A), to conform with the addition rule.
Hence, 3A would mean that each element in the A matrix must be multiplied by the
multiplier 3, and

3A =
⎡⎣ 3(2) 3(1)

3(4) 3(6)

3(−1) 3(0)

⎤⎦ =
⎡⎣ 6 3

12 18
− 3 0

⎤⎦.

In general, given a real number c and a matrix A with elements ai j , the product cA
will be a matrix whose elements are equal to cai j .

A1.4 Matrix Multiplication
The rule for matrix multiplication requires “row-column multiplication,” which we
will define subsequently. The procedure may seem a bit complicated to the novice
but should not prove too difficult after practice. We will illustrate with an example.
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Let A and B be

A =
[

2 0
1 4

]
B =

[
5 2

−1 3

]
.

An element in the ith row and jth column of the product AB is obtained by mul-
tiplying the ith row of A by the jth column of B. Thus the element in the first row,
first column of AB is obtained by multiplying the first row of A by the first column
of B. Likewise, the element in the first row, second column would be the product of
the first row of A and the second column of B. Notice that we always use the rows of
A and the columns of B, where A is the matrix to the left of B in the product AB.

Row-column multiplication is relatively easy. Obtain the products, first-row ele-
ment by first-column element, second-row element by second-column element, third
by third, and so on, and then sum. Remember that row and column elements are
marked from left to right and top to bottom, respectively.

Applying these rules to our example, we obtain

A
2×2

B
2×2

=
[

2 0
1 4

] [
5 2

−1 3

]
=

[
10 4
1 14

]
.

The first-row-first-column product would be (2)(5)+ (0)(−1) = 10, which is located
(and circled) in the first row, first column of AB. Likewise, the element in the first row,
second column is equal to the product of the first row of A and the second column of B,
or (2)(2)+(0)(3) = 4. The second-row-first-column product is (1)(5)+(4)(−1) = 1
and is located in the second row, first column of AB. Finally, the second-row-second-
column product is (1)(2) + (4)(3) = 14.

EXAMPLE A1.3 Find the products AB and BA, where

A =
⎡⎣ 2 1

1 −1
0 4

⎤⎦ and B =
[

4 −1 −1
2 0 2

]
.

Solution
A

3×2
B

2×3
=

⎡⎣ 2 1
1 −1
0 4

⎤⎦ [
4 −1 −1
2 0 2

]
=

⎡⎣ 10 −2 0
2 −1 −3
8 0 8

⎤⎦
and

B
2×3

A
3×2

=
[

4 −1 −1
2 0 2

] ⎡⎣ 2 1
1 −1
0 4

⎤⎦ =
[

7 1
4 10

]
.

Note that in matrix algebra, unlike ordinary algebra, AB does not equal BA. Be-
cause A contains three rows and B contains three columns, we can form (3)(3) = 9
row-column combinations and hence nine elements for AB. In contrast, B contains
only two rows, A two columns, and hence the product BA will possess only (2)(2) = 4
elements, corresponding to the four different row-column combinations.

Furthermore, we observe that row-column multiplication is predicated on the as-
sumption that the rows of the matrix on the left contain the same number of elements
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as the columns of the matrix on the right, so that corresponding elements will exist
for the row-column multiplication. What do we do when this condition is not satis-
fied? We agree never to multiply two matrices, say AB, where the rows of A and the
columns of B contain an unequal number of elements.

An examination of the dimensions of the matrices will tell whether they can be
multiplied as well as give the dimensions of the product. Writing the dimensions
underneath the two matrices,

A
m×p

B
p×q

= AB
m×q

we observe that the inner two numbers, giving the number of elements in a row of A
and column of B, respectively, must be equal. The outer two numbers, indicating the
number of rows of A and columns of B, give the dimensions of the product matrix.
You may verify the operation of this rule for Example A1.3.

EXAMPLE A1.4 Obtain the product AB:

A
1×3

B
3×2

= [ 2 1 0 ]

⎡⎣ 2 0
0 3

−1 0

⎤⎦ = [ 4 3 ]

Note that product AB is (1 × 2) and that BA is undefined because of the respective
dimensions of A and B.

EXAMPLE A1.5 Find the product AB, where

A = [ 1 2 3 4 ] and B =

⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦.

Solution

A
1×4

B
4×1

= [ 1 2 3 4 ]

⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦ = [ 30 ].

Note that this example produces a different method for writing a sum of squares.

A1.5 Identity Elements
The identity elements for addition and multiplication in ordinary algebra are 0 and
1, respectively. In addition, 0 plus any other element, say a, is identically equal to a;
that is,

0 + 2 = 2, 0 + (−9) = −9.
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Similarly, the multiplication of the identity element 1 by any other element, say a, is
equal to a; that is,

(1)(5) = 5, (1)(−4) = −4.

In matrix algebra two matrices are said to be equal when all corresponding elements
are equal. With this in mind we will define the identity matrices in a manner similar
to that employed in ordinary algebra. Hence, if A is any matrix, a matrix B will be an
identity matrix for addition if

A + B = A and B + A = A.

It easily can be seen that the identity matrix for addition is one in which every element
is equal to zero. This matrix is of interest but of no practical importance in our work.

Similarly, if A is any matrix, the identity matrix for multiplication is a matrix I
that satisfies the relation

AI = A and IA = A.

This matrix, called the identity matrix, is the square matrix

I
n×n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

That is, all elements in the main diagonal of the matrix, running from top left to
bottom right, are equal to 1; all other elements equal zero. Note that the identity
matrix is always indicated by the symbol I.

Unlike ordinary algebra, which contains only one identity element for multipli-
cation, matrix algebra must contain an infinitely large number of identity matrices.
Thus we must have matrices with dimensions 1 × 1, 2 × 2, 3 × 3, 4 × 4, and so on, so
as to provide an identity of the correct dimensions to permit multiplication. All will
be of this pattern.

That the I matrix satisfies the relation

IA = AI = A

can be shown by an example.

EXAMPLE A1.6 Let

A =
[

2 1 0
−1 6 3

]
.

Show that IA = A and AI = A.
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A1.6 The Inverse of a Matrix 827

Solution I
2×2

A
2×3

=
[

1 0
0 1

] [
2 1 0

−1 6 3

]
=

[
2 1 0

−1 6 3

]
= A

and

A
2×3

I
3×3

=
[

2 1 0
−1 6 3

] ⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ =
[

2 1 0
−1 6 3

]
= A.

A1.6 The Inverse of a Matrix
For matrix algebra to be useful, we must be able to construct and solve matrix equations
for a matrix of unknowns in a manner similar to that employed in ordinary algebra.
This, in turn, requires a method of performing division.

For example, we would solve the simple equation in ordinary algebra,

2x = 6

by dividing both sides of the equation by 2 and obtaining x = 3. Another way to view
this operation is to define the reciprocal of each element in an algebraic system and
to think of division as multiplication by the reciprocal of an element. We could solve
the equation 2x = 6 by multiplying both sides of the equation by the reciprocal of
2. Because every element in the real number system possesses a reciprocal, with the
exception of 0, the multiplication operation eliminates the need for division.

The reciprocal of a number c in ordinary algebra is a number b that satisfies the
relation

cb = 1

that is, the product of a number by its reciprocal must equal the identity element for
multiplication. For example, the reciprocal of 2 is 1/2 and (2)(1/2) = 1.

A reciprocal in matrix algebra is called the inverse of a matrix and is defined as
follows:

DEFINITION A1.1 Let An×n be a square matrix. If a matrix A−1 can be found such that

AA−1 = I and A−1A = I

then A−1 is called the inverse of A.

Note that the requirement for an inverse in matrix algebra is the same as in ordinary
algebra—that is, the product of A by its inverse must equal the identity matrix for
multiplication. Furthermore, the inverse is undefined for nonsquare matrices, and
hence many matrices in matrix algebra do not have inverses (recall that 0 was the only
element in the real number system without an inverse). Finally, we state without proof
that many square matrices do not possess inverses. Those that do will be identified in
Section A1.9, and a method will be given for finding the inverse of a matrix.
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828 Appendix 1 Matrices and Other Useful Mathematical Results

A1.7 The Transpose of a Matrix
We have just discussed a relationship between a matrix and its inverse. A second
useful matrix relationship defines the transpose of a matrix.

DEFINITION A1.2 Let Ap×q be a matrix of dimensions p × q. Then A′, called the transpose of
A, is defined to be a matrix obtained by interchanging corresponding rows and
columns of A; that is, first with first, second with second, and so on.

For example, let

A
3×2

=
⎡⎣ 2 0

1 1
4 3

⎤⎦.

Then

A
2×3

′ =
[

2 1 4
0 1 3

]
.

Note that the first and second rows of A′ are identical with the first and second
columns, respectively, of A.

As a second example, let

Y =
⎡⎣ y1

y2

y3

⎤⎦.

Then Y′ = [y1 y2 y3]. As a point of interest, we observe that Y′Y = ∑3
i=1 y2

i .
Finally, if

A =
⎡⎣ 2 1 4

0 2 3
1 6 9

⎤⎦
then

A′ =
⎡⎣ 2 0 1

1 2 6
4 3 9

⎤⎦.

A1.8 A Matrix Expression for a System
of Simultaneous Linear Equations
We will now introduce you to one of the very simple and important applications of
matrix algebra. Let

2v1 + v2 = 5

v1 − v2 = 1
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A1.8 A Matrix Expression for a System of Simultaneous Linear Equations 829

be a pair of simultaneous linear equations in the two variables, v1 and v2. We will
then define three matrices:

A
2×2

=
[

2 1
1 −2

]
V

2×1
=

[
v1

v2

]
G

2×1
=

[
5
1

]
.

Note that A is the matrix of coefficients of the unknowns when the equations are
each written with the variables appearing in the same order, reading left to right, and
with the constants on the right-hand side of the equality sign. The V matrix gives the
unknowns in a column and in the same order as they appear in the equations. Finally,
the G matrix contains the constants in a column exactly as they occur in the set of
equations.

The simultaneous system of two linear equations may now be written in matrix
notation as

AV = G

a statement that can easily be verified by multiplying A and V and then comparing
the answer with G.

AV =
[

2 1
1 −1

] [
v1

v2

]
=

[
2v1 + v2

v1 − v2

]
=

[
5
1

]
= G.

Observe that corresponding elements in AV and G are equal—that is, 2v1 + v2 = 5
and v1 − v2 = 1. Therefore, AV = G.

The method for writing a pair of linear equations in two unknowns as a matrix
equation can easily be extended to a system of r equations in r unknowns. For example,
if the equations are

a11v1 + a12v2 + a13v3 + · · · + a1r vr = g1

a21v1 + a22v2 + a23v3 + · · · + a2r vr = g2

a31v1 + a32v2 + a33v3 + · · · + a3r vr = g3

...
...

...
... = ...

ar1v1 + ar2v2 + ar3v3 + · · · + arr vr = gr

define

A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 · · · a1r

a21 a22 a23 · · · a2r

a31 a32 a33 · · · a3r
...

...
...

...

ar1 ar2 ar3 · · · arr

⎤⎥⎥⎥⎥⎥⎦ V =

⎡⎢⎢⎢⎢⎢⎣
v1

v2

v3
...

vr

⎤⎥⎥⎥⎥⎥⎦ G =

⎡⎢⎢⎢⎢⎢⎣
g1

g2

g3
...

gr

⎤⎥⎥⎥⎥⎥⎦.

Observe that, once again, A is a square matrix of variable coefficients, whereas V
and G are column matrices containing the variables and constants, respectively. Then
AV = G.

Regardless of how large the system of equations, if we possess n linear equations
in n unknowns, the system may be written as the simple matrix equation AV = G.

You will observe that the matrix V contains all the unknowns, whereas A and G
are constant matrices.
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830 Appendix 1 Matrices and Other Useful Mathematical Results

Our objective, of course, is to solve for the matrix of unknowns, V, where the
equation AV = G is similar to the equation

2v = 6

in ordinary algebra. This being true, we would not be too surprised to find that the
methods of solutions are the same. In ordinary algebra both sides of the equation
are multiplied by the reciprocal of 2; in matrix algebra both sides of the equation are
multiplied by A−1. Then

A−1(AV) = A−1G

or

A−1AV = A−1G.

But A−1A = I and IV = V. Therefore, V = A−1G. In other words, the solutions to
the system of simultaneous linear equations can be obtained by finding A−1 and then
obtaining the product A−1G. The solutions values of v1, v2, v3, . . . , vr will appear in
sequence in the column matrix V = A−1G.

A1.9 Inverting a Matrix
We have indicated in Section A1.8 that the key to the solutions of a system of simul-
taneous linear equations by the method of matrix algebra rests on the acquisition of
the inverse of the A matrix. Many methods exist for inverting matrices. The method
that we present is not the best from a computational point of view, but it works very
well for the matrices associated with most experimental designs and it is one of the
easiest to present to the novice. It depends upon a theorem in matrix algebra and the
use of row operations.

Before defining row operations on matrices, we must state what is meant by the
addition of two rows of a matrix and the multiplication of a row by a constant. We
will illustrate with the A matrix for the system of two simultaneous linear equations,

A =
[

2 1
1 −1

]
.

Two rows of a matrix may be added by adding corresponding elements. Thus if
the two rows of the A matrix are added, one obtains a new row with elements [(2+1)

(1−1)] = [3 0]. Multiplication of a row by a constant means that each element in the
row is multiplied by the constant. Twice the first row of the A matrix would generate
the row [4 2]. With these ideas in mind, we will define three ways to operate on a
row in a matrix:

1. A row may be multiplied by a constant.

2. A row may be multiplied by a constant and added to or subtracted from another
row (which is identified as the one upon which the operation is performed).

3. Two rows may be interchanged.

Given matrix A, it is quite easy to see that we might perform a series of row
operations that would yield some new matrix B. In this connection we state without
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A1.9 Inverting a Matrix 831

proof a surprising and interesting theorem from matrix algebra; namely, there exists
some matrix C such that

CA = B.

In other words, a series of row operations on a matrix A is equivalent to multiplying
A by a matrix C. We will use this principle to invert a matrix.

Place the matrix A, which is to be inverted, alongside an identity matrix of the
same dimensions:

A =
[

2 1
1 −1

]
I =

[
1 0
0 1

]
.

Then perform the same row operations on A and I in such a way that A changes
to an identity matrix. In doing so, we must have multiplied A by a matrix C so that
CA = I. Therefore, C must be the inverse of A! The problem, of course, is to find the
unknown matrix C and, fortunately, this proves to be of little difficulty. Because we
performed the same row operations on A and I, the identity matrix must have changed
to CI = C = A−1.

A =
[

2 1
1 −1

]
I =

[
1 0
0 1

]
.

↓ (same row operations) ↓
CA = I CI = C = A−1

We will illustrate with the following example.

EXAMPLE A1.7 Invert the matrix

A =
[

2 1
1 −1

]
.

Solution
A =

[
2 1
1 −1

]
I =

[
1 0
0 1

]
.

Step 1. Operate on row 1 by multiplying row 1 by 1/2. (Note: It is helpful to the
beginner to identify the row upon which he or she is operating because all other rows
will remain unchanged, even though they may be used in the operation. We will star
the row upon which the operation is being performed.)

*
[

1 1/2
1 −1

] [
1/2 0
0 1

]
.

Step 2. Operate on row 2 by subtracting row 1 from row 2.

*

[
1 1/2
0 −3/2

] [
1/2 0

−1/2 1

]
.

(Note that row 2 is simply used to operate on row 1 and hence remains unchanged.)
Step 3. Multiply row 2 by (−2/3).

*

[
1 1/2
0 1

] [
1/2 0
1/3 −2/3

]
.
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Step 4. Operate on row 1 by multiplying row 2 by 1/2 and subtracting from row 1.

*
[

1 0
0 1

] [
1/3 1/3
1/3 −2/3

]
.

(Note that row 2 is simply used to operate on row 1 and hence remains unchanged.)
Hence the inverse of A must be

A−1 =
[

1/3 1/3
1/3 −2/3

]
.

A ready check on the calculations for the inversion procedure is available because
A−1 A must equal the identity matrix I. Thus

A−1A =
[

1/3 1/3
1/3 −2/3

] [
2 1
1 −1

]
=

[
1 0
0 1

]
.

EXAMPLE A1.8 Invert the matrix

A =
⎡⎣ 2 0 1

1 −1 2
1 0 0

⎤⎦
and check the results.

Solution

A =
⎡⎣ 2 0 1

1 −1 2
1 0 0

⎤⎦ I =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦.

Step 1. Multiply row 1 by 1/2.

*
⎡⎣ 1 0 1/2

1 −1 2
1 0 0

⎤⎦ ⎡⎣ 1/2 0 0
0 1 0
0 0 1

⎤⎦.

Step 2. Operate on row 2 by subtracting row 1 from row 2.

*

⎡⎣ 1 0 1/2
0 −1 3/2
1 0 0

⎤⎦ ⎡⎣ 1/2 0 0
−1/2 1 0

0 0 1

⎤⎦.

Step 3. Operate on row 3 by subtracting row 1 from row 3.

*

⎡⎣ 1 0 1/2
0 −1 3/2
0 0 −1/2

⎤⎦ ⎡⎣ 1/2 0 0
−1/2 1 0
−1/2 0 1

⎤⎦.

Step 4. Operate on row 2 by multiplying row 3 by 3 and adding to row 2.

*

⎡⎣ 1 0 1/2
0 −1 0
0 0 −1/2

⎤⎦ ⎡⎣ 1/2 0 0
−2 1 3

−1/2 0 1

⎤⎦.
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A1.9 Inverting a Matrix 833

Step 5. Multiply row 2 by (−1).

*

⎡⎣ 1 0 1/2
0 1 0
0 0 −1/2

⎤⎦ ⎡⎣ 1/2 0 0
2 −1 −3

−1/2 0 1

⎤⎦.

Step 6. Operate on row 1 by adding row 3 to row 1.

*
⎡⎣ 1 0 0

0 1 0
0 0 −1/2

⎤⎦ ⎡⎣ 0 0 1
2 −1 −3

−1/2 0 1

⎤⎦.

Step 7. Multiply row 3 by (−2).

*

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ ⎡⎣ 0 0 1
2 −1 −3
1 0 −2

⎤⎦ = A−1.

The seven row operations have changed the A matrix to the identity matrix and,
barring errors of calculation, have changed the identity to A−1.

Checking, we have

A−1A =
⎡⎣ 0 0 1

2 −1 −3
1 0 −2

⎤⎦ ⎡⎣ 2 0 1
1 −1 2
1 0 0

⎤⎦ =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦.

We see that A−1A = I and hence that the calculations are correct.

Note that the sequence of row operations required to convert A to I is not unique.
One person might achieve the inverse by using five row operations whereas another
might require ten, but the end result will be the same. However, in the interests of
efficiency it is desirable to employ a system.

Observe that the inversion process utilizes row operations to change off-diagonal
elements in the A matrix to 0s and the main diagonal elements to 1s. One systematic
procedure is as follows. Change the top left element into a 1 and then perform row
operations to change all other elements in the first column to 0. Then move to the
diagonal element in the second row, second column, change it into a 1, and change all
elements in the second column below the main diagonal to 0. This process is repeated,
moving down the main diagonal from top left to bottom right, until all elements below
the main diagonal have been changed to 0s. To eliminate nonzero elements above the
main diagonal, operate on all elements in the last column, changing each to 0; then
move to the next to last column and repeat the process. Continue this procedure until
you arrive at the first element in the first column, which was the starting point. This
procedure is indicated diagrammatically in Figure A1.1.

Matrix inversion is a tedious process, at best, and requires every bit as much labor
as the solutions of a system of simultaneous equations by elimination or substitution.
You will be pleased to learn that we do not expect you to develop a facility for matrix
inversion. Fortunately, most matrices associated with designed experiments follow
patterns and are easily inverted.
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A =

StartF I G U R E A1.1
Procedure for

matrix inversion

It will be beneficial to you to invert a few 2×2 and 3×3 matrices. Matrices lacking
pattern, particularly large matrices, are inverted most efficiently and economically by
using a computer. (Programs for matrix inversion have been developed for most
computers.)

We emphasize that obtaining the solutions for the least squares equations
(Chapter 11) by matrix inversion has distinct advantages that may or may not be
apparent. Not the least of these is the fact that the inversion procedure is systematic
and hence is particularly suitable for electronic computation. However, the major
advantage is that the inversion procedure will automatically produce the variances of
the estimators of all parameters in the linear model.

Before leaving the topic of matrix inversion, we ask how one may identify a matrix
that has an inverse. Reference to a discussion of linear equations in ordinary algebra
should reveal the answer.

Clearly, a unique solutions for a system of simultaneous linear equations cannot
be obtained unless the equations are independent. Thus if one of the equations is a
linear combination of the others, the equations are dependent. Coefficient matrices
associated with dependent systems of linear equations do not possess an inverse.

A1.10 Solving a System of Simultaneous
Linear Equations
We have finally obtained all the ingredients necessary for solving a system of simul-
taneous linear equations,

2v1 + v2 = 5

v1 − v2 = 1
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Recalling that the matrix solutions to the system of equations AV = G is V = A−1G,
we obtain

V = A−1G =
[

1/3 1/3
1/3 −2/3

] [
5
1

]
=

[
2
1

]
.

Hence the solutions is

V =
[

v1

v2

]
=

[
2
1

]
that is, v1 = 2 and v2 = 1, a fact that may be verified by substitution of these values
in the original linear equations.

EXAMPLE A1.9 Solve the system of simultaneous linear equations

2v1 + v3 = 4

v1 − v2 + 2v3 = 2

v1 = 1.

Solution The coefficient matrix for these equations,

A =
⎡⎣ 2 0 1

1 −1 2
1 0 0

⎤⎦
appeared in Example A1.8. In that example we found that

A−1 =
⎡⎣ 0 0 1

2 −1 −3
1 0 −2

⎤⎦.

Solving, we obtain

V = A−1G =
⎡⎣ 0 0 1

2 −1 −3
1 0 −2

⎤⎦ ⎡⎣ 4
2
1

⎤⎦ =
⎡⎣ 1

3
2

⎤⎦.

Thus v1 = 1, v2 = 3 and v3 = 2 give the solutions to the set of three simultaneous
linear equations.

A1.11 Other Useful Mathematical Results
The purpose of this section is to provide the reader with a convenient reference
to some of the key mathematical results that are used frequently in the body of the
text.
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The Binomial Expansion of (x + y)n Let x and y be any real numbers, then

(x + y)n =
(n

0

)
xn y0 +

(n

1

)
xn−1 y1 +

(n

2

)
xn−2 y2 + · · · +

(n

n

)
x0 yn

=
n∑

i=0

(n

i

)
xn−i yi .

The Sum of a Geometric Series Let r be a real number such that |r | < 1, and m be
any integer m ≥ 1

∞∑
i=0

r i = 1

1 − r
,

∞∑
i=1

r i = r

1 − r
,

m∑
i=0

r i = 1 − rm+1

1 − r
.

The (Taylor) Series Expansion of ex Let x be any real number, then

ex =
∞∑

i=0

x i

i!
.

Some useful formulas for particular summations follow. The proofs (omitted) are
most easily established by using mathematical induction.

n∑
i=1

i = n(n + 1)

2

n∑
i=1

i2 = n(n + 1)(2n + 1)

6

n∑
i=1

i3 =
(

n(n + 1)

2

)2

.

Gamma Function Let t > 0, then "(t) is defined by the following integral:

"(t) =
∫ ∞

0
yt−1e−ydy.

Using the technique of integration by parts, it follows that for any t > 0

"(t + 1) = t"(t)

and if t = n, where n is an integer,

"(n) = (n − 1)!.

Further,

"(1/2) = √
π.

If α, β > 0, the Beta function, B(α, β), is defined by the following integral,

B(α, β) =
∫ 1

0
yα−1(1 − y)β−1dy

and is related to the gamma function as follows:

B(α, β) = "(α)"(β)

"(α + β)
.
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APPENDIX 2

Common Probability
Distributions, Means,
Variances, and
Moment-Generating
Functions

Table 1 Discrete Distributions

Moment-
Generating

Distribution Probability Function Mean Variance Function

Binomial p(y) =
(

n
y

)
py(1 − p)n−y ; np np(1 − p) [pet + (1 − p)]n

y = 0, 1, . . . , n

Geometric p(y) = p(1 − p)y−1;
1

p

1 − p

p2

pet

1 − (1 − p)et

y = 1, 2, . . .

Hypergeometric p(y) =
(

r
y

) (
N−r
n−y

)
( N

n

) ;
nr

N
n

( r

N

) (
N − r

N

) (
N − n

N − 1

)
does not exist
in closed form

y = 0, 1, . . . , n if n ≤ r ,
y = 0, 1, . . . , r if n > r

Poisson p(y) = λye−λ

y!
; λ λ exp[λ(et − 1)]

y = 0, 1, 2, . . .

Negative binomial p(y) = ( y−1
r−1

)
pr (1 − p)y−r ;

r

p

r(1 − p)

p2

[
pet

1 − (1 − p)et

]r

y = r, r + 1, . . .
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Table 2 Continuous Distributions

Moment-
Generating

Distribution Probability Function Mean Variance Function

Uniform f (y) = 1

θ2 − θ1
; θ1 ≤ y ≤ θ2

θ1 + θ2

2

(θ2 − θ1)
2

12

etθ2 − etθ1

t (θ2 − θ1)

Normal f (y) = 1

σ
√

2π
exp

[
−

(
1

2σ 2

)
(y − μ)2

]
μ σ 2 exp

(
μt + t2σ 2

2

)
−∞ < y < +∞

Exponential f (y) = 1

β
e−y/β; β > 0 β β2 (1 − βt)−1

0 < y < ∞

Gamma f (y) =
[

1

"(α)βα

]
yα−1e−y/β ; αβ αβ2 (1 − βt)−α

0 < y < ∞

Chi-square f (y) = (y)(v/2)−1e−y/2

2v/2"(v/2)
; v 2v (1 − 2t)−v/2

y > 0

Beta f (y) =
[

"(α + β)

"(α)"(β)

]
yα−1(1 − y)β−1;

α

α + β

αβ

(α + β)2(α + β + 1)

does not exist in
closed form

0 < y < 1
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APPENDIX 3

Tables

Table 1 Binomial Probabilities

Tabulated values are P(Y ≤ a) =
a∑

y=0
p(y). (Computations are rounded at third decimal place.)

(a) n = 5

p

a 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a

0 .951 .774 .590 .328 .168 .078 .031 .010 .002 .000 .000 .000 .000 0
1 .999 .977 .919 .737 .528 .337 .188 .087 .031 .007 .000 .000 .000 1
2 1.000 .999 .991 .942 .837 .683 .500 .317 .163 .058 .009 .001 .000 2
3 1.000 1.000 1.000 .993 .969 .913 .812 .663 .472 .263 .081 .023 .001 3
4 1.000 1.000 1.000 1.000 .998 .990 .969 .922 .832 .672 .410 .226 .049 4

(b) n = 10

p

a 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a

0 .904 .599 .349 .107 .028 .006 .001 .000 .000 .000 .000 .000 .000 0
1 .996 .914 .736 .376 .149 .046 .011 .002 .000 .000 .000 .000 .000 1
2 1.000 .988 .930 .678 .383 .167 .055 .012 .002 .000 .000 .000 .000 2
3 1.000 .999 .987 .879 .650 .382 .172 .055 .011 .001 .000 .000 .000 3
4 1.000 1.000 .998 .967 .850 .633 .377 .166 .047 .006 .000 .000 .000 4
5 1.000 1.000 1.000 .994 .953 .834 .623 .367 .150 .033 .002 .000 .000 5
6 1.000 1.000 1.000 .999 .989 .945 .828 .618 .350 .121 .013 .001 .000 6
7 1.000 1.000 1.000 1.000 .998 .988 .945 .833 .617 .322 .070 .012 .000 7
8 1.000 1.000 1.000 1.000 1.000 .998 .989 .954 .851 .624 .264 .086 .004 8
9 1.000 1.000 1.000 1.000 1.000 1.000 .999 .994 .972 .893 .651 .401 .096 9
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Table 1 (Continued )

(c) n = 15

p

a 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a

0 .860 .463 .206 .035 .005 .000 .000 .000 .000 .000 .000 .000 .000 0
1 .990 .829 .549 .167 .035 .005 .000 .000 .000 .000 .000 .000 .000 1
2 1.000 .964 .816 .398 .127 .027 .004 .000 .000 .000 .000 .000 .000 2
3 1.000 .995 .944 .648 .297 .091 .018 .002 .000 .000 .000 .000 .000 3
4 1.000 .999 .987 .836 .515 .217 .059 .009 .001 .000 .000 .000 .000 4
5 1.000 1.000 .998 .939 .722 .403 .151 .034 .004 .000 .000 .000 .000 5
6 1.000 1.000 1.000 .982 .869 .610 .304 .095 .015 .001 .000 .000 .000 6
7 1.000 1.000 1.000 .996 .950 .787 .500 .213 .050 .004 .000 .000 .000 7
8 1.000 1.000 1.000 .999 .985 .905 .696 .390 .131 .018 .000 .000 .000 8
9 1.000 1.000 1.000 1.000 .996 .966 .849 .597 .278 .061 .002 .000 .000 9

10 1.000 1.000 1.000 1.000 .999 .991 .941 .783 .485 .164 .013 .001 .000 10
11 1.000 1.000 1.000 1.000 1.000 .998 .982 .909 .703 .352 .056 .005 .000 11
12 1.000 1.000 1.000 1.000 1.000 1.000 .996 .973 .873 .602 .184 .036 .000 12
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .833 .451 .171 .010 13
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .794 .537 .140 14

(d) n = 20

p

a 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a

0 .818 .358 .122 .012 .001 .000 .000 .000 .000 .000 .000 .000 .000 0
1 .983 .736 .392 .069 .008 .001 .000 .000 .000 .000 .000 .000 .000 1
2 .999 .925 .677 .206 .035 .004 .000 .000 .000 .000 .000 .000 .000 2
3 1.000 .984 .867 .411 .107 .016 .001 .000 .000 .000 .000 .000 .000 3
4 1.000 .997 .957 .630 .238 .051 .006 .000 .000 .000 .000 .000 .000 4
5 1.000 1.000 .989 .804 .416 .126 .021 .002 .000 .000 .000 .000 .000 5
6 1.000 1.000 .998 .913 .608 .250 .058 .006 .000 .000 .000 .000 .000 6
7 1.000 1.000 1.000 .968 .772 .416 .132 .021 .001 .000 .000 .000 .000 7
8 1.000 1.000 1.000 .990 .887 .596 .252 .057 .005 .000 .000 .000 .000 8
9 1.000 1.000 1.000 .997 .952 .755 .412 .128 .017 .001 .000 .000 .000 9

10 1.000 1.000 1.000 .999 .983 .872 .588 .245 .048 .003 .000 .000 .000 10
11 1.000 1.000 1.000 1.000 .995 .943 .748 .404 .113 .010 .000 .000 .000 11
12 1.000 1.000 1.000 1.000 .999 .979 .868 .584 .228 .032 .000 .000 .000 12
13 1.000 1.000 1.000 1.000 1.000 .994 .942 .750 .392 .087 .002 .000 .000 13
14 1.000 1.000 1.000 1.000 1.000 .998 .979 .874 .584 .196 .011 .000 .000 14
15 1.000 1.000 1.000 1.000 1.000 1.000 .994 .949 .762 .370 .043 .003 .000 15
16 1.000 1.000 1.000 1.000 1.000 1.000 .999 .984 .893 .589 .133 .016 .000 16
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .965 .794 .323 .075 .001 17
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .992 .931 .608 .264 .017 18
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .988 .878 .642 .182 19
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Table 1 (Continued )

(e) n = 25

p

a 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 a

0 .778 .277 .072 .004 .000 .000 .000 .000 .000 .000 .000 .000 .000 0
1 .974 .642 .271 .027 .002 .000 .000 .000 .000 .000 .000 .000 .000 1
2 .998 .873 .537 .098 .009 .000 .000 .000 .000 .000 .000 .000 .000 2
3 1.000 .966 .764 .234 .033 .002 .000 .000 .000 .000 .000 .000 .000 3
4 1.000 .993 .902 .421 .090 .009 .000 .000 .000 .000 .000 .000 .000 4
5 1.000 .999 .967 .617 .193 .029 .002 .000 .000 .000 .000 .000 .000 5
6 1.000 1.000 .991 .780 .341 .074 .007 .000 .000 .000 .000 .000 .000 6
7 1.000 1.000 .998 .891 .512 .154 .022 .001 .000 .000 .000 .000 .000 7
8 1.000 1.000 1.000 .953 .677 .274 .054 .004 .000 .000 .000 .000 .000 8
9 1.000 1.000 1.000 .983 .811 .425 .115 .013 .000 .000 .000 .000 .000 9

10 1.000 1.000 1.000 .994 .902 .586 .212 .034 .002 .000 .000 .000 .000 10
11 1.000 1.000 1.000 .998 .956 .732 .345 .078 .006 .000 .000 .000 .000 11
12 1.000 1.000 1.000 1.000 .983 .846 .500 .154 .017 .000 .000 .000 .000 12
13 1.000 1.000 1.000 1.000 .994 .922 .655 .268 .044 .002 .000 .000 .000 13
14 1.000 1.000 1.000 1.000 .998 .966 .788 .414 .098 .006 .000 .000 .000 14
15 1.000 1.000 1.000 1.000 1.000 .987 .885 .575 .189 .017 .000 .000 .000 15
16 1.000 1.000 1.000 1.000 1.000 .996 .946 .726 .323 .047 .000 .000 .000 16
17 1.000 1.000 1.000 1.000 1.000 .999 .978 .846 .488 .109 .002 .000 .000 17
18 1.000 1.000 1.000 1.000 1.000 1.000 .993 .926 .659 .220 .009 .000 .000 18
19 1.000 1.000 1.000 1.000 1.000 1.000 .998 .971 .807 .383 .033 .001 .000 19
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .910 .579 .098 .007 .000 20
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .967 .766 .236 .034 .000 21
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .902 .463 .127 .002 22
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .973 .729 .358 .026 23
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .928 .723 .222 24
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Table 2 Table of e−x

x e−x x e−x x e−x x e−x

0.00 1.000000 2.60 .074274 5.10 .006097 7.60 .000501
0.10 .904837 2.70 .067206 5.20 .005517 7.70 .000453
0.20 .818731 2.80 .060810 5.30 .004992 7.80 .000410
0.30 .740818 2.90 .055023 5.40 .004517 7.90 .000371
0.40 .670320 3.00 .049787 5.50 .004087 8.00 .000336
0.50 .606531 3.10 .045049 5.60 .003698 8.10 .000304
0.60 .548812 3.20 .040762 5.70 .003346 8.20 .000275
0.70 .496585 3.30 .036883 5.80 .003028 8.30 .000249
0.80 .449329 3.40 .033373 5.90 .002739 8.40 .000225
0.90 .406570 3.50 .030197 6.00 .002479 8.50 .000204
1.00 .367879 3.60 .027324 6.10 .002243 8.60 .000184
1.10 .332871 3.70 .024724 6.20 .002029 8.70 .000167
1.20 .301194 3.80 .022371 6.30 .001836 8.80 .000151
1.30 .272532 3.90 .020242 6.40 .001661 8.90 .000136
1.40 .246597 4.00 .018316 6.50 .001503 9.00 .000123
1.50 .223130 4.10 .016573 6.60 .001360 9.10 .000112
1.60 .201897 4.20 .014996 6.70 .001231 9.20 .000101
1.70 .182684 4.30 .013569 6.80 .001114 9.30 .000091
1.80 .165299 4.40 .012277 6.90 .001008 9.40 .000083
1.90 .149569 4.50 .011109 7.00 .000912 9.50 .000075
2.00 .135335 4.60 .010052 7.10 .000825 9.60 .000068
2.10 .122456 4.70 .009095 7.20 .000747 9.70 .000061
2.20 .110803 4.80 .008230 7.30 .000676 9.80 .000056
2.30 .100259 4.90 .007447 7.40 .000611 9.90 .000050
2.40 .090718 5.00 .006738 7.50 .000553 10.00 .000045
2.50 .082085
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Table 3 Poisson Probabilities

P(Y ≤ a) =
a∑

y=0

e−λ λy

y!

a
λ 0 1 2 3 4 5 6 7 8 9

0.02 0.980 1.000
0.04 0.961 0.999 1.000
0.06 0.942 0.998 1.000
0.08 0.923 0.997 1.000
0.10 0.905 0.995 1.000

0.15 0.861 0.990 0.999 1.000
0.20 0.819 0.982 0.999 1.000
0.25 0.779 0.974 0.998 1.000
0.30 0.741 0.963 0.996 1.000

0.35 0.705 0.951 0.994 1.000
0.40 0.670 0.938 0.992 0.999 1.000
0.45 0.638 0.925 0.989 0.999 1.000
0.50 0.607 0.910 0.986 0.998 1.000

0.55 0.577 0.894 0.982 0.988 1.000
0.60 0.549 0.878 0.977 0.997 1.000
0.65 0.522 0.861 0.972 0.996 0.999 1.000
0.70 0.497 0.844 0.966 0.994 0.999 1.000
0.75 0.472 0.827 0.959 0.993 0.999 1.000

0.80 0.449 0.809 0.953 0.991 0.999 1.000
0.85 0.427 0.791 0.945 0.989 0.998 1.000
0.90 0.407 0.772 0.937 0.987 0.998 1.000
0.95 0.387 0.754 0.929 0.981 0.997 1.000
1.00 0.368 0.736 0.920 0.981 0.996 0.999 1.000

1.1 0.333 0.699 0.900 0.974 0.995 0.999 1.000
1.2 0.301 0.663 0.879 0.966 0.992 0.998 1.000
1.3 0.273 0.627 0.857 0.957 0.989 0.998 1.000
1.4 0.247 0.592 0.833 0.946 0.986 0.997 0.999 1.000
1.5 0.223 0.558 0.809 0.934 0.981 0.996 0.999 1.000

1.6 0.202 0.525 0.783 0.921 0.976 0.994 0.999 1.000
1.7 0.183 0.493 0.757 0.907 0.970 0.992 0.998 1.000
1.8 0.165 0.463 0.731 0.891 0.964 0.990 0.997 0.999 1.000
1.9 0.150 0.434 0.704 0.875 0.956 0.987 0.997 0.999 1.000
2.0 0.135 0.406 0.677 0.857 0.947 0.983 0.995 0.999 1.000
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Table 3 (Continued )

a
λ 0 1 2 3 4 5 6 7 8 9

2.2 0.111 0.355 0.623 0.819 0.928 0.975 0.993 0.998 1.000
2.4 0.091 0.308 0.570 0.779 0.904 0.964 0.988 0.997 0.999 1.000
2.6 0.074 0.267 0.518 0.736 0.877 0.951 0.983 0.995 0.999 1.000
2.8 0.061 0.231 0.469 0.692 0.848 0.935 0.976 0.992 0.998 0.999
3.0 0.050 0.199 0.423 0.647 0.815 0.916 0.966 0.988 0.996 0.999

3.2 0.041 0.171 0.380 0.603 0.781 0.895 0.955 0.983 0.994 0.998
3.4 0.033 0.147 0.340 0.558 0.744 0.871 0.942 0.977 0.992 0.997
3.6 0.027 0.126 0.303 0.515 0.706 0.844 0.927 0.969 0.988 0.996
3.8 0.022 0.107 0.269 0.473 0.668 0.816 0.909 0.960 0.984 0.994
4.0 0.018 0.092 0.238 0.433 0.629 0.785 0.889 0.949 0.979 0.992

4.2 0.015 0.078 0.210 0.395 0.590 0.753 0.867 0.936 0.972 0.989
4.4 0.012 0.066 0.185 0.359 0.551 0.720 0.844 0.921 0.964 0.985
4.6 0.010 0.056 0.163 0.326 0.513 0.686 0.818 0.905 0.955 0.980
4.8 0.008 0.048 0.143 0.294 0.476 0.651 0.791 0.887 0.944 0.975
5.0 0.007 0.040 0.125 0.265 0.440 0.616 0.762 0.867 0.932 0.968

5.2 0.006 0.034 0.109 0.238 0.406 0.581 0.732 0.845 0.918 0.960
5.4 0.005 0.029 0.095 0.213 0.373 0.546 0.702 0.822 0.903 0.951
5.6 0.004 0.024 0.082 0.191 0.342 0.512 0.670 0.797 0.886 0.941
5.8 0.003 0.021 0.072 0.170 0.313 0.478 0.638 0.771 0.867 0.929
6.0 0.002 0.017 0.062 0.151 0.285 0.446 0.606 0.744 0.847 0.916

10 11 12 13 14 15 16

2.8 1.000
3.0 1.000
3.2 1.000
3.4 0.999 1.000
3.6 0.999 1.000
3.8 0.998 0.999 1.000
4.0 0.997 0.999 1.000

4.2 0.996 0.999 1.000
4.4 0.994 0.998 0.999 1.000
4.6 0.992 0.997 0.999 1.000
4.8 0.990 0.996 0.999 1.000
5.0 0.986 0.995 0.998 0.999 1.000

5.2 0.982 0.993 0.997 0.999 1.000
5.4 0.977 0.990 0.996 0.999 1.000
5.6 0.972 0.988 0.995 0.998 0.999 1.000
5.8 0.965 0.984 0.993 0.997 0.999 1.000
6.0 0.957 0.980 0.991 0.996 0.999 0.999 1.000
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Table 3 (Continued )

a
λ 0 1 2 3 4 5 6 7 8 9

6.2 0.002 0.015 0.054 0.134 0.259 0.414 0.574 0.716 0.826 0.902
6.4 0.002 0.012 0.046 0.119 0.235 0.384 0.542 0.687 0.803 0.886
6.6 0.001 0.010 0.040 0.105 0.213 0.355 0.511 0.658 0.780 0.869
6.8 0.001 0.009 0.034 0.093 0.192 0.327 0.480 0.628 0.755 0.850
7.0 0.001 0.007 0.030 0.082 0.173 0.301 0.450 0.599 0.729 0.830

7.2 0.001 0.006 0.025 0.072 0.156 0.276 0.420 0.569 0.703 0.810
7.4 0.001 0.005 0.022 0.063 0.140 0.253 0.392 0.539 0.676 0.788
7.6 0.001 0.004 0.019 0.055 0.125 0.231 0.365 0.510 0.648 0.765
7.8 0.000 0.004 0.016 0.048 0.112 0.210 0.338 0.481 0.620 0.741

8.0 0.000 0.003 0.014 0.042 0.100 0.191 0.313 0.453 0.593 0.717
8.5 0.000 0.002 0.009 0.030 0.074 0.150 0.256 0.386 0.523 0.653
9.0 0.000 0.001 0.006 0.021 0.055 0.116 0.207 0.324 0.456 0.587
9.5 0.000 0.001 0.004 0.015 0.040 0.089 0.165 0.269 0.392 0.522

10.0 0.000 0.000 0.003 0.010 0.029 0.067 0.130 0.220 0.333 0.458

10 11 12 13 14 15 16 17 18 19

6.2 0.949 0.975 0.989 0.995 0.998 0.999 1.000
6.4 0.939 0.969 0.986 0.994 0.997 0.999 1.000
6.6 0.927 0.963 0.982 0.992 0.997 0.999 0.999 1.000
6.8 0.915 0.955 0.978 0.990 0.996 0.998 0.999 1.000
7.0 0.901 0.947 0.973 0.987 0.994 0.998 0.999 1.000

7.2 0.887 0.937 0.967 0.984 0.993 0.997 0.999 0.999 1.000
7.4 0.871 0.926 0.961 0.980 0.991 0.996 0.998 0.999 1.000
7.6 0.854 0.915 0.954 0.976 0.989 0.995 0.998 0.999 1.000
7.8 0.835 0.902 0.945 0.971 0.986 0.993 0.997 0.999 1.000

8.0 0.816 0.888 0.936 0.966 0.983 0.992 0.996 0.998 0.999 1.000
8.5 0.763 0.849 0.909 0.949 0.973 0.986 0.993 0.997 0.999 0.999
9.0 0.706 0.803 0.876 0.926 0.959 0.978 0.989 0.995 0.998 0.999
9.5 0.645 0.752 0.836 0.898 0.940 0.967 0.982 0.991 0.996 0.998

10.0 0.583 0.697 0.792 0.864 0.917 0.951 0.973 0.986 0.993 0.997

20 21 22

8.5 1.000
9.0 1.000
9.5 0.999 1.000

10.0 0.998 0.999 1.000
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Table 3 (Continued )

a
λ 0 1 2 3 4 5 6 7 8 9

10.5 0.000 0.000 0.002 0.007 0.021 0.050 0.102 0.179 0.279 0.397
11.0 0.000 0.000 0.001 0.005 0.015 0.038 0.079 0.143 0.232 0.341
11.5 0.000 0.000 0.001 0.003 0.011 0.028 0.060 0.114 0.191 0.289
12.0 0.000 0.000 0.001 0.002 0.008 0.020 0.046 0.090 0.155 0.242
12.5 0.000 0.000 0.000 0.002 0.005 0.015 0.035 0.070 0.125 0.201

13.0 0.000 0.000 0.000 0.001 0.004 0.011 0.026 0.054 0.100 0.166
13.5 0.000 0.000 0.000 0.001 0.003 0.008 0.019 0.041 0.079 0.135
14.0 0.000 0.000 0.000 0.000 0.002 0.006 0.014 0.032 0.062 0.109
14.5 0.000 0.000 0.000 0.000 0.001 0.004 0.010 0.024 0.048 0.088
15.0 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.037 0.070

10 11 12 13 14 15 16 17 18 19

10.5 0.521 0.639 0.742 0.825 0.888 0.932 0.960 0.978 0.988 0.994
11.0 0.460 0.579 0.689 0.781 0.854 0.907 0.944 0.968 0.982 0.991
11.5 0.402 0.520 0.633 0.733 0.815 0.878 0.924 0.954 0.974 0.986
12.0 0.347 0.462 0.576 0.682 0.772 0.844 0.899 0.937 0.963 0.979
12.5 0.297 0.406 0.519 0.628 0.725 0.806 0.869 0.916 0.948 0.969

13.0 0.252 0.353 0.463 0.573 0.675 0.764 0.835 0.890 0.930 0.957
13.5 0.211 0.304 0.409 0.518 0.623 0.718 0.798 0.861 0.908 0.942
14.0 0.176 0.260 0.358 0.464 0.570 0.669 0.756 0.827 0.883 0.923
14.5 0.145 0.220 0.311 0.413 0.518 0.619 0.711 0.790 0.853 0.901
15.0 0.118 0.185 0.268 0.363 0.466 0.568 0.664 0.749 0.819 0.875

20 21 22 23 24 25 26 27 28 29

10.5 0.997 0.999 0.999 1.000
11.0 0.995 0.998 0.999 1.000
11.5 0.992 0.996 0.998 0.999 1.000
12.0 0.988 0.994 0.997 0.999 0.999 1.000
12.5 0.983 0.991 0.995 0.998 0.999 0.999 1.000

13.0 0.975 0.986 0.992 0.996 0.998 0.999 1.000
13.5 0.965 0.980 0.989 0.994 0.997 0.998 0.999 1.000
14.0 0.952 0.971 0.983 0.991 0.995 0.997 0.999 0.999 1.000
14.5 0.936 0.960 0.976 0.986 0.992 0.996 0.998 0.999 0.999 1.000
15.0 0.917 0.947 0.967 0.981 0.989 0.994 0.997 0.998 0.999 1.000
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Table 3 (Continued )

a
λ 4 5 6 7 8 9 10 11 12 13

16 0.000 0.001 0.004 0.010 0.022 0.043 0.077 0.127 0.193 0.275
17 0.000 0.001 0.002 0.005 0.013 0.026 0.049 0.085 0.135 0.201
18 0.000 0.000 0.001 0.003 0.007 0.015 0.030 0.055 0.092 0.143
19 0.000 0.000 0.001 0.002 0.004 0.009 0.018 0.035 0.061 0.098
20 0.000 0.000 0.000 0.001 0.002 0.005 0.011 0.021 0.039 0.066
21 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.013 0.025 0.043
22 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.008 0.015 0.028
23 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.009 0.017
24 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.011
25 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.006

14 15 16 17 18 19 20 21 22 23

16 0.368 0.467 0.566 0.659 0.742 0.812 0.868 0.911 0.942 0.963
17 0.281 0.371 0.468 0.564 0.655 0.736 0.805 0.861 0.905 0.937
18 0.208 0.287 0.375 0.469 0.562 0.651 0.731 0.799 0.855 0.899
19 0.150 0.215 0.292 0.378 0.469 0.561 0.647 0.725 0.793 0.849
20 0.105 0.157 0.221 0.297 0.381 0.470 0.559 0.644 0.721 0.787
21 0.072 0.111 0.163 0.227 0.302 0.384 0.471 0.558 0.640 0.716
22 0.048 0.077 0.117 0.169 0.232 0.306 0.387 0.472 0.556 0.637
23 0.031 0.052 0.082 0.123 0.175 0.238 0.310 0.389 0.472 0.555
24 0.020 0.034 0.056 0.087 0.128 0.180 0.243 0.314 0.392 0.473
25 0.012 0.022 0.038 0.060 0.092 0.134 0.185 0.247 0.318 0.394

24 25 26 27 28 29 30 31 32 33

16 0.978 0.987 0.993 0.996 0.998 0.999 0.999 1.000
17 0.959 0.975 0.985 0.991 0.995 0.997 0.999 0.999 1.000
18 0.932 0.955 0.972 0.983 0.990 0.994 0.997 0.998 0.999 1.000
19 0.893 0.927 0.951 0.969 0.980 0.988 0.993 0.996 0.998 0.999
20 0.843 0.888 0.922 0.948 0.966 0.978 0.987 0.992 0.995 0.997
21 0.782 0.838 0.883 0.917 0.944 0.963 0.976 0.985 0.991 0.994
22 0.712 0.777 0.832 0.877 0.913 0.940 0.959 0.973 0.983 0.989
23 0.635 0.708 0.772 0.827 0.873 0.908 0.936 0.956 0.971 0.981
24 0.554 0.632 0.704 0.768 0.823 0.868 0.904 0.932 0.953 0.969
25 0.473 0.553 0.629 0.700 0.763 0.818 0.863 0.900 0.929 0.950

34 35 36 37 38 39 40 41 42 43

19 0.999 1.000
20 0.999 0.999 1.000
21 0.997 0.998 0.999 0.999 1.000
22 0.994 0.996 0.998 0.999 0.999 1.000
23 0.988 0.993 0.996 0.997 0.999 0.999 1.000
24 0.979 0.987 0.992 0.995 0.997 0.998 0.999 0.999 1.000
25 0.966 0.978 0.985 0.991 0.991 0.997 0.998 0.999 0.999 1.000
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Table 4 Normal Curve Areas
Standard normal probability in right-hand tail
(for negative values of z, areas are found by symmetry)

0 z

Area

Second decimal place of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014

3.0 .00135
3.5 .000 233
4.0 .000 031 7
4.5 .000 003 40
5.0 .000 000 287

From R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).
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Table 5 Percentage Points of the t Distributions

ta
a

t.100 t.050 t.025 t.010 t.005 df

3.078 6.314 12.706 31.821 63.657 1
1.886 2.920 4.303 6.965 9.925 2
1.638 2.353 3.182 4.541 5.841 3
1.533 2.132 2.776 3.747 4.604 4

1.476 2.015 2.571 3.365 4.032 5
1.440 1.943 2.447 3.143 3.707 6
1.415 1.895 2.365 2.998 3.499 7
1.397 1.860 2.306 2.896 3.355 8
1.383 1.833 2.262 2.821 3.250 9

1.372 1.812 2.228 2.764 3.169 10
1.363 1.796 2.201 2.718 3.106 11
1.356 1.782 2.179 2.681 3.055 12
1.350 1.771 2.160 2.650 3.012 13
1.345 1.761 2.145 2.624 2.977 14
1.341 1.753 2.131 2.602 2.947 15

1.337 1.746 2.120 2.583 2.921 16
1.333 1.740 2.110 2.567 2.898 17
1.330 1.734 2.101 2.552 2.878 18
1.328 1.729 2.093 2.539 2.861 19
1.325 1.725 2.086 2.528 2.845 20

1.323 1.721 2.080 2.518 2.831 21
1.321 1.717 2.074 2.508 2.819 22
1.319 1.714 2.069 2.500 2.807 23
1.318 1.711 2.064 2.492 2.797 24
1.316 1.708 2.060 2.485 2.787 25

1.315 1.706 2.056 2.479 2.779 26
1.314 1.703 2.052 2.473 2.771 27
1.313 1.701 2.048 2.467 2.763 28
1.311 1.699 2.045 2.462 2.756 29
1.282 1.645 1.960 2.326 2.576 inf.

From “Table of Percentage Points of the t-Distribution.” Computed by
Maxine Merrington, Biometrika, Vol. 32 (1941), p. 300.
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Table 6 Percentage Points of the χ2 Distributions

0 c2
a

a

df χ 2
0.995 χ2

0.990 χ2
0.975 χ2

0.950 χ 2
0.900

1 0.0000393 0.0001571 0.0009821 0.0039321 0.0157908
2 0.0100251 0.0201007 0.0506356 0.102587 0.210720
3 0.0717212 0.114832 0.215795 0.351846 0.584375
4 0.206990 0.297110 0.484419 0.710721 1.063623

5 0.411740 0.554300 0.831211 1.145476 1.61031
6 0.675727 0.872085 1.237347 1.63539 2.20413
7 0.989265 1.239043 1.68987 2.16735 2.83311
8 1.344419 1.646482 2.17973 2.73264 3.48954
9 1.734926 2.087912 2.70039 3.32511 4.16816

10 2.15585 2.55821 3.24697 3.94030 4.86518
11 2.60321 3.05347 3.81575 4.57481 5.57779
12 3.07382 3.57056 4.40379 5.22603 6.30380
13 3.56503 4.10691 5.00874 5.89186 7.04150
14 4.07468 4.66043 5.62872 6.57063 7.78953

15 4.60094 5.22935 6.26214 7.26094 8.54675
16 5.14224 5.81221 6.90766 7.96164 9.31223
17 5.69724 6.40776 7.56418 8.67176 10.0852
18 6.26481 7.01491 8.23075 9.39046 10.8649
19 6.84398 7.63273 8.90655 10.1170 11.6509

20 7.43386 8.26040 9.59083 10.8508 12.4426
21 8.03366 8.89720 10.28293 11.5913 13.2396
22 8.64272 9.54249 10.9823 12.3380 14.0415
23 9.26042 10.19567 11.6885 13.0905 14.8479
24 9.88623 10.8564 12.4011 13.8484 15.6587

25 10.5197 11.5240 13.1197 14.6114 16.4734
26 11.1603 12.1981 13.8439 15.3791 17.2919
27 11.8076 12.8786 14.5733 16.1513 18.1138
28 12.4613 13.5648 15.3079 16.9279 18.9392
29 13.1211 14.2565 16.0471 17.7083 19.7677

30 13.7867 14.9535 16.7908 18.4926 20.5992
40 20.7065 22.1643 24.4331 26.5093 29.0505
50 27.9907 29.7067 32.3574 34.7642 37.6886
60 35.5346 37.4848 40.4817 43.1879 46.4589

70 43.2752 45.4418 48.7576 51.7393 55.3290
80 51.1720 53.5400 57.1532 60.3915 64.2778
90 59.1963 61.7541 65.6466 69.1260 73.2912

100 67.3276 70.0648 74.2219 77.9295 82.3581
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Table 6 (Continued )

χ 2
0.100 χ 2

0.050 χ 2
0.025 χ 2

0.010 χ 2
0.005 df

2.70554 3.84146 5.02389 6.63490 7.87944 1
4.60517 5.99147 7.37776 9.21034 10.5966 2
6.25139 7.81473 9.34840 11.3449 12.8381 3
7.77944 9.48773 11.1433 13.2767 14.8602 4

9.23635 11.0705 12.8325 15.0863 16.7496 5
10.6446 12.5916 14.4494 16.8119 18.5476 6
12.0170 14.0671 16.0128 18.4753 20.2777 7
13.3616 15.5073 17.5346 20.0902 21.9550 8
14.6837 16.9190 19.0228 21.6660 23.5893 9

15.9871 18.3070 20.4831 23.2093 25.1882 10
17.2750 19.6751 21.9200 24.7250 26.7569 11
18.5494 21.0261 23.3367 26.2170 28.2995 12
19.8119 22.3621 24.7356 27.6883 29.8194 13
21.0642 23.6848 26.1190 29.1413 31.3193 14

22.3072 24.9958 27.4884 30.5779 32.8013 15
23.5418 26.2962 28.8454 31.9999 34.2672 16
24.7690 27.5871 30.1910 33.4087 35.7185 17
25.9894 28.8693 31.5264 34.8053 37.1564 18
27.2036 30.1435 32.8523 36.1908 38.5822 19

28.4120 31.4104 34.1696 37.5662 39.9968 20
29.6151 32.6705 35.4789 38.9321 41.4010 21
30.8133 33.9244 36.7807 40.2894 42.7956 22
32.0069 35.1725 38.0757 41.6384 44.1813 23
33.1963 36.4151 39.3641 42.9798 45.5585 24

34.3816 37.6525 40.6465 44.3141 46.9278 25
35.5631 38.8852 41.9232 45.6417 48.2899 26
36.7412 40.1133 43.1944 46.9630 49.6449 27
37.9159 41.3372 44.4607 48.2782 50.9933 28
39.0875 42.5569 45.7222 49.5879 52.3356 29

40.2560 43.7729 46.9792 50.8922 53.6720 30
51.8050 55.7585 59.3417 63.6907 66.7659 40
63.1671 67.5048 71.4202 76.1539 79.4900 50
74.3970 79.0819 83.2976 88.3794 91.9517 60

85.5271 90.5312 95.0231 100.425 104.215 70
96.5782 101.879 106.629 112.329 116.321 80

107.565 113.145 118.136 124.116 128.299 90
118.498 124.342 129.561 135.807 140.169 100

From “Tables of the Percentage Points of the χ2-Distribution.” Biometrika, Vol. 32
(1941), pp. 188–189, by Catherine M. Thompson.
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Table 7 Percentage Points of the F Distributions

0 Fa

a

Numerator df
Denominator

df α 1 2 3 4 5 6 7 8 9

1 .100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86
.050 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5
.025 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3
.010 4052 4999.5 5403 5625 5764 5859 5928 5982 6022
.005 16211 20000 21615 22500 23056 23437 23715 23925 24091

2 .100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38
.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39
.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
.005 198.5 199.0 199.2 199.2 199.3 199.3 199.4 199.4 199.4

3 .100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24
.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47
.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
.005 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.88

4 .100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90
.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
.005 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14

5 .100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32
.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68
.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
.005 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77

6 .100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52
.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
.005 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39

7 .100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72
.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82
.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
.005 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51

      Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tables 853

Table 7 (Continued )
Fα

Numerator df

10 12 15 20 24 30 40 60 120 ∞ α df

60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33 .100 1
241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3 .050
968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018 .025

6056 6106 6157 6209 6235 6261 6287 6313 6339 6366 .010
24224 24426 24630 24836 24940 25044 25148 25253 25359 25465 .005

9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 .100 2
19.40 19.41 19.43 19.45 19.45 19.45 19.47 19.48 19.49 19.50 .050
39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50 .025
99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50 .010

199.4 199.4 199.4 199.4 199.5 199.5 199.5 199.5 199.5 199.5 .005

5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13 .100 3
8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 .050

14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90 .025
27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13 .010
43.69 43.39 43.08 42.78 42.62 42.47 42.31 42.15 41.99 41.83 .005

3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76 .100 4
5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 .050
8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26 .025

14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46 .010
20.97 20.70 20.44 20.17 20.03 19.89 19.75 19.61 19.47 19.32 .005

3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10 .100 5
4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 .050
6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02 .025

10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 .010
13.62 13.38 13.15 12.90 12.78 12.66 12.53 12.40 12.27 12.14 .005

2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72 .100 6
4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 .050
5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85 .025
7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88 .010

10.25 10.03 9.81 9.59 9.47 9.36 9.24 9.12 9.00 8.88 .005

2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47 .100 7
3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 .050
4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14 .025
6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 .010
8.38 8.18 7.97 7.75 7.65 7.53 7.42 7.31 7.19 7.08 .005
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Table 7 (Continued )
Fα

Numerator df
Denominator

df α 1 2 3 4 5 6 7 8 9

8 .100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36
.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
.005 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.34

9 .100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44
.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03
.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35
.005 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54

10 .100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35
.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78
.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
.005 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97

11 .100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27
.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
.025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59
.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
.005 12.23 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54

12 .100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44
.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
.005 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20

13 .100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16
.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
.025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31
.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
.005 11.37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94

14 .100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12
.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
.025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21
.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
.005 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72
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Table 7 (Continued )
Fα

Numerator df

10 12 15 20 24 30 40 60 120 ∞ α df

2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29 .100 8
3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 .050
4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67 .025
5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86 .010
7.21 7.01 6.81 6.61 6.50 6.40 6.29 6.18 6.06 5.95 .005

2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16 .100 9
3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 .050
3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33 .025
5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31 .010
6.42 6.23 6.03 5.83 5.73 5.62 5.52 5.41 5.30 5.19 .005

2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06 .100 10
2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 .050
3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08 .025
4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91 .010
5.85 5.66 5.47 5.27 5.17 5.07 4.97 4.86 4.75 4.64 .005

2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97 .100 11
2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 .050
3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88 .025
4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60 .010
5.42 5.24 5.05 4.86 4.76 4.65 4.55 4.44 4.34 4.23 .005

2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90 .100 12
2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 .050
3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72 .025
4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 .010
5.09 4.91 4.72 4.53 4.43 4.33 4.23 4.12 4.01 3.90 .005

2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85 .100 13
2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 .050
3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60 .025
4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17 .010
4.82 4.64 4.46 4.27 4.17 4.07 3.97 3.87 3.76 3.65 .005

2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80 .100 14
2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 .050
3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49 .025
3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00 .010
4.60 4.43 4.25 4.06 3.96 3.86 3.76 3.66 3.55 3.44 .005
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Table 7 (Continued )
Fα

Numerator df
Denominator

df α 1 2 3 4 5 6 7 8 9

15 .100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09
.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12
.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
.005 10.80 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54

16 .100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06
.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
.025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05
.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
.005 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38

17 .100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03
.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
.025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98
.010 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
.005 10.38 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25

18 .100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00
.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
.025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93
.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
.005 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14

19 .100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98
.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
.025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88
.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
.005 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04

20 .100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96
.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84
.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
.005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96

21 .100 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95
.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
.025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80
.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
.005 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88
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Table 7 (Continued )
Fα

Numerator df

10 12 15 20 24 30 40 60 120 ∞ α df

2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76 .100 15
2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 .050
3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40 .025
3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87 .010
4.42 4.25 4.07 3.88 3.79 3.69 3.58 3.48 3.37 3.26 .005

2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72 .100 16
2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 .050
2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32 .025
3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75 .010
4.27 4.10 3.92 3.73 3.64 3.54 3.44 3.33 3.22 3.11 .005

2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69 .100 17
2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 .050
2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25 .025
3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65 .010
4.14 3.97 3.79 3.61 3.51 3.41 3.31 3.21 3.10 2.98 .005

1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66 .100 18
2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 .050
2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19 .025
3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57 .010
4.03 3.86 3.68 3.50 3.40 3.30 3.20 3.10 2.99 2.87 .005

1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63 .100 19
2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 .050
2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13 .025
3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49 .010
3.93 3.76 3.59 3.40 3.31 3.21 3.11 3.00 2.89 2.78 .005

1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61 .100 20
2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 .050
2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09 .025
3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 .010
3.85 3.68 3.50 3.32 3.22 3.12 3.02 2.92 2.81 2.69 .005

1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59 .100 21
2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 .050
2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04 .025
3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36 .010
3.77 3.60 3.43 3.24 3.15 3.05 2.95 2.84 2.73 2.61 .005
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Table 7 (Continued )
Fα

Numerator dfDenominator
df α 1 2 3 4 5 6 7 8 9

22 .100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93
.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
.025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76
.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
.005 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81

23 .100 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92
.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
.025 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73
.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
.005 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75

24 .100 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91
.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
.025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70
.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
.005 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69

25 .100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89
.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
.025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68
.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
.005 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64

26 .100 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88
.050 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
.025 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65
.010 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
.005 9.41 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.60

27 .100 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87
.050 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
.025 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63
.010 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
.005 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.56

28 .100 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87
.050 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
.025 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61
.010 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
.005 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.52
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Table 7 (Continued )
Fα

Numerator df

10 12 15 20 24 30 40 60 120 ∞ α df

1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57 .100 22
2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 .050
2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00 .025
3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 .010
3.70 3.54 3.36 3.18 3.08 2.98 2.88 2.77 2.66 2.55 .005

1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55 .100 23
2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 .050
2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97 .025
3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 .010
3.64 3.47 3.30 3.12 3.02 2.92 2.82 2.71 2.60 2.48 .005

1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53 .100 24
2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 .050
2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94 .025
3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21 .010
3.59 3.42 3.25 3.06 2.97 2.87 2.77 2.66 2.55 2.43 .005

1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52 .100 25
2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 .050
2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91 .025
3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17 .010
3.54 3.37 3.20 3.01 2.92 2.82 2.72 2.61 2.50 2.38 .005

1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50 .100 26
2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69 .050
2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88 .025
3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13 .010
3.49 3.33 3.15 2.97 2.87 2.77 2.67 2.56 2.45 2.33 .005

1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49 .100 27
2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 .050
2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85 .025
3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10 .010
3.45 3.28 3.11 2.93 2.83 2.73 2.63 2.52 2.41 2.29 .005

1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48 .100 28
2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 .050
2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83 .025
3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06 .010
3.41 3.25 3.07 2.89 2.79 2.69 2.59 2.48 2.37 2.25 .005
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Table 7 (Continued )
Fα

Numerator dfDenominator
df α 1 2 3 4 5 6 7 8 9

29 .100 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86
.050 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
.025 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59
.010 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
.005 9.23 6.40 5.28 4.66 4.26 3.98 3.77 3.61 3.48

30 .100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85
.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57
.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
.005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45

40 .100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79
.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
.025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45
.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
.005 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22

60 .100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74
.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33
.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
.005 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01

120 .100 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68
.050 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96
.025 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22
.010 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
.005 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81

∞ .100 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63
.050 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88
.025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11
.010 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
.005 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62

From “Tables of percentage points of the inverted beta (F) distribution.” Biometrika, Vol. 33 (1943) by M. Merrington and C. M.
Thompson and from Table 18 of Biometrika Tables for Statisticians, Vol. 1, Cambridge University Press, 1954, edited by E. S.
Pearson and H. O. Hartley.
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Table 7 (Continued )
Fα

Numerator df

10 12 15 20 24 30 40 60 120 ∞ α df

1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47 .100 29
2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 .050
2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81 .025
3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03 .010
3.38 3.21 3.04 2.86 2.76 2.66 2.56 2.45 2.33 2.21 .005

1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46 .100 30
2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 .050
2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79 .025
2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01 .010
3.34 3.18 3.01 2.82 2.73 2.63 2.52 2.42 2.30 2.18 .005

1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38 .100 40
2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 .050
2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64 .025
2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80 .010
3.12 2.95 2.78 2.60 2.50 2.40 2.30 2.18 2.06 1.93 .005

1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29 .100 60
1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 .050
2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48 .025
2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60 .010
2.90 2.74 2.57 2.39 2.29 2.19 2.08 1.96 1.83 1.69 .005

1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19 .100 120
1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 .050
2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31 .025
2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38 .010
2.71 2.54 2.37 2.19 2.09 1.98 1.87 1.75 1.61 1.43 .005

1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00 .100 ∞
1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 .050
2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00 .025
2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00 .010
2.52 2.36 2.19 2.00 1.90 1.79 1.67 1.53 1.36 1.00 .005
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Table 8 Distribution Function of U

P(U ≤ U0); U0 is the
argument; n1 ≤ n2;
3 ≤ n2 ≤ 10.

n2 = 3

n1

U0 1 2 3

0 .25 .10 .05
1 .50 .20 .10
2 .40 .20
3 .60 .35
4 .50

n2 = 4

n1

U0 1 2 3 4

0 .2000 .0667 .0286 .0143
1 .4000 .1333 .0571 .0286
2 .6000 .2667 .1143 .0571
3 .4000 .2000 .1000
4 .6000 .3143 .1714
5 .4286 .2429
6 .5714 .3429
7 .4429
8 .5571
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Table 8 (Continued )

n2 = 5

n1

U0 1 2 3 4 5

0 .1667 .0476 .0179 .0079 .0040
1 .3333 .0952 .0357 .0159 .0079
2 .5000 .1905 .0714 .0317 .0159
3 .2857 .1250 .0556 .0278
4 .4286 .1964 .0952 .0476
5 .5714 .2857 .1429 .0754
6 .3929 .2063 .1111
7 .5000 .2778 .1548
8 .3651 .2103
9 .4524 .2738

10 .5476 .3452
11 .4206
12 .5000

n2 = 6

n1

U0 1 2 3 4 5 6

0 .1429 .0357 .0119 .0048 .0022 .0011
1 .2857 .0714 .0238 .0095 .0043 .0022
2 .4286 .1429 .0476 .0190 .0087 .0043
3 .5714 .2143 .0833 .0333 .0152 .0076
4 .3214 .1310 .0571 .0260 .0130
5 .4286 .1905 .0857 .0411 .0206
6 .5714 .2738 .1286 .0628 .0325
7 .3571 .1762 .0887 .0465
8 .4524 .2381 .1234 .0660
9 .5476 .3048 .1645 .0898

10 .3810 .2143 .1201
11 .4571 .2684 .1548
12 .5429 .3312 .1970
13 .3961 .2424
14 .4654 .2944
15 .5346 .3496
16 .4091
17 .4686
18 .5314
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Table 8 (Continued )

n2 = 7

n1

U0 1 2 3 4 5 6 7

0 .1250 .0278 .0083 .0030 .0013 .0006 .0003
1 .2500 .0556 .0167 .0061 .0025 .0012 .0006
2 .3750 .1111 .0333 .0121 .0051 .0023 .0012
3 .5000 .1667 .0583 .0212 .0088 .0041 .0020
4 .2500 .0917 .0364 .0152 .0070 .0035
5 .3333 .1333 .0545 .0240 .0111 .0055
6 .4444 .1917 .0818 .0366 .0175 .0087
7 .5556 .2583 .1152 .0530 .0256 .0131
8 .3333 .1576 .0745 .0367 .0189
9 .4167 .2061 .1010 .0507 .0265

10 .5000 .2636 .1338 .0688 .0364
11 .3242 .1717 .0903 .0487
12 .3939 .2159 .1171 .0641
13 .4636 .2652 .1474 .0825
14 .5364 .3194 .1830 .1043
15 .3775 .2226 .1297
16 .4381 .2669 .1588
17 .5000 .3141 .1914
18 .3654 .2279
19 .4178 .2675
20 .4726 .3100
21 .5274 .3552
22 .4024
23 .4508
24 .5000
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Table 8 (Continued )

n2 = 8

n1

U0 1 2 3 4 5 6 7 8

0 .1111 .0222 .0061 .0020 .0008 .0003 .0002 .0001
1 .2222 .0444 .0121 .0040 .0016 .0007 .0003 .0002
2 .3333 .0889 .0242 .0081 .0031 .0013 .0006 .0003
3 .4444 .1333 .0424 .0141 .0054 .0023 .0011 .0005
4 .5556 .2000 .0667 .0242 .0093 .0040 .0019 .0009
5 .2667 .0970 .0364 .0148 .0063 .0030 .0015
6 .3556 .1394 .0545 .0225 .0100 .0047 .0023
7 .4444 .1879 .0768 .0326 .0147 .0070 .0035
8 .5556 .2485 .1071 .0466 .0213 .0103 .0052
9 .3152 .1414 .0637 .0296 .0145 .0074

10 .3879 .1838 .0855 .0406 .0200 .0103
11 .4606 .2303 .1111 .0539 .0270 .0141
12 .5394 .2848 .1422 .0709 .0361 .0190
13 .3414 .1772 .0906 .0469 .0249
14 .4040 .2176 .1142 .0603 .0325
15 .4667 .2618 .1412 .0760 .0415
16 .5333 .3108 .1725 .0946 .0524
17 .3621 .2068 .1159 .0652
18 .4165 .2454 .1405 .0803
19 .4716 .2864 .1678 .0974
20 .5284 .3310 .1984 .1172
21 .3773 .2317 .1393
22 .4259 .2679 .1641
23 .4749 .3063 .1911
24 .5251 .3472 .2209
25 .3894 .2527
26 .4333 .2869
27 .4775 .3227
28 .5225 .3605
29 .3992
30 .4392
31 .4796
32 .5204
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Table 8 (Continued )

n2 = 9

n1

U0 1 2 3 4 5 6 7 8 9

0 .1000 .0182 .0045 .0014 .0005 .0002 .0001 .0000 .0000
1 .2000 .0364 .0091 .0028 .0010 .0004 .0002 .0001 .0000
2 .3000 .0727 .0182 .0056 .0020 .0008 .0003 .0002 .0001
3 .4000 .1091 .0318 .0098 .0035 .0014 .0006 .0003 .0001
4 .5000 .1636 .0500 .0168 .0060 .0024 .0010 .0005 .0002
5 .2182 .0727 .0252 .0095 .0038 .0017 .0008 .0004
6 .2909 .1045 .0378 .0145 .0060 .0026 .0012 .0006
7 .3636 .1409 .0531 .0210 .0088 .0039 .0019 .0009
8 .4545 .1864 .0741 .0300 .0128 .0058 .0028 .0014
9 .5455 .2409 .0993 .0415 .0180 .0082 .0039 .0020

10 .3000 .1301 .0559 .0248 .0115 .0056 .0028
11 .3636 .1650 .0734 .0332 .0156 .0076 .0039
12 .4318 .2070 .0949 .0440 .0209 .0103 .0053
13 .5000 .2517 .1199 .0567 .0274 .0137 .0071
14 .3021 .1489 .0723 .0356 .0180 .0094
15 .3552 .1818 .0905 .0454 .0232 .0122
16 .4126 .2188 .1119 .0571 .0296 .0157
17 .4699 .2592 .1361 .0708 .0372 .0200
18 .5301 .3032 .1638 .0869 .0464 .0252
19 .3497 .1942 .1052 .0570 .0313
20 .3986 .2280 .1261 .0694 .0385
21 .4491 .2643 .1496 .0836 .0470
22 .5000 .3035 .1755 .0998 .0567
23 .3445 .2039 .1179 .0680
24 .3878 .2349 .1383 .0807
25 .4320 .2680 .1606 .0951
26 .4773 .3032 .1852 .1112
27 .5227 .3403 .2117 .1290
28 .3788 .2404 .1487
29 .4185 .2707 .1701
30 .4591 .3029 .1933
31 .5000 .3365 .2181
32 .3715 .2447
33 .4074 .2729
34 .4442 .3024
35 .4813 .3332
36 .5187 .3652
37 .3981
38 .4317
39 .4657
40 .5000
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Table 8 (Continued )

n2 = 10

n1

U0 1 2 3 4 5 6 7 8 9 10

0 .0909 .0152 .0035 .0010 .0003 .0001 .0001 .0000 .0000 .0000
1 .1818 .0303 .0070 .0020 .0007 .0002 .0001 .0000 .0000 .0000
2 .2727 .0606 .0140 .0040 .0013 .0005 .0002 .0001 .0000 .0000
3 .3636 .0909 .0245 .0070 .0023 .0009 .0004 .0002 .0001 .0000
4 .4545 .1364 .0385 .0120 .0040 .0015 .0006 .0003 .0001 .0001
5 .5455 .1818 .0559 .0180 .0063 .0024 .0010 .0004 .0002 .0001
6 .2424 .0804 .0270 .0097 .0037 .0015 .0007 .0003 .0002
7 .3030 .1084 .0380 .0140 .0055 .0023 .0010 .0005 .0002
8 .3788 .1434 .0529 .0200 .0080 .0034 .0015 .0007 .0004
9 .4545 .1853 .0709 .0276 .0112 .0048 .0022 .0011 .0005

10 .5455 .2343 .0939 .0376 .0156 .0068 .0031 .0015 .0008
11 .2867 .1199 .0496 .0210 .0093 .0043 .0021 .0010
12 .3462 .1518 .0646 .0280 .0125 .0058 .0028 .0014
13 .4056 .1868 .0823 .0363 .0165 .0078 .0038 .0019
14 .4685 .2268 .1032 .0467 .0215 .0103 .0051 .0026
15 .5315 .2697 .1272 .0589 .0277 .0133 .0066 .0034
16 .3177 .1548 .0736 .0351 .0171 .0086 .0045
17 .3666 .1855 .0903 .0439 .0217 .0110 .0057
18 .4196 .2198 .1099 .0544 .0273 .0140 .0073
19 .4725 .2567 .1317 .0665 .0338 .0175 .0093
20 .5275 .2970 .1566 .0806 .0416 .0217 .0116
21 .3393 .1838 .0966 .0506 .0267 .0144
22 .3839 .2139 .1148 .0610 .0326 .0177
23 .4296 .2461 .1349 .0729 .0394 .0216
24 .4765 .2811 .1574 .0864 .0474 .0262
25 .5235 .3177 .1819 .1015 .0564 .0315
26 .3564 .2087 .1185 .0667 .0376
27 .3962 .2374 .1371 .0782 .0446
28 .4374 .2681 .1577 .0912 .0526
29 .4789 .3004 .1800 .1055 .0615
30 .5211 .3345 .2041 .1214 .0716
31 .3698 .2299 .1388 .0827
32 .4063 .2574 .1577 .0952
33 .4434 .2863 .1781 .1088
34 .4811 .3167 .2001 .1237
35 .5189 .3482 .2235 .1399
36 .3809 .2483 .1575
37 .4143 .2745 .1763
38 .4484 .3019 .1965
39 .4827 .3304 .2179
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Table 8 (Continued )

n2 = 10

n1

U0 1 2 3 4 5 6 7 8 9 10

40 .5173 .3598 .2406
41 .3901 .2644
42 .4211 .2894
43 .4524 .3153
44 .4841 .3421
45 .5159 .3697
46 .3980
47 .4267
48 .4559
49 .4853
50 .5147

Computed by M. Pagano, Department of Statistics, University of Florida.

Table 9 Critical Values of T in the Wilcoxon Matched-Pairs, Signed-Ranks Test; n = 5(1)50

One-sided Two-sided n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

P = .05 P = .10 1 2 4 6 8 11
P = .025 P = .05 1 2 4 6 8
P = .01 P = .02 0 2 3 5
P = .005 P = .01 0 2 3

One-sided Two-sided n = 11 n = 12 n = 13 n = 14 n = 15 n = 16

P = .05 P = .10 14 17 21 26 30 36
P = .025 P = .05 11 14 17 21 25 30
P = .01 P = .02 7 10 13 16 20 24
P = .005 P = .01 5 7 10 13 16 19

One-sided Two-sided n = 17 n = 18 n = 19 n = 20 n = 21 n = 22

P = .05 P = .10 41 47 54 60 68 75
P = .025 P = .05 35 40 46 52 59 66
P = .01 P = .02 28 33 38 43 49 56
P = .005 P = .01 23 28 32 37 43 49

One-sided Two-sided n = 23 n = 24 n = 25 n = 26 n = 27 n = 28

P = .05 P = .10 83 92 101 110 120 130
P = .025 P = .05 73 81 90 98 107 117
P = .01 P = .02 62 69 77 85 93 102
P = .005 P = .01 55 68 68 76 84 92
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Table 9 (Continued )

One-sided Two-sided n = 29 n = 30 n = 31 n = 32 n = 33 n = 34

P = .05 P = .10 141 152 163 175 188 201
P = .025 P = .05 127 137 148 159 171 183
P = .01 P = .02 111 120 130 141 151 162
P = .005 P = .01 100 109 118 128 138 149

One-sided Two-sided n = 35 n = 36 n = 37 n = 38 n = 39

P = .05 P = .10 214 228 242 256 271
P = .025 P = .05 195 208 222 235 250
P = .01 P = .02 174 186 198 211 224
P = .005 P = .01 160 171 183 195 208

One-sided Two-sided n = 40 n = 41 n = 42 n = 43 n = 44 n = 45

P = .05 P = .10 287 303 319 336 353 371
P = .025 P = .05 264 279 295 311 327 344
P = .01 P = .02 238 252 267 281 297 313
P = .005 P = .01 221 234 248 262 277 292

One-sided Two-sided n = 46 n = 47 n = 48 n = 49 n = 50

P = .05 P = .10 389 408 427 446 466
P = .025 P = .05 361 379 397 415 434
P = .01 P = .02 329 345 362 380 398
P = .005 P = .01 307 323 339 356 373

From “Some Rapid Approximate Statistical Procedures” (1964), 28, F. Wilcoxon and R. A. Wilcox.
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Table 10 Distribution of the Total Number of Runs R in Samples of Size (n1, n2); P(R ≤ a)

a

(n1, n2) 2 3 4 5 6 7 8 9 10

(2, 3) .200 .500 .900 1.000
(2, 4) .133 .400 .800 1.000
(2, 5) .095 .333 .714 1.000
(2, 6) .071 .286 .643 1.000
(2, 7) .056 .250 .583 1.000
(2, 8) .044 .222 .533 1.000
(2, 9) .036 .200 .491 1.000
(2, 10) .030 .182 .455 1.000

(3, 3) .100 .300 .700 .900 1.000
(3, 4) .057 .200 .543 .800 .971 1.000
(3, 5) .036 .143 .429 .714 .929 1.000
(3, 6) .024 .107 .345 .643 .881 1.000
(3, 7) .017 .083 .283 .583 .833 1.000
(3, 8) .012 .067 .236 .533 .788 1.000
(3, 9) .009 .055 .200 .491 .745 1.000
(3, 10) .007 .045 .171 .455 .706 1.000

(4, 4) .029 .114 .371 .629 .886 .971 1.000
(4, 5) .016 .071 .262 .500 .786 .929 .992 1.000
(4, 6) .010 .048 .190 .405 .690 .881 .976 1.000
(4, 7) .006 .033 .142 .333 .606 .833 .954 1.000
(4, 8) .004 .024 .109 .279 .533 .788 .929 1.000
(4, 9) .003 .018 .085 .236 .471 .745 .902 1.000
(4, 10) .002 .014 .068 .203 .419 .706 .874 1.000

(5, 5) .008 .040 .167 .357 .643 .833 .960 .992 1.000
(5, 6) .004 .024 .110 .262 .522 .738 .911 .976 .998
(5, 7) .003 .015 .076 .197 .424 .652 .854 .955 .992
(5, 8) .002 .010 .054 .152 .347 .576 .793 .929 .984
(5, 9) .001 .007 .039 .119 .287 .510 .734 .902 .972
(5, 10) .001 .005 .029 .095 .239 .455 .678 .874 .958

(6, 6) .002 .013 .067 .175 .392 .608 .825 .933 .987
(6, 7) .001 .008 .043 .121 .296 .500 .733 .879 .966
(6, 8) .001 .005 .028 .086 .226 .413 .646 .821 .937
(6, 9) .000 .003 .019 .063 .175 .343 .566 .762 .902
(6, 10) .000 .002 .013 .047 .137 .288 .497 .706 .864

(7, 7) .001 .004 .025 .078 .209 .383 .617 .791 .922
(7, 8) .000 .002 .015 .051 .149 .296 .514 .704 .867
(7, 9) .000 .001 .010 .035 .108 .231 .427 .622 .806
(7, 10) .000 .001 .006 .024 .080 .182 .355 .549 .743

(8, 8) .000 .001 .009 .032 .100 .214 .405 .595 .786
(8, 9) .000 .001 .005 .020 .069 .157 .319 .500 .702
(8, 10) .000 .000 .003 .013 .048 .117 .251 .419 .621

(9, 9) .000 .000 .003 .012 .044 .109 .238 .399 .601
(9, 10) .000 .000 .002 .008 .029 .077 .179 .319 .510
(10, 10) .000 .000 .001 .004 .019 .051 .128 .242 .414
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Table 10 (Continued )

a

(n1, n2) 11 12 13 14 15 16 17 18 19 20

(2, 3)
(2, 4)
(2, 5)
(2, 6)
(2, 7)
(2, 8)
(2, 9)
(2, 10)

(3, 3)
(3, 4)
(3, 5)
(3, 6)
(3, 7)
(3, 8)
(3, 9)
(3, 10)

(4, 4)
(4, 5)
(4, 6)
(4, 7)
(4, 8)
(4, 9)
(4, 10)

(5, 5)
(5, 6) 1.000
(5, 7) 1.000
(5, 8) 1.000
(5, 9) 1.000
(5, 10) 1.000

(6, 6) .998 1.000
(6, 7) .992 .999 1.000
(6, 8) .984 .998 1.000
(6, 9) .972 .994 1.000
(6, 10) .958 .990 1.000

(7, 7) .975 .996 .999 1.000
(7, 8) .949 .988 .998 1.000 1.000
(7, 9) .916 .975 .994 .999 1.000
(7, 10) .879 .957 .990 .998 1.000

(8, 8) .900 .968 .991 .999 1.000 1.000
(8, 9) .843 .939 .980 .996 .999 1.000 1.000
(8, 10) .782 .903 .964 .990 .998 1.000 1.000

(9, 9) .762 .891 .956 .988 .997 1.000 1.000 1.000
(9, 10) .681 .834 .923 .974 .992 .999 1.000 1.000 1.000
(10, 10) .586 .758 .872 .949 .981 .996 .999 1.000 1.000 1.000

From “Tables for Testing Randomness of Grouping in a Sequence of Alternatives,” C. Eisenhart and
F. Swed, Annals of Mathematical Statistics, Volume 14 (1943).
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Table 11 Critical Values of Spearman’s Rank Correlation
Coefficient

n α = .05 α = .025 α = .01 α = .005

5 0.900 — — —
6 0.829 0.886 0.943 —
7 0.714 0.786 0.893 —
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.794

11 0.523 0.623 0.736 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

From “Distribution of Sums of Squares of Rank Differ-
ences for Small Samples,” E. G. Olds, Annals of Mathe-
matical Statistics, Volume 9 (1938).
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ANSWERS

Chapter 1

1.5 a 2.45 − 2.65, 2.65 − 2.85
b 7/30
c 16/30

1.9 a Approx. .68
b Approx. .95
c Approx. .815
d Approx. 0

1.13 a ȳ = 9.79; s = 4.14
b k = 1: (5.65, 13.93); k = 2: (1.51,

18.07); k = 3: (−2.63, 22.21)
1.15 a ȳ = 4.39; s = 1.87

b k = 1: (2.52, 6.26); k = 2: (0.65,
8.13); k = 3: (−1.22, 10)

1.17 For Ex. 1.2, range/4 = 7.35; s = 4.14;
for Ex. 1.3, range/4 = 3.04; s = 3.17;
for Ex. 1.4, range/4 = 2.32, s = 1.87.

1.19 ȳ − s = −19 < 0

1.21 .84
1.23 a 16%

b Approx. 95%
1.25 a 177

c ȳ = 210.8; s = 162.17
d k = 1: (48.6, 373); k = 2:

(−113.5, 535.1); k = 3: (−275.7,
697.3)

1.27 68% or 231 scores; 95% or 323 scores
1.29 .05
1.31 .025
1.33 (0.5, 10.5)
1.35 a (172 − 108)/4 = 16

b ȳ = 136.1; s = 17.1
c a = 136.1 − 2(17.1) = 101.9;

b = 136.1 + 2(17.1) = 170.3

Chapter 2

2.7 A = {two males} = {(M1, M2),
(M1,M3), (M2,M3)}
B = {at least one female} = {(M1,W1),
(M2,W1), (M3,W1), (M1,W2), (M2,W2),
(M3,W2), (W1,W2)}
B̄ = {no females} = A; A ∪ B = S;
A ∩ B = null; A ∩ B̄ = A

2.9 S = {A+, B+, AB+, O+, A−, B−,
AB−, O−}

2.11 a P(E5) = .10; P(E4) = .20
b p = .2

2.13 a E1 = very likely (VL); E2 =
somewhat likely (SL); E3 =
unlikely (U); E4 = other (O)

b No; P(VL) = .24, P(SL) = .24,
P(U) = .40, P(O) = .12

c .48

2.15 a .09
b .19

2.17 a .08
b .16
c .14
d .84

2.19 a (V1, V1), (V1, V2), (V1, V3),
(V2, V1), (V2, V2), (V2, V3),
(V3, V1), (V3, V2), (V3, V3)

b If equally likely, all have
probability of 1/9.

c P(A) = 1/3; P(B) = 5/9;
P(A ∪ B) = 7/9;
P(A ∩ B) = 1/9

2.27 a S = {CC, CR, CL, RC, RR, RL,
LC, LR, LL}

b 5/9
c 5/9
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878 Answers

2.29 c 1/15
2.31 a 3/5; 1/15

b 14/15; 2/5
2.33 c 11/16; 3/8; 1/4
2.35 42
2.37 a 6! = 720

b .5
2.39 a 36

b 1/6
2.41 9(10)6

2.43 504 ways
2.45 408,408
2.49 a 8385

b 18,252
c 8515 required
d Yes

2.51 a 4/19,600
b 276/19,600
c 4140/19,600
d 15180/19,600

2.53 a 60 sample points
b 36/60 = .6

2.55 a
(

90
10

)
b

(
20
4

) (
70
6

)/(
90
10

)
= .111

2.57 (4 × 12)/1326 = .0362
2.59 a .000394

b .00355

2.61 a
364n

365n

b .5005
2.63 1/56
2.65 5/162
2.67 a P(A) = .0605

b .001344
c .00029

2.71 a 1/3
b 1/5
c 5/7
d 1
e 1/7

2.73 a 3/4
b 3/4
c 2/3

2.77 a .40 b .37 c .10
d .67 e .6 f .33
g .90 h .27 i .25

2.93 .364
2.95 a .1

b .9

c .6
d 2/3

2.97 a .999
b .9009

2.101 .05
2.103 a .001

b .000125
2.105 .90
2.109 P(A) ≥ .9833
2.111 .149
2.113 (.98)3(.02)
2.115 (.75)4

2.117 a 4(.5)4 = .25
b (.5)4 = 1/16

2.119 a 1/4
b 1/3

2.121 a 1/n

b
1

n
;

1

n

c
3

7
2.125 1/12
2.127 a .857

c No; .8696
d Yes

2.129 .4
2.133 .9412
2.135 a .57

b .18
c .3158
d .90

2.137 a 2/5
b 3/20

2.139 P(Y = 0) = (.02)3;
P(Y = 1) = 3(.02)2(.98);
P(Y = 2) = 3(.02)(.98)2;
P(Y = 3) = (.98)3

2.141 P(Y = 2) = 1/15; P(Y = 3) = 2/15;
P(Y = 4) = 3/15; P(Y = 5) = 4/15;
P(Y = 6) = 5/15

2.145 18!
2.147 .0083
2.149 a .4

b .6
c .25

2.151 4[p4(1 − p) + p(1 − p)4]
2.153 .313
2.155 a .5

b .15
c .10
d .875
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Answers 879

2.157 .021
2.161 P(R ≤ 3) = 12/66
2.163 P(A) = 0.9801

P(B) = .9639
2.165 .916
2.167 P(Y = 1) = 35/70 = .5;

P(Y = 2) = 20/70 = 2/7;
P(Y = 3) = 10/70;
P(Y = 4) = 4/70; P(Y = 5) = 1/70

2.169 a (4!)3 = 13,824

b 3456/13,824 = .25
2.173 .25
2.177 a .364

b .636
c (49/50)n ≥ .60, so n is at most 25

2.179 a 20

(
1

2

)6

= .3125

b 27

(
1

2

)10

Chapter 3

3.1 P(Y = 0) = .2, P(Y = 1) = .7,
P(Y = 2) = .1

3.3 p(2) = 1

6
, p(3) = 2

6
, p(4) = 1

2

3.5 p(0) = 2

6
, p(1) = 3

6
, p(3) = 1

6

3.7 p(0) = 3!

27
= 6

27
, p(2) = 3

27
,

p(1) = 1 − 6

27
− 3

27
= 18

27
3.9 a P(Y = 3) = .000125,

P(Y = 2) = .007125,
P(Y = 1) = .135375,
P(Y = 0) = .857375

c P(Y > 1) = .00725

3.11 P(X = 0) = 8

27
, P(X = 1) = 12

27
,

P(X = 2) = 6

27
, P(X = 3) = 1

27
,

P(Y = 0) = 2744

3375
,

P(Y = 1) = 588

3375
,

P(Y = 2) = 14

3375
,

P(Y = 3) = 1

3375
, Z = X + Y ,

P(Z = 0) = 27

125
, P(Z = 1) = 54

125
,

P(Z = 2) = 36

125
, P(Z = 3) = 8

125

3.13 E(Y ) = 1

4
, E(Y 2) = 7

4
, V (Y ) = 27

16
,

cost = 1

4
3.15 a P(Y = 0) = .1106,

P(Y = 1) = .3594,

P(Y = 2) = .3894,
P(Y = 3) = .1406

c P(Y = 1) = .3594
d μ = E(Y ) = 1.56, σ 2 = .7488,

σ = 0.8653
e (−.1706, 3.2906),

P(0 ≤ Y ≤ 3) = 1

3.17 μ = E(Y ) = .889,
σ 2 = V (Y ) = E(Y 2)−[E(Y )]2 = .321,
σ = 0.567, (μ − 2σ ,
μ + 2σ) = (−.245, 2.023),
P(0 ≤ Y ≤ 2) = 1

3.19 C = $85

3.21 13,800.388

3.23 $.31

3.25 Firm I : E (profit) = $60,000
E(total profit) = $120,000

3.27 $510

3.35 .4; .3999

3.39 a .1536;
b .9728

3.41 .000

3.43 a .1681
b .5282

3.45 P(alarm functions) = 0.992

3.49 a .151
b .302

3.51 a .51775
b .4914

3.53 a .0156
b .4219
c 25%
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3.57 $185,000

3.59 $840

3.61 a .672
b .672
c 8

3.67 .07203

3.69 Y is geometric with p = .59

3.73 a .009
b .01

3.75 a .081
b .81

3.81 2

3.83
1

n

(
n − 1

n

)5

3.87 E

(
1

Y

)
= − p ln(p)

1 − p

3.91 $150; 4500

3.93 a .04374
b .99144

3.95 .1

3.97 a .128
b .049
c μ = 15, σ 2 = 60

3.99 p(x) = y!

(r − 1)!(y − r + 1)!
pr q y+1−r ,

y = r − 1, r , r + 1, . . .

3.101 a
5

11

b
r

y0

3.103
1

42
3.105 b .7143

c μ = 1.875,
σ = .7087

3.107 hypergeometric with N = 6, n = 2,
and r = 4.

3.109 a .0238
b .9762
c .9762

3.111 a p(0) = 14

30
, p(1) = 14

30
,

p(2) = 2

30

b p(0) = 5

30
, p(1) = 15

30
,

p(2) = 9

30
, p(3) = 1

30
3.113 P(Y ≤ 1) = .187

3.115 p(0) = 1

5
, p(1) = 3

5
, p(2) = 1

5
3.117 a P(Y = 0) = .553

b E(T ) = 9.5, V (T ) = 28.755,
σ = 5.362

3.119 .016

3.121 a .090
b .143
c .857
d .241

3.123 .1839

3.125 E(S) = 7, V (S) = 700; no

3.127 .6288

3.129 23 seconds

3.131 .5578

3.133 .1745

3.135 .9524

3.137 .1512

3.139 40

3.141 $1300

3.149 Binomial, n = 3 and p = .6

3.151 Binomial, n = 10 and p = .7,
P(Y ≤ 5) = .1503

3.153 a Binomial, n = 5 and p = .1

b Geometric, p = 1

2
c Poisson, λ = 2

3.155 a E(Y ) = 7

3

b V (Y ) = 5

9

c p(1) = 1

6
, p(2) = 2

6
, p(3) = 3

6
3.167 a .64

b C = 10

3.169 d p(−1) = 1/(2k2),
p(0) = 1 − (1/k2), p(1) = 1(2k2)

3.171 (85, 115)

3.173 a p(0) = 1

8
, p(1) = 3

8
, p(2) = 3

8
,

p(3) = 1

8
c E(Y ) = 1.5, V (Y ) = .75,

σ = .866
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3.175 a 38.4
b 5.11

3.177 (61.03, 98.97)

3.179 No, P(Y ≥ 350) ≤ 1

(2.98)2
= .1126.

3.181
p = Fraction defective P(acceptance)

a 0 1
b .10 .5905
c .30 .1681
d .50 .0312
e 1.0 0

3.185 a .2277
b Not unlikely

3.187 a .023
b 1.2
c $1.25

3.189 1 − (.99999)10,000

3.191 V (Y ) = .4

3.193 .476

3.195 a .982
b P(W ≥ 1) = 1 − e−12

3.197 a .9997
b n = 2

3.199 a .300
b .037

3.201 (18.35, 181.65)

3.203 a E[Y (t)] = k(e2λt − eλt )

b 3.2974, 2.139

3.205 .00722

3.207 a p(2) = .084, P(Y ≤ 2) = .125
b P(Y > 10) = .014

3.209 .0837

3.211 3

3.213 a .1192
b .117

3.215 a n[1 + k(1 − .95k)]
b g(k) is minimized at k = 5 and

g(5) = .4262.
c .5738N

Chapter 4

4.7 a P(2 ≤ Y < 5) = 0.591,
P(2 < Y < 5) = .289, so
not equal

b P(2 ≤ Y ≤ 5) = 0.618,
P(2 < Y ≤ 5) = 0.316, so
not equal

c Y is not a continuous random
variable, so the earlier results
do not hold.

4.9 a Y is a discrete random variable
b These values are 2, 2.5, 4, 5.5, 6,

and 7.

c p(2) = 1

8
, p(2.5) = 1

16
,

p(4) = 5

16
, p(5.5) = 1

8
,

p(6) = 1

16
, p(7) = 5

16
d φ.5 = 4

4.11 a c = 1

2

b F(y) = y2

4
, 0 ≤ y ≤ 2

d .75
e .75

4.13 a F(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 y < 0

y2

2
0 ≤ y ≤ 1

y − 1

2
1 < y ≤ 1.5

1 y > 1.5
b .125
c .575

4.15 a For b ≥ 0, f (y) ≥ 0; also,
∞∫

−∞
f (y) = 1

b F(y) = 1 − b

y
, for y ≥ b;

0 elsewhere.

c
b

(b + c)

d
(b + c)

(b + d)

4.17 a c = 3

2

b F(y) = y3

2
+ y2

2
, for 0 ≤ y ≤ 1
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d F(−1) = 0, F(0) = 0, F(1) = 1

e
3

16

f
104

123

4.19 a f (y) =

⎧⎪⎪⎨⎪⎪⎩
0 y ≤ 0
.125 0 < y < 2
.125y 2 ≤ y < 4
0 y ≥ 4

b
7

16

c
13

16

d
7

9
4.21 E(Y ) = .708, V (Y ) = .0487
4.25 E(Y ) = 31/12, V (Y ) = 1.160
4.27 $4.65, .012

4.29 E(Y ) = 60, V (Y ) = 1

3
4.31 E(Y ) = 4
4.33 a E(Y ) = 5.5, V (Y ) = .15

b Using Tchebysheff’s theorem,
the interval is (5, 6.275).

c Yes; P(Y ) = .5781
4.37 E(Y ) = 0
4.39 .5; .25

4.45 a P(Y < 22) = 2

5
= .4

b P(Y > 24) = 1

5
= .2

4.47 a P(Y > 2) = 3

4

b c0 + c1

[
4

3
+ 9

]
4.49

3

4

4.51
1

3
4.53 a

1

8

b
1

8

c
1

4

4.55 a
2

7
b μ = .015, V (Y ) = .00041

4.57 E
(π

6
D3

)
= .0000065π ,

V
(π

6
D3

)
= .0003525π 2

4.59 a z0 = 0

b z0 = 1.10
c z0 = 1.645
d z0 = 2.576

4.63 a P(Z > 1) = .1587
b The same answer is obtained.

4.65 $425.60
4.67 μ = 3.000 in.
4.69 .2660
4.71 a .9544

b .8297
4.73 a .406

b 960.5 mm
4.75 μ = 7.301
4.77 a 0.758

b 22.2
4.87 a φ.05 = .70369.

b φ.05 = .35185
4.89 a β = .8

b P(Y ≤ 1.7) = .8806
4.91 a .1353

b 460.52 cfs
4.93 a .5057

b 1936
4.97 .3679
4.99 a .7358

4.101 a E(Y ) = 1.92
b P(Y > 3) = .21036
d P(2 ≤ Y ≤ 3) = .12943

4.103 E(A) = 200π , V (A) = 200,000π2

4.105 a E(Y ) = 3.2, V (Y ) = 6.4
b P(Y > 4) = .28955

4.107 a (0, 9.657), because Y must
be positive.

b P(Y < 9.657) = .95338
4.109 E(L) = 276, V(L) = 47,664

4.111 d
√

β"

(
α + 1

2

)
/"(α) if α > 0

e
1

β(α − 1)
if α > 1,

"(α − 1
2 )√

β"(α)

if α >
1

2
,

1

β2(α − 1)(α − 2)
if α > 2

4.123 a k = 60
b φ.95 = 0.84684

4.125 E(Y ) = 3

5
, V (Y ) = 1

25

4.129 E(C) = 52

3
, V (C) = 29.96

4.131 a .75
b .2357

4.133 a c = 105
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b μ = 3

8
c σ = .1614
d .02972

4.139 m X (t) = exp{t (4−3μ)+(1/2)(9σ 2t2)}
normal, E(X) = 4 − 3μ, V (X) = 9σ 2,
uniqueness of moment-generating
functions

4.141 m(t) = etθ2 − etθ1

t (θ2 − θ1)
4.143 αβ, αβ2

4.145 a
2

5
b

1

(t + 1)
c 1

4.147 σ = 1

2
4.149 1
4.151 The value 2000 is only .53 standard

deviation above the mean. Thus, we
would expect C to exceed 2000
fairly often.

4.153 (6.38, 28.28)
4.155 $113.33
4.157 a F(x) =⎧⎨⎩

0, x < 0
(1/100)e−x/100, 0 ≤ x < 200
1, x ≥ 200

b 86.47
4.159 a F1(y) =⎧⎪⎨⎪⎩

0 y < 0
.1

.1 + .15
= .4 0 ≤ y < 5

1 y ≥ .5

;

F2(y) =

⎧⎪⎪⎨⎪⎪⎩
0 y < 0
4y2/3 0 ≤ y < .5
(4y − 1)/3 .5 ≤ y < 1
1 y ≥ 1

b F(y) = 0.25F1(y) + 0.75F2(y)

c E(Y ) = .533, V (Y ) = .076
4.161 φ.9 = 85.36
4.163 1 − (.927)5 = .3155
4.165 a c = 4

b E(Y ) = 1, V (Y ) = .5

c m(t) = 1

(1 − .5t)2
, t < 2

4.167 E(Y k) = "(α + β)"(k + α)

"(α)"(k + α + β)
4.169 e−2.5 = .082

4.171 a E(W ) = 1

2
, V (W ) = 1

4
b 1 − e−6

4.173 f (r) = 2λπre−λπr2
, r > 0

4.175
√

2 = 1.414
4.179 k = (.4)1/3 = .7368
4.181 m(t) = exp(t2/2); 0; 1
4.183 a E(Y ) = 598.74 g

V (Y ) = e22(e16 − 1)10−4

b (0, 3,570,236.1)
c .8020

4.187 a e−2.5 = .082
b .0186

4.189 E(Y ) = 0. Also, it is clear that

V (Y ) = E(Y 2) = 1

n − 1
.

4.191 c 1 − e−4

4.193 150
4.195 a 12

b w = 120

Chapter 5

5.1 a y1

0 1 2

0 1
9

2
9

1
9

y2 1 2
9

2
9 0

2 1
9 0 0

b F(1, 0) = 1

3

5.3

⎛⎝ 4
y1

⎞⎠⎛⎝ 3
y2

⎞⎠⎛⎝ 2
3 − y1 − y2

⎞⎠
⎛⎝ 9

3

⎞⎠ , where

0 ≤ y1, 0 ≤ y2, and y1 + y2 ≤ 3.
5.5 a .1065

b .5
5.7 a .00426

b .8009
5.9 a k = 6

b
31

64

5.11 a
29

32

b
1

4
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5.13 a F

(
1

2
,

1

2

)
= 9

16

b F

(
1

2
, 2

)
= 13

16
c .65625

5.15 a e−1 − 2e−2

b
1

2
c e−1

5.17 .50
5.19 a

y1 0 1 2

p1(y1)
4
9

4
9

1
9

b No
5.21 a Hypergeometric with N = 9,

n = 3, and r = 4.

b
2

3

c
8

15
5.23 a f2(y2) = 3

2
− 3

2
y2

2 , 0 ≤ y2 ≤ 1

b Defined over y2 ≤ y1 ≤ 1 if y2 ≥ 0

c
1

3
5.25 a f1(y1) = e−y1 , y1 > 0;

f2(y2) = e−y2 , y2 > 0
b P(1 < Y1 < 2.5) = P(1 < Y2 <

2.5) = e−1 − e−2.5 = .2858
c y2 > 0
d f (y1|y2) = f1(y1) = e−y1 , y1 > 0
e f (y2|y1) = f2(y2) = e−y2 , y2 > 0
f same
g same

5.27 a f1(y1) = 3(1 − y1)
2, 0 ≤ y1 ≤ 1;

f2(y2) = 6y2(1 − y2), 0 ≤ y2 ≤ 1

b
32

63
c f (y1|y2) = 1

y2
, 0 ≤ y1 ≤ y2,

if y2 ≤ 1

d f (y2|y1) = 2(1 − y2)

(1 − y1)2
,

y1 ≤ y2 ≤ 1 if y1 ≥ 0

e
1

4
5.29 a f2(y2) = 2(1 − y2), 0 ≤ y2 ≤ 1;

f1(y1) = 1 − |y1|, for
−1 ≤ y1 ≤ 1

b
1

3
5.31 a f1(y1) = 20y1(1 − y1)

2, 0 ≤
y1 ≤ 1

b f2(y2) ={
15(1 + y2)

2 y2
2 , −1 ≤ y2 < 0

15(1 − y2)
2 y2

2 , 0 ≤ y2 ≤ 1

c f (y2|y1) = 3
2 y2

2 (1 − y1)
−3,

for y1 − 1 ≤ y2 ≤ 1 − y1
d .5

5.33 a f 1(y1) = y1e−y1 , y1 ≥ 0;
f 2(y2) = e−y2 , y2 ≥ 0

b f (y1|y2) = e−(y1−y2), y1 ≥ y2

c f (y2|y1) = 1/y1, 0 ≤ y2 ≤ y1

5.35 .5
5.37 e−1

5.41
1

4
5.45 No
5.47 Dependent
5.51 a f (y1, y2) = f1(y1) f2(y2) so that

Y1 and Y2 are independent.
b Yes, the conditional probabilities

are the same as the marginal
probabilities.

5.53 No, they are dependent.
5.55 No, they are dependent.
5.57 No, they are dependent.
5.59 No, they are dependent.
5.61 Yes, they are independent.

5.63
1

4
5.65 Exponential, mean 1

5.69 a f (y1, y2) =
(

1

9

)
e−(y1+y2)/3,

y1 > 0, y2 > 0
b P(Y1 + Y2 ≤ 1) =

1 − 4

3
e−1/3 = .0446

5.71 a
1

4

b
23

144

5.73
4

3
5.75 a 2

b .0249
c .0249
d 2
e They are equal.

5.77 a
1

4
;

1

2
b E(Y 2

1 ) = 1/10, V (Y1) = 3

80
,

E(Y 2
2 ) = 3

10
, V (Y2) = 1

20
c −5

4
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5.79 0
5.81 1
5.83 1
5.85 a E(Y1) = E(Y2) = 1 (both

marginal distributions are
exponential with mean 1)

b V (Y1) = V (Y2) = 1
c E(Y1 − Y2) = 0

d E(Y1Y2) = 1 − α

4
, so

Cov(Y1, Y2) = −α

4

e
(

−2

√
2 + α

2
, 2

√
2 + α

2

)
5.87 a E(Y1 + Y2) = ν1 + ν2

b V (Y1 + Y2) = 2ν1 + 2ν2

5.89 Cov(Y1,Y2) = −2

9
. As the value of Y1

increases, the value of Y2 tends to
decrease.

5.91 Cov(Y1,Y2) = 0
5.93 a 0

b Dependent
c 0
d Not necessarily independent

5.95 The marginal distributions for Y1

and Y2 are

y1 −1 0 1 y2 0 1

p1(y1)
1

3

1

3

1

3
p2(y2)

2

3

1

3

Cov(Y1,Y2) = 0
5.97 a 2

b Impossible
c 4 (a perfect positive linear

association)
d −4 (a perfect negative linear

association)
5.99 0

5.101 a −α

4
5.103 E(3Y1 + 4Y2 − 6Y3) = −22,

V (3Y1 + 4Y2 − 6Y3) = 480

5.105
1

9
5.107 E(Y1 + Y2) = 2/3 and

V (Y1 + Y2) = 1

18
5.109 (11.48, 52.68)
5.113 E(G) = 42, V (G) = 25; the value $70

is
70 − 42

5
= 7.2 standard deviations

above the mean, an unlikely value.

5.115 b V (Y ) = 38.99
c The interval is 14.7 ± 2

√
38.99 or

(0, 27.188)
5.117 p1 − p2,

N − n

n(N − 1)
[p1 + p2 − (p1 − p2)

2]

5.119 a .0823

b E(Y1) = n

3
, V (Y1) = 2n

9
c Cov(Y2, Y3) = −n

9

d E(Y2 − Y3) = 0, V (Y2 − Y3) = 2n

3
5.121 a .0972

b .2; .072
5.123 .08953
5.125 a .046

b .2262
5.127 a .2759

b .8031

5.133 a
y2

2

b
1

4

5.135 a
3

2
b 1.25

5.137
3

8
5.139 a nαβ

b λαβ

5.141 E(Y2) = λ

2
, V (Y2) = 2λ2

3
5.143 mU (t) = (1 − t2)−1/2, E(U ) = 0,

V (U ) = 1

5.145
1

3

5.147
11

36
5.149 a f (y1) = 3y2

1 , 0 ≤ y1 ≤ 1

f (y2) = 3

2
(1 − y2

2 ), 0 ≤ y2 ≤ 1

b
23

44
c f (y1|y2) = 2y1

(1 − y2
2 )

, y2 ≤ y1 ≤ 1

d
5

12
5.157 p(y) =(

y + α − 1
y

) (
β

β + 1

)y (
1

β + 1

)α

,

y = 0, 1, 2, . . .

5.161 E(Ȳ − X̄) = μ1 − μ2, V (Ȳ − X̄) =
σ 2

1 /n + σ 2
2 /m
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5.163 b F(y1, y2) =
y1 y2[1 − α(1 − y1)(1 − y2)]

c f (y1, y2) =
1 − α[(1 − 2y1)(1 − 2y2)],
0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1

d Choose two different values for α

with −1 ≤ α ≤ 1.
5.165 a (p1et1 + p2et2 + p3et3)n

b m(t , 0, 0)
c Cov(X1, X2) = −np1 p2

Chapter 6

6.1 a
1 − u

2
, −1 ≤ u ≤ 1

b
u + 1

2
, −1 ≤ u ≤ 1

c
1√
u

− 1, 0 ≤ u ≤ 1

d E(U1) = −1/3, E(U2) =
1/3, E(U3) = 1/6

e E(2Y −1) = −1/3, E(1−2Y ) =
1/3, E(Y 2) = 1/6

6.3 b fU (u) ={
(u + 4)/100, −4 ≤ u ≤ 6
1/10, 6 < u ≤ 11

c 5.5833

6.5 fU (u) = 1

16

(
u − 3

2

)−1/2

,

5 ≤ u ≥ 53

6.7 a fU (u) = 1√
π

√
2

u−1/2e−u/2,

u ≥ 0
b U has a gamma distribution with

α = 1/2 and β = 2 (recall that
"(1/2) = √

π).
6.9 a fU (u) = 2u, 0 ≤ u ≤ 1

b E(U ) = 2/3
c E(Y1 + Y2) = 2/3

6.11 a fU (u) = 4ue−2u , u ≥ 0, a gamma
density with α = 2
and β = 1/2

b E(U ) = 1, V (U ) = 1/2

6.13 fU (u) = F ′
U (u) = u

β2
e−u/β , u > 0

6.15 [−ln(1 − U )]1/2

6.17 a f (y) = αyα−1

θα
, 0 ≤ y ≤ θ

b Y = θU 1/α

c y = 4
√

u. The values are 2.0785,
3.229, 1.5036, 1.5610, 2.403.

6.25 fU (u) = 4ue−2u for u ≥ 0

6.27 a fY (y) = 2

β
we−w2/β , w ≥ 0, which

is Weibull density with m = 2.

b E(Y k/2) = "

(
k

2
+ 1

)
βk/2

6.29 a fW (w) =
1

"
(

3
2

)
(kT )3/2

w1/2e−w/kT w > 0

b E(W ) = 3

2
kT

6.31 fU (u) = 2

(1 + u)3
, u ≥ 0

6.33 fU (u) = 4(80 − 31u + 3u2),
4.5 ≤ u ≤ 5

6.35 fU (u) = − ln(u), 0 ≤ u ≤ 1
6.37 a mY1(t) = 1 − p + pet

b mW (t) = E(etW ) = [1− p + pet ]n

6.39 fU (u) = 4ue−2u , u ≥ 0
6.43 a Ȳ has a normal distribution

with mean μ and variance σ 2/n
b P(|Ȳ − μ| ≤ 1) = .7888
c The probabilities are .8664, .9544,

.9756. So, as the sample size
increases, so does the probability
that P(|Ȳ − μ| ≤ 1)

6.45 c = $190.27
6.47 P(U > 16.0128) = .025
6.51 The distribution of Y1 + (n2 − Y2) is

binomial with n1 + n2 trials and success
probability p = .2

6.53 a Binomial (nm, p) where
ni = m

b Binomial (n1 = n2 + · · · nn , p)
c Hypergeometric (r = n,

N = n1 + n2 + · · · nn)
6.55 P(Y ≥ 20) = .077
6.65 a f (u1, u2) =

1

2π
e−[u2

1+(u2−u1)2]/2 =
1

2π
e−(2u2

1−2u1u2+u2
2)/2

b E(U1) = E(Z1) = 0,
E(U2) = E(Z1 + Z2) = 0,
V (U1) = V (Z1) = 1,
V (U2) = V (Z1 + Z2) =
V (Z1) + V (Z2) = 2,
Cov(U1, U2) = E(Z 2

1) = 1
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c Not independent since
ρ 7= 0.

d This is the bivariate normal
distribution with μ1 = μ2 = 0,

σ 2
1 = 1, σ 2

2 = 2, and ρ = 1√
2

6.69 a f (y1, y2) = 1

y2
1 y2

2

, y1 > 1,

y2 > 1
e No

6.73 a g(2)(u) = 2u, 0 ≤ u ≤ 1
b E(U2) = 2/3, V (U2) = 1/18

6.75 (10/15)5

6.77 a
n!

( j − 1)!(k − 1 − j)!(n − k)!
y j−1

j [yk − y j ]k−1− j [θ − yk]n−k

θ n
,

0 ≤ y j < yk ≤ θ

b
(n − k + 1) j

(n + 1)2(n + 2)
θ 2

c
(n − k + j + 1)(k − j)

(n + 1)2(n + 2)
θ 2

6.81 b 1 − e−9

6.83 1 − (.5)n

6.85 .5
6.87 a g(1)(y) = e−(y−4), y ≥ 4

b E(Y(1)) = 5

6.89 fR(r) = n(n − 1)r n−2(1 − r),
0 ≤ r ≤ 1

6.93 f (w) = 2

3

(
1√
w

− w

)
, 0 ≤ w ≤ 1

6.95 a fU1(u) =

⎧⎪⎨⎪⎩
1

2
0 ≤ u ≤ 1

1

2u2
u > 1

b fU2(u) = ue−u , 0 ≤ u
c Same as Ex. 6.35.

6.97 p(W = 0) = p(0) = .0512,
p(1) = .2048, p(2) = .3264,
p(3) = .2656, p(4) = .1186,
p(5) = .0294, p(6) = .0038,

p(7) = .0002
6.101 fU (u) = 1, 0 ≤ u ≤ 1 Therefore, U has

a uniform distribution on (0, 1)

6.103
1

π(1 + u2
1)

, ∞ < u1 < ∞

6.105
1

B(α, β)
uβ−1(1 − u)α−1, 0 < u < 1

6.107 fU (u) =

⎧⎪⎪⎨⎪⎪⎩
1

4
√

u
0 ≤ u < 1

1

8
√

u
1 ≤ u ≤ 9

6.109 P(U = C1 − C3) = .4156;
P(U = C2 − C3) = .5844

Chapter 7

7.9 a .7698
b For n = 25, 36, 69, and 64, the

probabilities are (respectively)
.8664, .9284, .9642, .9836.

c The probabilities increase with n.

d Yes
7.11 .8664
7.13 .9876
7.15 a E(X̄ − Ȳ ) = μ1 − μ2

b V (X̄ − Ȳ ) = σ 2
1 /m + σ 2

2 /n
c The two sample sizes should be at

least 18.
7.17 P

(∑6
i=1 Z 2

i ≤ 6
)

= .57681

7.19 P(S2 ≥ .065) = .10
7.21 a b = 2.42

b a = .656
c .95

7.27 a .17271
b .23041
d .40312

7.31 a 5.99, 4.89, 4.02, 3.65, 3.48, 3.32
c 13.2767
d 13.2767/3.32 ≈ 4

7.35 a E(F) = 1.029
b V (F) = .076
c 3 is 7.15 standard deviations above

this mean; unlikely value.
7.39 a normal, E(θ̂) = θ =

c1μ1 + c2μ2 + · · · + ckμk

V (θ̂) =
(

c2
1

n1
+ c2

2

n2
+ · · · + c2

k

nk

)
σ 2

b χ 2 with n1 + n2 + · · · + nk − k df
c t with n1 + n2 + · · · + nk − k df

7.43 .9544
7.45 .0548
7.47 153
7.49 .0217
7.51 664
7.53 b Ȳ is approximately normal: .0132.
7.55 a random sample; approximately 1.

b .1271
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7.57 .0062
7.59 .0062
7.61 n = 51
7.63 56 customers
7.65 a Exact: .91854; normal

approximation: .86396.
7.67 a n = 5 (exact: .99968;

approximate: .95319); n = 10
(exact: .99363; approximate:
.97312); n = 15 (exact: .98194;
approximate: .97613); n = 20
(exact: .96786; approximate:
.96886)

7.71 a n > 9
b n > 14, n > 14, n > 36, n > 36,

n > 891, n > 8991
7.73 .8980
7.75 .7698
7.77 61 customers
7.79 a Using the normal approximation:

.7486.
b Using the exact binomial

probability: .729.
7.81 a .5948

b With p = .2 and .3, the
probabilities are .0559 and .0017
respectively.

7.83 a .36897
b .48679

7.85 .8414
7.87 .0041
7.89 μ = 10.15
7.91 Since X , Y , and W are normally

distributed, so are X̄ , Ȳ , and W̄ .

μU = E(U ) = .4μ1+.2μ2+.4μ3

σ 2
U = V (U ) = .16

(
σ 2

1

n1

)
+ .04

(
σ 2

2

n2

)
+ .16

(
σ 2

3

n3

)
7.95 a F with num. df = 1, denom. df = 9

b F with num. df = 9, denom. df = 1
c c = 49.04

7.97 b .1587
7.101 .8413
7.103 .1587
7.105 .264

Chapter 8

8.3 a B(θ̂) = aθ + b − θ = (a − 1)θ + b
b Let θ̂∗ = (θ̂ − b)/a

8.5 a MSE(θ̂∗) = V (θ̂∗) = V (θ̂)/a2

8.7 a = σ 2
2 − c

σ 2
1 + σ 2

2 − 2c
8.9 Ȳ − 1

8.11 θ̂3 − 9θ̂2 + 54
8.13 b [n2/(n − 1)](Y/n)[1 − (Y/n)]

8.15 a
(

1

3n − 1

)
β

b MSE(β̂) = 2

(3n − 1)(3n − 2)
β2

8.17 a (1 − 2p)/(n + 2)

b
np(1 − p) + (1 − 2p)2

(n + 2)2

c p will be close to .5.
8.19 MSE(θ̂ ) = β2

8.21 11.5 ± .99
8.23 a 11.3 ± 1.54

b 1.3 ± 1.7
c .17 ± .08

8.25 a −.7
b .404

8.27 a .601 ± .031
8.29 a −.06 ± .045

8.31 a −.03 ± .041
8.33 .7 ± .205
8.35 a 20 ± 1.265

b −3 ± 1.855, yes
8.37 1020 ± 645.1

8.39
(

2Y

9.48773
,

2Y

.71072

)
8.41 a (Y 2/5.02389, Y 2/.0009821)

b Y 2/.0039321
c Y 2/3.84146

8.43 b [Y(n)](.95)−1/n

8.45 a Y /.05132
b 80%

8.47 c (2.557, 11.864)
8.49 c (3.108, 6.785)
8.57 .51 ± .04
8.59 a .78 ± .021
8.61 (15.46, 36.94)
8.63 a .78 ± .026 or (.754, .806)
8.65 a .06 ± .117 or (−.057, .177)
8.67 a 7.2 ± .751

b 2.5 ± .738
8.69 .22 ± .34 or (−.12, .56)
8.71 n = 100
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8.73 n = 2847
8.75 n = 136
8.77 n = 497
8.79 a n = 2998

b n = 1618
8.81 60.8 ± 5.701
8.83 a 3.4 ± 3.7

b .7 ± 3.32
8.85 −1 ± 4.72
8.87 (−.624, .122)
8.91 (−84.39, −28.93)

8.93 a 2X̄ + Ȳ ± 1.96σ

√
4

n
+ 3

m

b 2X̄ + Ȳ ± tα/2 S

√
4

n
+ 3

m
, where

S2 =
∑

(Yi − Ȳ )2 + 1/3
∑

(X i − X̄)2

n + m − 2
8.95 (.227, 2.196)

8.99 a

√
(n − 1)S2

χ 2
1−α

b

√
(n − 1)S2

χ 2
α

8.101 s2 = .0286; (.013 .125)

8.103 (1.407, 31.264); no
8.105 1 − 2(.0207) = .9586
8.107 765 seeds
8.109 a .0625 ± .0237

b 563
8.111 n = 38,416
8.113 n = 768
8.115 (29.30, 391.15)
8.117 11.3 ± 1.44
8.119 3 ± 3.63
8.121 −.75 ± .77
8.123 .832 ± .015

8.125 a
S2

1

S2
2

× σ 2
2

σ 2
1

b
(

S2
2

S2
1 Fv2,v1,α/2

,
S2

2

S2
1

Fv1,v2,α/2

)
vi = ni − 1, i = 1, 2

8.129 a
2(n − 1)σ 4

n2

8.131 c = 1

n + 1

8.133 b
2σ 4

n1 + n2 − 2

Chapter 9

9.1 1/3; 2/3; 3/5

9.3 b
12n2

(n + 2)(n + 1)2

9.5 n − 1
9.7 1/n
9.9 a X6 = 1

9.23 c need Var(X2i − X2i−1) < ∞
9.25 b .6826

c No
9.31 αβ

9.35 a Ȳn is unbiased for μ.

b V (Ȳn) = 1

n2

∑n

i=1
σ 2

i

9.47
n∑

i=1

ln(Yi ); no

9.57 Yes

9.59 3

[
Ȳ 2 + Ȳ

(
1 − 1

n

)]
9.61

(
n + 1

n

)
Y(n)

9.63 b
3n + 1

3n
Y(n)

9.69 θ̂ = 2Ȳ − 1

1 − Ȳ
, no, not MVUE

9.71 σ̂ 2 = m ′
2 = 1

n

∑n

i=1
Y 2

i .

9.75 With m ′
2 = 1

n

∑n

i=1
Y 2

i , the MOM

estimator of θ is θ̂ = 1 − 2m ′
2

4m ′
2 − 1

.

9.77
2

3
Ȳ

9.81 Ȳ 2

9.83 a θ̂ = 1

2

(
Y(n) − 1

)
b

(
Y(n)

)2
/12

9.85 a θ̂ = 1

α
Ȳ

b E(θ̂) = θ , V (θ̂) = θ2/(nα)

d
∑n

i=1 Yi

e
(

2
∑n

i=1 Yi

31.4104
,

2
∑n

i=1 Yi

10.8508

)
9.87 p̂A = .30, p̂B = .38

p̂C = .32; −.08 ± .1641
9.91 Y(n)/2
9.93 a Y(1)

c [(α/2)1/2nY(1), (1 − (α/2))1/2nY(1)]
9.97 a 1/Ȳ

b 1/Ȳ
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9.99 p̂ ± zα/2

√
p̂(1 − p̂)

n

9.101 exp(−Ȳ ) ± zα/2

√
Ȳ exp(−2Ȳ )

n

9.103
1

n

n∑
i=1

Y 2
i

9.105 σ̂ 2 = $(Yi − μ)2

n
9.107 exp(−t/Ȳ )

9.109 a N̂1 = 2Ȳ − 1

b
N 2 − 1

3n
9.111 252 ± 85.193

Chapter 10

10.3 a c = 11
b .596
c .057

10.5 c = 1.684
10.7 a False

b False
c True
d True
e False
f i True

ii True
iii False

10.17 a H0: μ1 = μ2, Ha : μ1 > μ2

c z = .075
10.21 z = 3.65, reject H0

10.23 a-b H0: μ1 − μ2 = 0 vs.
Ha : μ1 − μ2 7= 0, which
is a two–tailed test.

c z = −.954, which does
not lead to a rejection
with α = .10.

10.25 |z| = 1.105, do not reject
10.27 z = −.1202, do not reject
10.29 z = 4.47
10.33 z = 1.50, no
10.35 z = −1.48 (1 = homeless), no
10.37 approx. 0 (.0000317)
10.39 .6700
10.41 .025
10.43 a .49

b .1056
10.45 .22 ± .155 or (.065, .375)
10.47 .5148
10.49 129.146, yes
10.51 z = 1.58 p–value = .1142, do not

reject
10.53 a z = −.996, p–value = .0618

b No
c z = −1.826, p–value = .0336
d Yes

10.55 z = −1.538; p–value = .0616; fail to
reject H0 with α = .01

10.57 z = −1.732; p–value = .0836
10.63 a t = −1.341, fail to reject H0

10.65 a t = −3.24, p–value < .005, yes
b Using the Applet, .00241
c 39.556 ± 3.55

10.67 a t = 4.568 and t.01 = 2.821 so
reject H0.

b The 99% lower confidence bound

is 358 − 2.821
54√
10

= 309.83.

10.69 a t = −1.57, .10 < p–value <.20,
do not reject; using applet,
p–value = .13008

i −t.10 = −1.319 and
−t.05 = −1.714;
.10 < p–value < .20.

ii Using the Applet,
2P(T < −1.57) =
2(.06504) = .13008.

10.71 a ȳ1 = 97.856, s2
1 = .3403,

ȳ2 = 98.489, s2
2 = .3011,

t = −2.3724, −t.01 = −2.583,
−t.025 = −2.12, so .02 < p–value
< .05

b Using Applet, .03054
10.73 a t = 1.92, do not reject

.05 < p–value < .10; applet
p–value = .07084

b t = .365, do not reject p–value
> .20; applet p–value = .71936

10.75 t = −.647, do not reject
10.77 a t = −5.54, reject, p–value < .01;

applet p–value approx. 0
b Yes
c t = 1.56, .10 < p–value < .20;

applet p–value = .12999
d Yes

10.79 a χ 2 = 12.6, do not reject
b .05 < p–value < .10
c Applet p–value = .08248
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10.83 a σ 2
1 7= σ 2

2

b σ 2
1 < σ 2

2

c σ 2
1 > σ 2

2

10.85 χ 2 = 22.45, p–value < .005; applet
p–value = .0001

10.89 a .15
b .45
c .75
d 1

10.91 a Reject if Ȳ >= 7.82.
b .2611, .6406, .9131, .9909

10.93 n = 16
10.95 a U = 2

β0

∑4
i=1 Yi has χ 2

(24)

distribution under H0: reject H0

if U > χ2
α

b Yes
10.97 d Yes, is UMP

10.99 a
n∑

i=1

Yi ≥ k

b Use Poisson table to find k such
that P(

∑
Yi ≥ k) = α

c Yes

10.101 a
n∑

i=1

Yi < c

b Yes
10.103 a Reject H0 if Y(n) ≤ θ0

n
√

α

b Yes

10.107 χ 2 = (n − 1)S2
1 + (m − 1)S2

2

σ 2
0

has

χ 2
(n+m−2) distribution under H0;

reject if χ 2 > χ2
α

10.109 a λ = (X̄)m(Ȳ )m(
m X̄ + nȲ

m + n

)m+n

b X̄/Ȳ distributed as F with 2m and
2n degrees of freedom

10.115 a True
b False
c False
d True
e False
f False
g False
h False
i True

10.117 a t = −22.17, p–value < .01
b −.0105 ± .001
c Yes
d No

10.119 a H0: p = .20, Ha : p > .20
b α = .0749

10.121 z = 5.24, p–value approx. 0
10.123 a F = 2.904, no

b (.050, .254)
10.125 a t = −2.657, .02 < p–value < .05

b −4.542 ± 3.046
10.127 T =

(X̄+Ȳ−W̄ )−(μ1−μ2−μ3){(
1+a+b
n(3n−3)

)[∑
(Xi −X̄)2+ 1

a
∑

(Yi −Ȳ )2+ 1
b

∑
(Wi −W̄ )2

]}1/2

with (3n − 3) degrees of freedom

10.129 λ =
(∑n

i=1 (yi − y(1))

nθ1,0

)n

×

exp

[
−

∑n
i=1 (yi − y(1))

θ1,0
+ n

]
.

Chapter 11

11.3 ŷ = 1.5 − .6x
11.5 ŷ = 21.575 + 4.842x
11.7 a The relationship appears to be

proportional to x2.
b No
c No, it is the best linear model.

11.9 b ŷ = −15.45 + 65.17x
d 108.373

11.11 β̂1 = 2.514
11.13 a The least squares line is

ŷ = 452.119 − 29.402x
11.17 a SSE = 18.286;

S2 = 18.286/6 = 3.048
b The fitted line is

ŷ = 43.35 + 2.42x∗. The same

answer for SSE (and thus S2) is
found.

11.19 a The least squares line is:
ŷ = 3.00 + 4.75x

c s2 = 5.025
11.23 a t = −5.20, reject H0

b .01 < p–value < .02
c .01382
d (−.967, −.233)

11.25 a t = 3.791, p–value < .01
b Applet p–value = .0053
c Reject
d .475 ± .289
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11.29 T = β̂1 − γ̂1

S

√(
1

Sxx
+ 1

Scc

) , where S =

(SSEY + SSEW )/(n + m − 4).
H0 is rejected in favor of Ha for large
values of |T |.

11.31 t = 73.04, p–value approx. 0, H0 is
rejected

11.33 t = 9.62, yes
11.35 x∗ = x̄ .
11.37 (4.67, 9.63)
11.39 25.395 ± 2.875
11.41 b (72.39, 75.77)
11.43 (59.73, 70.57)
11.45 (−.86, 15.16)
11.47 (.27, .51)
11.51 t = 9.608, p–value < .01
11.53 a r 2 = .682

b .682
c t = 4.146, reject
d Applet p–value = .00161

11.57 a sign for r
b r and n

11.59 r = −.3783
11.61 .979 ± .104
11.63 a β̂1 = −.0095, β̂0 = 3.603 and

α̂1 = −(−.0095) = .0095,
α̂0 = exp(3.603) = 36.70.
Therefore, the prediction equation
is ŷ = 36.70e−.0095x .

b The 90% CI for α0 is(
e3.5883, e3.6171

) = (36.17, 37.23)
11.67 ŷ = 2.1 − .6x
11.69 a ŷ = 32.725 + 1.812x

b ŷ = 35.5625 + 1.8119x − .1351x2

11.73 t = 1.31, do not reject

11.75 21.9375 ± 3.01
11.77 Following Ex. 11.76, the 95%

PI = 39.9812 ± 213.807
11.79 21.9375 ± 6.17
11.83 a F = 21.677, reject

b SSER = 1908.08
11.85 a F = 40.603, p–value < .005

b 950.1676
11.87 a F = 4.5, F1 = 9.24, fail to

reject H0

c F = 2.353, F1 = 2.23, reject H0

11.89 a True
b False
c False

11.91 F = 10.21
11.93 90.38 ± 8.42
11.95 a ŷ = −13.54 − 0.053x

b t = −6.86
c .929 ± .33

11.97 a ŷ = 1.4825+ .5x1 + .1190x2 − .5x3

b ŷ = 2.0715
c t = −13.7, reject
d (1.88, 2.26)
e (1.73, 2.41)

11.99 If −9 ≤ x ≤ 9, choose n/2 at x = −9
and n/2 at x = 9.

11.101 a ŷ = 9.34+2.46x1 + .6x2 + .41x1x2

b 9.34 , 11.80
d For bacteria A, ŷ = 9.34. For

bacteria B, ŷ = 11.80. The
observed growths were 9.1 and
12.2, respectively.

e 12.81 ± .37
f 12.81 ± .78

11.107 a r = .89
b t = 4.78, p–value <.01, reject

Chapter 12

12.1 n1 = 34, n2 = 56
12.3 n = 246, n1 = 93, n2 = 154
12.5 With n = 6, three rats should receive

x = 2 units and three rats should
receive x = 5 units.

12.11 a This occurs when ρ > 0.
b This occurs when ρ = 0.
c This occurs when ρ < 0.
d Paired better when ρ > 0,

independent better when ρ < 0

12.15 a t = 2.65, reject
12.17 a μi

12.31 a μi

b μi ,
1

n
[σ 2

P + σ 2]

c μ1 − μ2, 2σ 2/n, normal
12.35 a t = −4.326, .01 < p–value

< .025
b −1.58 ± 1.014
c 65 pairs

12.37 k1 = k3 = .25; k2 = .50
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Chapter 13

13.1 a F = 2.93, do not reject
b .109
c |t | = 1.71, do not reject, F = t2

13.7 a F = 5.2002, reject
b p–value = .01068

13.9 SSE = .020; F = 2.0, do not
reject

13.11 SST = .7588; SSE = .7462;
F = 19.83, p–value < .005, reject

13.13 SST = 36.286; SSE = 76.6996;
F = 38.316, p–value < .005, reject

13.15 F = 63.66, yes, p–value < .005
13.21 a −12.08 ± 10.96

b Longer
c Fewer degrees of freedom

13.23 a 1.568 ± .164 or (1.404, 1.732); yes
b (−.579, −.117); yes

13.25 .28 ± .102
13.27 a 95% CI for μA: 76 ± 8.142

or (67.868, 84.142)
b 95% CI for μB : 66.33 ± 10.51 or

(55.82, 76.84)
c 95% CI for μA − μB :

9.667 ± 13.295
13.29 a 6.24 ± .318

b −.29 ± .241
13.31 a F = 1.32, no

b (−.21, 4.21)
13.33 (1.39, 1.93)
13.35 a 2.7 ± 3.750

b 27.5 ± 2.652
13.37 a μ

b Overall mean
13.39 b (2σ 2)/b
13.41 a F = 3.11, do not reject

b p–value > .10
c p–value = .1381
d s2

D = 2MSE
13.45 a F = 10.05; reject

b F = 10.88; reject
13.47

Source df SS MS F
Treatments 3 8.1875 2.729 1.40
Blocks 3 7.1875 2.396 1.23
Error 9 17.5625 1.95139
Total 15 32.9375

F = 1.40, do not reject

13.49 F = 6.36; reject
13.53 The 95% CI is 2 ± 2.83.
13.55 The 95% CI is .145 ± .179.
13.57 The 99% CI is −4.8 ± 5.259.
13.59 n A ≥ 3
13.61 b = 16; n = 48
13.63 Sample sizes differ.
13.69 a β0 + β3 is the mean response to

treatment A in block III.
b β3 is the difference in mean

responses to chemicals A and D in
block III.

13.71 F = 7; H0 is rejected
13.73 As homogeneous as possible within

blocks.
13.75 b F = 1.05; do not reject
13.77 a A 95% CI is .084 ± .06 or

(.024, .144).
13.79 a 16

b 135 degrees of freedom left for
error.

c 14.14
13.81 F = 7.33; yes; blocking induces loss in

degrees of freedom for estimating σ 2;
could result in sight loss of information
if block to block variation is small

13.83 a

Source df SS MS F
Treatments 2 524,177.167 262,088.58 258.237
Blocks 3 173,415 57,805.00 56.95
Error 6 6,089.5 1,014.9167
Total 11 703,681.667

b 6
c Yes, F = 258.19, p–value < .005
d Yes, F = 56.95, p–value < .005
e 22.527
f −237.25 ± 55.13

13.85 a SST = 1.212, df = 4
SSE = .571, df = 22
F = 11.68; p–value < .005

b |t | = 2.73; H0 is rejected; 2(.005)
< p–value < 2(.01).

13.87 Each interval should have confidence
coefficient 1 − .05/4 = .9875 ≈ .99;
μA − μD : .320 ± .251
μB − μD : .145 ± .251
μC − μD : .023 ± .251
μE − μD : −.124 ± .251
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13.89 b σ 2
β

c σ 2
β = 0

13.91 a μ; σ 2
B + 1

k σ 2
ε

b σ 2
β + (

b
k−1

) ∑k
i=1 τ 2

i

c σ 2
ε + kσ 2

B

d σ 2
ε

Chapter 14

14.1 a X 2 = 3.696, do not reject
b Applet p–value = .29622

14.3 X 2 = 24.48, p–value < .005
14.5 a z = 1.50, do not reject

b Hypothesis suggested by observed
data

14.7 .102 ± .043
14.9 a .39 ± .149

b .37 ± .187, .39 ± .182, .48 ± .153
14.11 X 2 = 69.42, reject
14.13 a X 2 = 18.711, reject

b p–value < .005
c Applet p–value = .00090

14.15 b X 2 also multiplied by k
14.17 a X 2 = 19.0434 with a p–value of

.004091.
b X 2 = 60.139 with a p–value of

approximately 0.
c Some expected counts < 5

14.19 a X 2 = 22.8705, reject
b p–value < .005

14.21 a X 2 = 13.99, reject
b X 2 = 13.99, reject
c X 2 = 1.36, do not reject

14.25 b X 2 = 19.1723, p-value =
0.003882, reject

c −.11 ± .135
14.27 X 2 = 38.43, yes
14.29 a X 2 = 14.19, reject
14.31 X 2 = 21.51, reject
14.33 X 2 = 6.18, reject; .025 < p–value

< .05
14.35 a Yes

b p–value = .002263
14.37 X 2 = 8.56, df = 3; reject
14.41 X 2 = 3.26, do not reject
14.43 X 2 = 74.85, reject

Chapter 15

15.1

Rejection region α

M ≤ 6 or M ≥ 19 P(M ≤ 6) + P(M ≥ 19) = .014
M ≤ 7 or M ≥ 18 P(M ≤ 7) + P(M ≥ 18) = .044
M ≤ 8 or M ≥ 17 P(M ≤ 8) + P(M ≥ 17) = .108

15.3 a m = 2, yes
b Variances not equal

15.5 P(M ≤ 2 or M ≥ 8) = .11, no
15.7 a P(M ≤ 2 or M ≥ 7) = .18, do

not reject
b t = −1.65, do not reject

15.9 a p–value = .011, do not reject
15.11 T = min(T +, T −), T = T −.
15.13 a T = 6, .02 < p–value < .05

b T = 6, 0.1 < p–value < .025
15.15 T = 3.5, .025 < p–value < .05
15.17 T = 11, reject
15.21 a U = 4; p–value = .0364

b U = 35; p–value = .0559
c U = 1; p–value = .0476

15.23 U = 9, do not reject
15.25 z = −1.80, reject
15.27 U = 0, p–value = .0096
15.29 H = 16.974, p-value < .001
15.31 a SST = 2586.1333; SSE =

11,702.9; F = 1.33, do not
reject

b H = 1.22, do not reject
15.33 H = 2.03, do not reject
15.37 a No, p–value = .6685

b Do not reject H0

15.39 Fr = 6.35, reject
15.41 a Fr = 65.675, p–value < .005,

reject
b m = 0, P(M = 0) = 1/256,

p–value = 1/128
15.45 The null distribution is given by

P(Fr = 0) = P(Fr = 4) = 1/6 and
P(Fr = 1) = P(Fr = 3) = 1/3.

15.47 R = 6, no
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15.49 a .0256
b An usually small number of runs

(judged at α = .05) would imply a
clustering of defective items in
time; do not reject.

15.51 R = 13, do not reject
15.53 rS = .911818; yes.
15.55 a rS = −.8449887

b Reject
15.57 rS = .6768, use two-tailed test, reject
15.59 rS = 0; p–value < .005

15.61 a Randomized block design
b No
c p–value = .04076, yes

15.63 T = 73.5, do not reject, consistent with
Ex. 15.62

15.65 U = 17.5, fail to reject H0

15.67 .0159
15.69 H = 7.154, reject
15.71 Fr = 6.21, do not reject
15.73 .10

Chapter 16

16.1 a β(10, 30)

b n = 25
c β(10, 30), n = 25
d Yes
e Posterior for the β(1, 3) prior.

16.3 c Means get closer to .4, std dev
decreases.

e Looks more and more like normal
distribution.

16.7 a
Y + 1

n + 4

b
np + 1

n + 4
;

np(1 − p)

(n + 4)2

16.9 b
α + 1

α + β + Y
;

(α + 1)(β + Y − 1)

(α + β + Y + 1)(α + β + Y )

16.11 e Ȳ

(
nβ

nβ + 1

)
+ αβ

(
1

nβ + 1

)

16.13 a (.099, .710)
b Both probabilities are .025
c P(.099 < p < .710) = .95
h Shorter for larger n.

16.15 (.06064, .32665)
16.17 (.38475, .66183)
16.19 (5.95889, 8.01066)
16.21 Posterior probabilities of null and

alternative are .9526 and .0474,
respectively, accept H0.

16.23 Posterior probabilities of null and
alternative are .1275 and .8725,
respectively, accept Ha .

16.25 Posterior probabilities of null and
alternative are .9700 and .0300,
respectively, accept H0.
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A
Acceptance region, 511
Addition of matrices, 821–822
Additive law of probability,

58, 699
for conditional probabilities, 61
effect of mutually exclusive

events on, 63
Allometric equations, 606
Alternative hypothesis, 489–490

choice of, 500, 519
lower-tail, 499
simple, 542, 555
small-sample test, 521
two-tailed, 499, 500
upper-tail, 497

Analysis
categorical data, 713–740
analysis of variance (ANOVA),

661–712
assumptions for, 670
F test and, 665, 666, 670
introductory overview of,

661–662
linear models for, 701–705
one-way layouts and, 667–679
procedure for, 662–667
randomized block design and,

688–695
selecting the sample size for,

696–698
sums of squares, 679–680

Analysis of variance table, 671
for one-way layouts, 671–677
for randomized block design,

689, 690
ANOVA or AOV. See Analysis of

variance

Applets
Bayes’ Rule as a Tree, 72–73
Beta Probabilities and Quantiles,

195, 198, 199, 200, 217,
811–812, 815

Binomial Revision, 805–806, 811
Chi-Square Probabilities and

Quantiles, 357, 365, 366,
533, 718, 719, 724, 738,
768, 773

Comparison of Beta Density
Functions, 194, 197

Comparison of Gamma Density
Functions, 186, 189, 190,
366

ConfidenceIntervalP, 415,
416–417

DiceSample, 348, 349, 350
Fitting a Line Using Least

Squares, 572, 574, 602
F-Ratio Probabilities and

Quantiles, 363, 367, 535,
537, 540, 627, 630, 666,
667, 671, 673, 674,
691, 692, 704

Gamma Probabilities and
Quantiles, 186, 190, 192,
210, 217, 218, 411, 811,
812–813, 815

Hypothesis Testing (for
Proportions), 501–503, 520

Normal Approximation to
Binomial Distribution, 382,
383, 385

Normal Probabilities, 181, 182,
183, 515

Normal Tail Areas and Quantiles,
179, 183, 184

PointbyPoint, 455
Point Estimation, 455
PointSingle, 454–455
Removing Points from

Regression, 639
Sample Size, 352, 373–374
Sampling Distribution of the

Mean, 351
Sampling Distribution of the

Variance, 352
Student’s t Probabilities and

Quantiles, 361, 366, 522,
525, 526, 586, 601, 605,
619, 647, 700

VarianceSize, 353
Arithmetic mean. See Mean
Association between populations,

784–785
Asymptotic normal distribution, 372
Attained significance levels,

513–518, 745–746

B
Balanced layout, 670
Bayes, Thomas, 817
Bayes estimator, 800–805
Bayesian methods, 796–819

credible intervals, 808–813
priors, posteriors, and estimators,

797–808, 816
tests of hypotheses, 813–815

Bayes’ rule, 71–72
Bayes’ Rule as a Tree applet, 72–73
Bell-shaped distribution. See

Normal distribution
Bernoulli probability function, 798
Bernoulli random variable, 166,

322, 462, 466

896
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Beta density function, 194–196
Beta distribution, 194–201

Bayesian priors and posteriors,
799–800, 801, 816

incomplete beta function, 194
mean, 195, 837
moment-generating function, 837
probability function, 837
related to binomial distribution,

195
of the second kind, 343
variance, 195, 837

Beta function
incomplete, 194
related to gamma function, 835

Beta prior distribution, 816
Beta Probabilities and Quantiles

applet, 195, 198, 199, 200,
217, 811–812, 815

Biased estimators, 392, 393
Bayes estimators as, 803, 818
sampling distribution for, 393

Bias of point estimators, 392
Binomial coefficients, 46
Binomial distribution, 100–114

central limit theorem and,
378–385

cumulative form for, 194
formula for, 103
histograms, 104
hypergeometric distribution and,

128
mean, 106–108, 836
moment-generating function, 836
negative, 121–125
normal approximation to,

378–385
tables for, 838–840
variance, 106–108, 836

Binomial expansion, 46,
104, 835

Binomial experiments, 101–102,
103, 280

Binomial Revision applet, 805–806,
811

Binomial probability function
related to incomplete beta

function, 194
tables, 194–195

Bivariate density function, 228, 229,
284

Bivariate distributions, 224–235
transformation method and, 314

Bivariate normal distribution,
283–285

testing for independence in,
598–599

Bivariate probability function,
224–225

Bivariate transformation method,
325–333

Block designs
Latin square, 655
randomized block, 654–655

Block effects, 686
Bonferroni inequality, 62, 699

C
Categorical data

analysis of, 713–740
definition of, 713
chi-square test and, 734–735, 736
experiments with, 713–714
methods for analyzing, 734–735

Cell frequencies, estimating
expected, 717, 723–724, 735

Cell probabilities, testing
hypotheses concerning,
716–721, 735

Central limit theorem, 201,
370–385

binomial distributions and,
378–385

formal statement of, 372
moment-generating functions

and, 377–378
proof of, 377–378
uses for, 370, 378

Central moment, 138, 202
Central tendency, measures of, 9
Chi-square distributions

degrees of freedom for, 322, 434,
716

density function for, 434
hypothesis tests and, 715–716
inferential procedures and, 357
mean and variance for, 837
moment-generating function,

321–322, 837
density function, 837
table of percentage points of,

849–850

Chi-Square Probabilities and
Quantiles applet, 357, 365,
366, 533, 718, 719, 724,
738, 768, 773

Chi-square random variable,
187–188

Chi-square test, 714–716
categorical data analysis and,

734–735, 736
goodness-of-fit and, 717–718,

735
test statistic for, 715
for population variance, 532–533

CM (correction for the mean), 668
Coefficient of determination, 601

multiple, 627
Coefficient of variation, 387
Coefficients

binomial, 46
confidence, 406–407, 437
multinomial, 45

Combinations, 46
Combinatorial analysis, 38–39

counting rules in, 40–51
results from, 41, 44

Comparison of Beta Density
Functions applet, 194, 197

Comparison of Gamma Density
Functions applet, 186, 189,
190, 366

Complement, 24
probability of, 58–59, 66
of rejection region, 511

Complementary events, 66
Completely randomized design,

652, 654
difference from randomized

block design, 654, 686
experimental error, 654

Complete model, 624, 626–628
Completeness, 472
Composite hypothesis, 542
Compound events, 27, 28–29
Conditional density function,

240–241
Conditional discrete probability

function, 239
Conditional distribution,

238–242
Conditional distribution function,

240
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Conditional expectations, 285–290
Conditional mean, 287
Conditional probability, 47, 51–57

binomial experiments and, 102
unconditional probability vs.,

51–52
Conditional probability distribution,

238–242
continuous, 240–241
discrete, 238–239

Confidence bands, 596, 597
Confidence bound, 412, 426, 434,

512
Confidence coefficient, 406–407,

437, 699
simultaneous, 699–700

Confidence intervals, 406–437
Bayesian credible intervals and,

808–809
compared to prediction interval,

596
difference between means and,

427–429, 681–682, 695
for E(Y), 591, 596–597
hypothesis testing and, 511–513
large-sample, 411–421, 483–484
for least-squares estimator, 586
matched-pair experiments and,

647
for mean, 425–434, 681–682
multiple linear regression and,

618
null hypothesis and, 511
one-sided, 407, 426
one-way layouts and, 681–683
overview of, 406–407
for p of binomial distribution, 411
for (p1 – p2), 411
for parameter βi, 585
pivotal method for, 407–409
for population mean, 411, 425,

427, 430
for population variance, 434–435
randomized block design and,

695
relationship with hypothesis

testing, 511
relationship with t test, 525
sample size and, 421–425
simple linear regression and, 586,

590, 591, 596–597

simultaneous, 698–701
small-sample, 425–434
sufficient statistics and, 468
treatment means and, 681–682
two-sided, 407, 426, 511–512
unbiased, 443
upper limits of, 406, 412, 426,

434
width of, 640

ConfidenceIntervalP applet, 415,
416–417

Confidence level, 422
Confidence limits, 406, 408–409,

412, 413, 414, 426
Conjugate priors, 800, 816
Consistency, 448–459
Consistent estimator, 449, 450
Contingency tables, 721–734

degrees of freedom for, 723–724
fixed row or column totals in,

729–734
independent classifications and,

722
maximum-likelihood estimators

and, 722–723
Continuity correction, 382
Continuous distribution, 158–169
Continuous random variables,

157–222
beta distribution, 194–201
conditional distribution,

240–242
definition of, 160
density function of, 161–165
distribution function of, 160–165
expected values of, 170–174,

202–207, 256
gamma distribution, 185–194
independence of, 248
jointly continuous, 226–228
kth moment abut the origin, 202
marginal density functions, 236
median of the distribution of, 176
moment-generating functions of,

202–207
normal distribution, 178–184
Tchebysheff’s theorem and,

207–210
uniform distribution, 174–178

Controlled independent variables,
661

Convergence, 448–449, 451, 453,
457

Correction for the mean (CM), 668
Correlation, 598–604
Correlation coefficient

covariance and, 265
interpreting values of, 601
Kendall’s rank, 783
sample notation for, 599
Spearman’s rank, 783–789

Counting rules, 40–51
Covariance, 264–270

computational formula for, 266
correlation coefficient and,

265–266
definition of, 265
independent variables and, 267
least-squares estimators, 578–579
linear functions and, 271–276
multinomial experiments and,

281–282
zero, 267–268, 284

Cramer-Rao inequality, 448
Credible intervals, 808–813
Critical values

of F statistic, 690–691
of Spearman’s rank correlation

coefficient, 871
of T in Wilcoxon signed-ranks

test, 867–868
Cumulative distribution function,

158
Curvature, detecting, 643

D
Decomposition of events, 70
Degrees of freedom

for chi-square distribution, 322,
434, 716

for contingency tables, 723–724
for F distribution, 362, 626, 665
for sum of squares, 688
for t distribution, 360, 426, 430,

584
DeMorgan’s laws, 25
Density functions

beta, 194–196
bivariate, 228, 229, 284
chi-square, 434
conditional, 240–241
definition of, 161
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Density functions (Continued )
distribution function and, 298,

301, 304
exponential, 188, 371
F distribution, 362
gamma, 185–187
increasing, 311–312
joint, 227, 230, 325
kth-order statistic, 336
log-normal, 218
marginal, 236, 335
minimum/maximum, 333
model selection, 201
multivariate normal, 283–284
normal, 178–179
order statistics and, 333–338
parameters of, 175
posterior, 797–798, 800, 801, 817
properties of, 162
Rayleigh, 318
t distribution, 360, 426
uniform, 175
Weibull, 219, 317, 339

Dependence, measures of, 264
Dependence between two

classification criteria, 721
Dependent events, 53
Dependent random variables, 247,

564
Dependent variables, 4, 247, 564
Design of experiments. See

Experimental design
accuracy-increasing, 641–644
block, 654–656
completely randomized, 652, 654
Latin square, 655
matched pairs, 644–651
optimal, 643
randomized block design,

654–655, 686–696
sample size and, 421–422,

696–698
Determination, coefficient of, 601
Deterministic models, 564–565, 566
Deviations

sum of squares of, 569, 662
total sum of squares of, 662–663
See also Standard deviation

Diagrams, Venn, 23–25
DiceSample applet, 348, 349
Difference between means

ANOVA procedure and, 667–671
confidence intervals and,

427–429, 681–682, 695
experimental design and,

641–642
matched-pairs experiment and,

645–646
one-way layouts and, 681–682
randomized block design and,

695
small-sample tests for, 523–525

Discontinuous functions, 210
Discrete distribution, 87–91, 514
Discrete random variables, 86–156

binomial distribution, 100–114
conditional distribution, 238–239
distribution function for, 1569
definition of, 87
expectation theorems, 94–96
expected values of, 91–100, 256
geometric distribution, 114–121
hypergeometric distribution,

125–130
independence of, 247, 248
mean of, 95, 150
moment-generating functions,

138–143
negative binomial distribution,

121–125
Poisson distribution, 131–138
probability distributions for,

87–91
probability-generating functions

for, 143–146
Tchebysheff’s theorem and,

146–149
variance of, 95–96, 150

Discrete sample space, 28
Disjoint sets, 24
Dispersion, measures of, 9
Distribution functions

conditional, 240
continuous random variable,

160–165
cumulative, 158
density function and, 298, 301,

304
discrete random variable,

158–160
of gamma-distributed random

variable, 185

joint, 226–227
method of, 298–310
multivariate, 232
order statistics and, 333
properties of, 160
random variable, 158–165
of t, 453
U test statistic, 861–866

Distribution functions method,
298–310

summary of, 304
transformation method and,

310–311
Distributions, 4

bell-shaped or normal, 5
beta, 194–201
binomial, 100–114
bivariate, 224–235
bivariate normal, 283–285
chi-square, 187–188
conditional, 238–242
continuous, 158–169
discrete, 87–91
exponential, 837
F, 362
of functions of random variables,

297
gamma, 185–194
geometric, 114–121
hypergeometric, 125–130
joint, 224
log-gamma, 344
log-normal, 218, 344
marginal, 235–238, 288–289
Maxwell, 220
mixed, 211–212
multinomial, 279–283
multivariate normal,

283–285
negative binomial, 121–125
normal, 178–184
Pareto, 310
Poisson, 131–138
relative frequency, 4, 5
sampling, 346–389
standard normal, 318
skewed, 185
Student’s t, 359–361
Tchebysheff’s theorem and,

146–149
uniform, 174–178
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unique characterization of, 138
Weibull, 202, 219

Distributive laws, 25
Dummy variable, 701

E
e−x table, 841
E(Y), 91
Effect of treatment, 678
Efficiency, relative, 445–448
Elementary experimental designs,

651–656
Empirical rule, 10, 11
Empty set, 23
Error of estimation, 297, 399–400

good approximate bound on, 401
probabilistic bound on, 400
sample size and, 421–422

Errors
experimental, 654
mean square, 393
prediction, 594–595, 622–623
random, 568, 584, 633
standard, 397, 399, 645
type I, 491, 493–494
type II, 491, 493–494, 507–510,

541
See also Sum of squares for error

Estimated expected cell frequencies,
723

Estimation, 390–443
error of, 297, 399–400, 422
goodness of, 556
inferences and, 556
least squares method of,

564–639
maximum-likelihood, 476–483
method of moments, 472–476
minimum-variance unbiased,

464–472
one-way layouts and, 681–685
randomized block design and,

695–696
Estimators

Bayes, 800–805
biased, 392, 393, 803, 818
for comparing two population

means, 451
confidence intervals, 406–411
consistency of, 448–459
definition of, 391

efficient, 448
goodness of, 392, 399–406
human, 391
interval, 406
large-sample interval, 411–421
least-squares, 571, 577–583, 633
maximum-likelihood, 477–485
mean square error of, 393
method-of-moments, 472–475,

603
minimum-variance unbiased,

465–472
point, 392–399, 444–464
pooled, 428, 664, 681
of population variance, 357
relative efficiency of, 445–448
sampling distribution of, 444
sequence of, 454
unbiased, 392, 393, 396–399,

445, 577
See also Point estimators

Even functions, 221
Event-composition method, 35,

62–69
examples of using, 62–63, 64–68
steps in process of, 64

Events, 27
complementary, 66
compound, 27, 28–29
decomposition of, 70
dependent, 53
discrete sample space, 29
independent, 53
intersection of two or more,

223–235
intersection of n, 231
mutually exclusive, 58, 59
numerical, 75
random, 20
simple, 27
stochastic, 20
symmetric difference between, 74

Expectations
conditional, 285–290
discontinuous functions and,

210–213
mixed distributions and, 210–213

Expected cell frequencies, 723
Expected values

conditional, 285–290
of a constant, 258

of a constant times function, 95
continuous random variables and,

170–174, 202–207, 256
definition of, 91
discrete random variables and,

91–100, 256
of discontinuous functions,

210–211
for hypergeometric random

variable, 275
independent random variables

and, 259–260
least-squares estimators and,

577–581
linear functions and, 270–279
MST for one-way layout and,

679–681
for mixed distributions, 211–213
multinomial experiments and,

281–282
multivariate distributions and,

255–261
point estimators and, 397, 399
for Poisson random variable,

134–135
posterior, 800
runs test and, 782
special theorems for computing,

258–261
standard deviation as, 93
of sum of functions, 94–95
theorems for multivariate random

variables, 258–259
theorems for univariate random

variables, 95–96
U test statistic and, 761–762
variance as, 94, 171

Experimental design, 78, 421,
640–660

accuracy in, 641–644
completely randomized, 652, 654
elementary designs in, 651–656
Latin square, 655, 662
matched-pairs, 644–651
randomized block, 654–655,

686–696, 703
sample size and, 696–698

Experimental units, 652
Experiments, 26–35

binomial, 101–102, 280
categorical data, 713–714
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Experiments (Continued )
definition of, 27
design of, 78, 421, 640–660
errors associated with, 654
factors and levels of, 652, 661
independent samples, 645
matched-pairs, 641, 644–651,

744–750
multinomial, 279–280, 713–714
paired-difference, 648
probabilistic model for, 26–35
random sampling in, 77–79
single-factor, 652

Exponential density function, 188,
371

Exponential distribution, 186,
188–189, 201, 306–307

mean and variance of, 837
memoryless property of, 189
moment-generating function of, 837

F
F (test)

analysis of variance and, 668
hypothesis testing concerning

variances, 533–540
test statistic, 535

Fr (test statistic), 772
F(y) and f(y), 158, 160, 161, 162
Factor, 652, 656, 661
Factorial moment, 144
Factorization criterion, 461, 468,

470
F distribution, 362–363, 536, 537,

625, 628
degrees of freedom for, 362, 626,

665
table of percentage points of,

851–860
Fit, lack of, 634
Fitted models, 628–630
Fitting a Line Using Least Squares

applet, 572, 574, 602
Fixed block effects model, 686
Fixed row and column totals,

729–731
F-Ratio Probabilities and Quantiles

applet, 363, 367, 535, 537,
540, 627, 630, 666, 667,
671, 673, 674, 691, 692, 704

Frequency distributions, 9–11

Frequency histograms. See
Histograms

Frequentist approach, 814, 818, 819
Friedman, Milton, 771
Friedman test, 771–777

sign test and, 773
summary of, 772

F test
ANOVA and, 665, 666, 670
variance and, 536–537

Functions
of continuous random variables,

expected value of, 170–171
density. See Density function
discontinuous, 210
distribution, 158, 298–310
expected value of, 171
finding distribution of, 297–298
gamma, 185
increasing, 311
likelihood, 542, 553
linear, 270–279, 589–593,

598–604, 616–622
methods for finding probability

distribution of, 297–325
mixed distribution, 211–212
moment-generating, 138–143,

202–206
of normally distributed random

variables, 321–322
probability See Probability

function
probability-generating, 143–146
of random variable, expected

value of, 92–100, 204
of random variable, finding the

moments of, 205
random variable, 296–345
reliability, 343
step, 159
See also Density functions;

Distribution functions;
Probability functions

Functions of random variables,
296–345

distribution functions and,
298–310

finding the distribution of,
297–298

moment-generating functions
and, 298, 318–325

multivariable transformations
and, 325–333

order statistics and, 333–340
transformation method and, 298,

310–318

G
Gamma density function, 185–187

beta function related to, 835
Gamma distribution, 185–194

chi-square random variable,
187–188

exponential density function, 188
log-gamma distribution, 344
mean, 186, 837
moment-generating function, 837
parameters associated with,

185–186
probability function, 837
variance, 186, 837

Gamma Probabilities and Quantiles
applet, 186, 190, 192, 210,
217, 218, 411, 811,
812–813, 815

Gamma random variable, 187–188
chi-square, 187–188
moment-generating function, 203

Geometric distribution, 114–121
mean, 116–117, 836
moment-generating function, 836
probability function, 836
variance, 116–117, 836

Geometric random variable,
116–117

mean and variance of, 150
probability-generating function

for, 145
Geometric representations

joint density function, 229, 230,
231

marginal density function, 238
Geometric series, formula for sum

of, 67, 835
Goodness

of estimation procedure, 556
of point estimators, 392,

399–406
of statistical tests, 540, 556

Goodness-of-fit test, 717–718, 735
Graphical descriptive methods,

3–8
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H
H (test statistic), 766, 767, 768
Hierarchical models, 288–289
High-influence points, 634, 639
Histograms, 4–6

area under, 5–6
binomial distribution, 104
bivariate distribution function,

159
construction of, 4–5
density functions and, 201
exponential distribution, 371
geometric distribution, 115
probability, 89, 94, 104, 115
probabilistic interpretation of,

5–6
relative frequency, 4, 371
three dimensional, 225

Homogeneity test, 731
Hooke’s law, 587
Hypergeometric distribution,

125–130
mean, 127, 836
moment-generating function, 836
probability function, 836
variance, 127, 836

Hypergeometric random variable,
126, 150

Hypothesis
alternative, 489–490, 496, 519
composite, 542
null, 489–490, 496, 519
research, 489–490
simple, 541–542

Hypothesis testing, 488–562
attained significance levels in,

513–518
chi-square distribution and,

715–716
commentary on the theory of,

518–520
confidence intervals related to,

511–513
elements of statistical tests and,

489–495
errors in, 491, 493–494, 507–510
introductory overview of,

488–489
large samples used in, 496–507
likelihood ratio tests for, 549–556
mean and, 520–530

multiple linear regression and,
618

Neyman–Pearson Lemma and,
542–546

null hypothesis and, 489–490,
624–633

power of, 540–549
reporting results of a test,

513–518
simple linear regression and, 590
small samples used in, 520–530
type II error probabilities in,

507–510
variances and, 530–540

Hypothesis Testing ( for
Proportions) applet,
501–503, 520

Hypothesis tests
acceptance region of, 511
attained significance levels,

513–518
Bayesian, 813–815
for βi , 565
for categorical data, 713–740
for cell probabilities, 716–721,

735
chi-square, 714–716, 717,

734–735
choice of appropriate, 500
elements of, 489–495
errors in, 491, 493–494, 507–510
F test, 530–533, 665
Friedman, 771–777
goodness-of-fit, 717–718, 735
Kruskal–Wallis, 765–771
large-sample, 496–507
least-squares estimator, 585
level of, 491
likelihood ratio, 549–556
Mann–Whitney U, 758–765
most powerful, 542–543
Neyman-Pearson lemma for,

540–549
nonparametric, 741–795
one-tailed, 499
power of, 540–549
p-values in, 513–518
rank-sum, 755–757, 758, 762
rejection region of, 490–491, 499,

500
sign, 744–750

small-sample, 520–530
Spearman rank correlation,

783–789
two-tailed, 499
uniformly most powerful,

544–546
Wilcoxon signed-rank, 750–755
Z-test, 507–510

I
Identity elements, 824–826
Identity matrix, 825
Incomplete beta function, 194
Increasing functions, 311–312
Independence, 247–250

definition of, 247
establishing, 247–248
testing for, 598–599

Independent events, 53
Independent random samples, 653

Mann–Whitney U test for, 756,
758–765

rank-sum test for, 755–757
Independent random variables,

247–255
continuous variables as, 248
covariance of, 267
definition of, 247
moment-generating functions of,

320
Independent samples experiment,

645
Independent variables, 564

controlled, 661
regression of, 566
rescaling, 628
sum of squares for, 356

Indicator variable, 701
Inequality

Bonferroni, 62, 699
Cramer-Rao, 448
Markov, 221

Inference, 2
Inference making, 2, 13–14

Bayesian approach to, 796–819
estimation and, 556
hypothesis testing and, 556
least-squares estimators and,

584–589
multiple linear regression,

616–622
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Inference making (Continued )
probability and, 21–23
simple linear regression, 589–593
statistics and, 347

Integer-valued random variables,
143–144

Integration
limits of, 250
region of, 231, 302

Intersection
of events, 57, 223–224
probability of, 57
of sets, 24

Interval estimate, 391
Interval estimators, 406
Intervals

Bayesian credible, 808–813
prediction, 595–597, 608, 623
See also Confidence intervals

Invariance property, 480
Inverse of distribution function,

306–307
Inverse of a matrix, 826
Inverting a matrix, 829–833

J
Jacobians, 325–333
Joint density function, 227–228

expected values and, 260–261
geometric representations of,

229, 230, 231
order statistics and, 334,

336, 337
transformation method and, 314,

325–330
Joint distribution function, 226–227

for continuous random variables,
227–228

for discrete random variables, 227
order statistics and, 334

Jointly continuous random
variables, 227, 228

Joint probability function, 225–232
Joint probability mass function, 225

K
Kendall’s rank correlation

coefficient, 783
Kruskal–Wallis test, 765–771

rank-sum test and, 768
summary of procedure, 767

kth factorial moment, 144
kth moment of a random variable,

138, 202, 472
kth-order statistic, 336

L
Lack of fit, 634
Large numbers, law of, 451
Large samples

confidence intervals and,
411–421, 483–484

Friedman test for, 772
hypothesis tests and, 496–507
Kruskal–Wallis test for,

766–767
likelihood ratio tests and, 553
Mann–Whitney U test for,

761–762
maximum-likelihood estimators

and, 483–485
sign test for comparing, 746–747
Wilcoxon signed-rank test for,

752–753
Latin square design, 655, 662
Law of large numbers, 451
Law of total probability,

70–75
Laws of probability, 57–62

additive law, 58
multiplicative law, 57
law of total probability, 70–75

Laws of sets
DeMorgan’s, 25
Distributive, 25

Layout, one-way, 653, 662
Least-squares equations, 570,

610–611
general linear model and, 611
solving using matrix inversion,

833
Least-squares estimators

confidence interval for, 586
covariance for, 578–579
expected value for, 577–581
hypothesis test for, 585
inferences concerning parameters

of, 584–589, 616–622
multiple linear regression and,

615–616
notation used for, 577
properties of, 577–583, 616

simple linear regression and, 571,
577–583, 610

unbiased, 577
variance for, 577–581

Least-squares method. See Method
of least squares

Level of a factor, 652, 661
Level of the test, 491
Likelihood estimation. See Method

of maximum likelihood
Likelihood function, 460, 461, 467,

471, 549
Likelihood of the sample, 460–461
Likelihood ratio tests, 549–556

description of, 549–550
large-sample, 553
power of the test and, 553
rejection region of, 550, 552

Linear correlation, simple
coefficient of, 264

Linear dependence, 265
Linear equations

matrix expression for system of
simultaneous, 827–829

solving a system of simultaneous,
833–834

Linear functions
correlation and, 598–604
covariance and, 271–276
expected values and, 270–279
least squares estimators as, 582
inferences concerning, 589–593,

616–622
of model parameters, 589–593,

616–622
of random variables, 270–279
variance and, 270–279

Linear models
analysis of variance using,

701–705
fitting using matrices, 609–615,

628–629
least-squares equations and, 611
randomized block design and,

703
slope of the line in, 642–643
solutions for general linear

model, 611
using for analysis of variance,

710–705
Linear regression models, 566–567
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multiple, 566–567, 569, 609,
615–622

simple, 566, 569, 589–597
Linear statistical models, 566–569

analysis of variance and, 701–705
correlation and, 598–604
definition of, 568
estimating parameters of, 569
inferences about parameters in,

584–593, 616–622
least-squares procedure and,

569–576
matrices used with, 609–615
multiple linear regression,

615–624
predicting values using, 593–597,

622–624
simple linear regression,

577–583, 589–597
test for null hypothesis, 624–633

Location model, 743
Logarithmic series distribution, 739
Log-gamma distribution, 344
Log-normal distribution, 218, 344
Lower confidence bound, 412, 426,

512
Lower confidence limit, 406
Lower-tail alternative, 499
Lower-tail rejection region, 499

M
M (test statistic), 744
Main diagonal, 825
Mann–Whitney U test, 756,

758–765
efficiency of, 762
formula for, 758
large samples and, 761–762
rank-sum test and, 758, 762
runs test and, 781
summaries of, 759–760, 762
usefulness of, 762

Marginal density function,
236–238

Marginal distribution, 235–238,
288–289, 816

continuous, 236
discrete, 236

Marginal probability function, 236
Markov inequality, 221
Matched-pairs experiment, 641

experimental design of, 644–651
sign test for, 744–750
usefulness of, 648
Wilcoxon signed-rank test for,

750–755
Mathematical models. See Models
Matrices, 820–834

addition of, 821–822
algebra dealing with, 821, 823
definition of, 820
dimensions of, 820–821
elements of, 820–821
expression for a system of

simultaneous linear
equations, 827–829

fitting linear models using,
609–615, 628–629

identity elements of, 824–826
inverse of, 826
inverting, 829–833
main diagonal of, 825
multiplication of, 822–824
real number multiplication of,

822
solving system of simultaneous

linear equations using,
833–834

square, 825
transpose of, 827

Matrix algebra, 821, 823
identity elements in, 825

Maximum-likelihood estimators
(MLEs), 477–485

chi-square computations
and, 716

contingency tables and, 722–723
invariance property of, 480
large-sample properties of,

483–485
See also Method of maximum

likelihood
Maximum of random variables, 333
Maxwell distribution, 220
Mean

beta distribution, 195, 837
binomial distribution, 106–108,

836
chi-square distribution, 837
comparison of, 427–428,

667–671
conditional, 286

confidence intervals for,
425–434, 681–682

correction for, 668
difference in, 409, 427–430, 451,

522–524, 641–642, 646–647
discrete random variable, 95, 150
estimating, 296–297
exponential distribution, 837
F distribution, 362
formula for, 9
gamma distribution, 186, 837
geometric distribution, 116–117,

836
hypergeometric distribution, 127,

836
hypothesis tests for, 520–530
kth moment about, 202
of least-squares estimators,

581–582
mixed distributions, 213
negative binomial distribution,

122–123, 836
normal distribution, 353–354,

837
overall, 678
Poisson distribution, 134–135,

141, 836
sampling distribution, 347, 351
small-sample test for, 521–522
uniform distribution, 176, 837
See also Difference between

means
Mean square error of point

estimators, 393
Mean square for blocks

(MSB), 689
Mean square for error (MSE), 665,

681, 689, 690
Mean square for treatments (MST),

665, 679–681, 690
Mean squares, 665, 688
Measures of central tendency, 9
Measures of dispersion, 9
Measures of variation, 9
Median

point estimation, 445
random variable, 164, 747

Memoryless property, 189
of exponential distribution, 189
of geometric distribution, 119

Mendel, Gregor, 55
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Method of distribution functions,
298–310

summary of, 304
transformation method and,

310–311
Method of least squares, 564,

569–576, 633
fitting a straight line by, 642–643

Method of maximum likelihood,
476–483

examples of using, 110, 118,
477–480

formal statement of, 477
Method of moment-generating

functions, 298, 318–325
summary of, 322
uses for, 320, 321

Method of moments, 472–476
formal statement of, 473
uses for, 472, 475

Method-of-moments estimators,
472–475, 603

Method of transformations, 298,
310–318

distribution function method and,
310–311

multivariable, 325–333
summary of, 316

Minimal sufficient statistics, 465,
471

Minimum of random variables, 333
Minimum-variance unbiased

estimation, 464–472
Minimum-variance unbiased

estimators (MVUEs),
465–472, 476

and the method of maximum
likelihood, 476–477

unique, 472
Mixed distribution, 211–212
MLEs. See Maximum-likelihood

estimators
mn rule, 41–43
Modal category, 7
Model parameters

multiple linear regression,
616–624

simple linear regression, 589–593
Models, 14

allometric equation, 606
block effects, 686

complete, 624, 626–628
deterministic, 564–565, 566
fitted, 628–630
fixed block effects, 686
hierarchical, 288–289
linear, 566–569
linearized, 606
location, 743
mathematical, 14
multiple linear regression,

566–567, 569, 609, 615–624
no-intercept, 575
nonlinear, 608
one-way layout, 677–679
planar, 629, 630
probabilistic, 26–35, 565
quadratic, 614
random block effects, 686
for randomized block design,

686–687
reduced, 624, 626–628, 629
regression, 566–567, 634
second-order, 628–630
selection of, 201
simple linear regression, 566
two-sample shift, 742–743
See also Statistical models

Moment-generating function
method, 298, 318–325

summary of, 322
uses for, 320, 321

Moment-generating functions,
138–143

applications for, 139–140, 141
beta distribution, 837
binomial distribution, 836
central limit theorem and,

377–378
chi-square distribution, 837
continuous random variable,

202–207
definitions of, 139, 202
discrete random variable,

138–143
exponential distribution, 837
extracting moments from, 204
for a function of a random

variable, 205
gamma distribution, 837
geometric distribution, 836
hypergeometric distribution, 836

kth derivative of, 139, 202
method of, 318–325
negative binomial distribution,

836
normal distribution, 837
Poisson distribution, 140, 836
probability distributions and, 141
probability-generating function

and, 144
random variable, 139, 202
uniform distribution, 837

Moments, 138–143
central, 138, 202
for continuous random variables,

202
factorial, 144
method of, 472–476
population, 472–473
of random variables, 138–139,

472–473
sample, 472–473
taken about mean, 138
taken about origin, 138

Most powerful test, 542–543
MSB. See Mean square for blocks
MSE. See Mean square for error
MST. See Mean square for

treatments
Multicollinearity, 634
Multinomial coefficients, 45
Multinomial distributions, 279–283,

735
Multinomial experiments, 279–282,

713–714
Multinomial term, 45
Multiple coefficient of

determination, 627
Multiple linear regression model,

566–567, 569, 609, 615–624
confidence intervals for, 618
hypothesis tests for, 618
inferences about linear functions

in, 616–622
least-squares estimators and,

615–616
matrices and, 609
predicting values using, 622–624

Multiplication
matrix, 822–824
row-column, 822–824
of matrix by real number, 822
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Multiplicative law of probability,
57, 238–239

for independent events, 63
Multivariable transformation

method, 325–333
Multivariate density function, 231
Multivariate distributions, 223–295

bivariate distributions and,
224–235, 283–285

conditional distributions and,
238–242

conditional expectations and,
285–290

covariance of two variables and,
264–270

expected values and, 255–261,
285–290

independent random variables
and, 247–255

marginal distributions and,
235–238

multinomial distributions and,
279–283

normal distributions and,
283–285

transformation method and, 314
Multivariate normal density

function, 283–284
Multivariate normal distribution,

283–285
Multivariate probability function,

232
Mutually exclusive events, 58, 59

and the additive law of
probability, 63–64

Mutually exclusive sets, 24
MVUEs. See Minimum-variance

unbiased estimators

N
Negative binomial distribution,

121–125
mean, 122–123, 836
moment-generating function, 836
probability function, 836
variance, 122–123, 836

Negative binomial random variable,
122, 150

Neyman–Pearson Lemma, 542–546
theorem for, 542
usefulness of, 546

No-intercept model, 575
Nonparametric statistics, 741–795

definition of, 742
Friedman test, 771–777
Kruskal–Wallis test, 765–771
Mann–Whitney U test, 756,

758–765
rank-sum test, 755–757
runs test, 777–783
sign test for a matched-pairs

experiment, 744–750
sources of further information on,

790–791
Spearman rank correlation

coefficient, 783–789
two-sample shift model,

742–743
uses for, 741–742, 789–790
Wilcoxon rank-sum test, 755
Wilcoxon signed-rank test,

750–755
Nonrandomness test, 780–781
Normal approximation to binomial

distribution, 378–385
continuity correction associated

with, 382
when to use, 380

Normal Approximation to Binomial
Distribution applet, 382,
383, 385

Normal curve, 10–11
area under, 380–382, 735, 847
illustrated example of, 11
table of areas, 522, 847

Normal density function, 178–179
Normal distribution, 10, 178–184

asymptotic, 372
bivariate, 283–285
hypothesis testing and, 520–521
linear functions of, 590
log-normal distribution, 218, 344
mean, 353–354, 837
moment-generating function,

179, 321–322, 837
multivariate, 283–285
point estimation and, 453–454
probability function, 837
sampling distributions and,

353–369
tables for, 847
variance, 353–354, 837

Normal prior distribution, 816
Normal Probabilities applet, 181,

182, 183, 515
Normal random variable, 181
Normal Tail Areas and Quantiles

applet, 179, 183, 184
Nuisance parameters, 546, 549
Null hypothesis, 489–490

choice of, 500, 519
composite, 545–546
confidence interval and, 511
power of the test and, 540–541
p-value and, 513
simple, 542, 555
testing, 624–633, 669

Null set, 23
Numerical descriptive methods,

8–13
Numerical events, 75

O
Observed cell frequencies, 723
Observed life, total, 340
One-sided confidence interval, 407,

426
One-tailed tests, 499, 509, 751
One-way layouts, 653, 662

additivity of sums of squares for,
679–681

analysis of variance for, 667–671
ANOVA table for, 671–677
balanced, 670
estimation in, 681–685
expected value of MST for,

679–681
Kruskal–Wallis test for, 765–771
sample size selection for,

696–698
statistical model for, 677–679

Operating characteristic curve, 151
Order statistics, 333–340
Outliers, 634
Overall mean, 678

P
p(y), 88, 91, 102
Paired data, 644–651
Paired-difference experiment, 648
Parameters, 91, 390

of bivariate normal density
function, 284
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Parameters (Continued )
definition of, 93
of density function, 175
estimated, 443, 569
gamma distribution, 185
inferences concerning model,

589–593, 616–622
least-square estimator, 584–589
nuisance, 546, 549
shape and scale, 185

Parametric methods, 742, 789
Pareto distributions, 310
Partitions

of objects into groups, 44
of sample space, 70, 71
of total sum of squares,

662, 688
Pearson, Karl, 714, 715
Pearson’s test statistic, 714, 715
Percentile, 164
Permutation, 43
Pivotal method, 407–409
Pivotal quantity, 441
Planar model, 629, 630
Plots of residuals, 634
PointbyPoint applet, 455
Point estimate, 391
Point estimation, 392

maximum-likelihood, 476–483
method of moments, 472–476
minimum-variance unbiased,

465–472
Point Estimation applet, 455
Point estimators

biased, 392, 393
consistency of, 448–459
expected values of, 397, 399
goodness of, 392, 399–406
mean square error of, 393
method-of-moments, 472–475
minimal sufficient, 467
properties of, 445–464
relative efficiency of, 445–448
standard errors of, 397, 399
sample sizes for, 397
sufficiency of, 459–464
unbiased, 392, 393, 396–399, 445
See also Estimators

PointSingle applet, 454–455
Poisson distribution, 131–138

mean, 134–135, 141, 836

moment-generating function,
140, 836

partial sums for, 134
probability function, 836
relationship with gamma

distribution, 185
tables for, 842–846
uses for, 132
variance, 134–135, 141, 836

Poisson process, 135
Poisson random variable, 132

mean and variance for, 150
moment-generating function for,

140
Pooled estimator, 428, 664, 681
Population

definition of, 2
random sample of, 77–79
sign test comparison of, 747

Population distributions
differing in location, 743
ranks used for comparing,

755–757
testing for identical, 742–743

Population mean
large sample confidence interval

for, 411–412
maximum likelihood estimator

for, 478–479
minimum-variance unbiased

estimator for, 467–468
notation for, 9
overall, 678
relationship to expected value, 91
small-sample confidence interval

for, 427–427
small-sample hypothesis testing

for, 520–522, 525–530
small-sample tests for comparing,

523
Population mean comparisons,

425–434
analysis of variance, 663
estimating differences between

means, 641–642
more than two means, 667–671
summary of small-sample

hypothesis tests for, 523
Population moments, 472–473
Population standard deviation, 10
Population variance

confidence intervals for, 434–437
consistent estimator for, 452
maximum likelihood estimator

for, 478–479
MVUE for, 467–468
notation for, 10
pooled estimator for, 428, 523
tests of hypotheses concerning,

530–540
Positive predictive value, 73
Posterior density function, 797–798,

800, 801, 817
Posterior distribution, 798–805,

816–819
Posterior expected value, 800
Power curve, 541
Power distributions, 309–310, 458,

463
Power series, 204
Power of the test, 540–549

definition of, 540
likelihood ratio tests and, 553
most powerful test, 542–543
type II errors and, 541
uniformly most powerful test,

544–546
Practical significance, 519
Prediction bands, 597
Prediction intervals, 595–597, 608,

623
multiple linear regression, 623
simple linear regression, 595–596

Predictions
errors made in, 594–595,

622–623
multiple linear regression and,

622–624
simple linear regression and,

593–597
Predictive distribution, 816–817
Prior density, 816, 817
Prior distribution, 796, 797–805
Probabilistic models, 26–35, 565,

566
Probability, 20–85

additive law of, 58, 699
axioms of, 30
Bayes’ rule, 71
calculation methods for, 25–29,

62–68
conditional, 47, 51–57, 102
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convergence in, 457
counting rules for, 40–51
definition of, 30
event-composition method for,

35, 62–69
histogram, 89, 92, 104
independence and, 53
inference making and, 14,

21–23
of intersection of events, 57
laws of, 58–59, 70
law of total, 70–75
marginal, 236
multiplicative law of, 57
numerical events and, 75
Poisson, 131–138
random variables and, 75–77
relative frequency concept of, 21,

29–30
sample-point method for, 35–40
sources of further information

on, 80
summary review of, 79–80
supplementary exercises on,

80–85
type I error, 491, 493
type II error, 491, 493, 507–510
unconditional, 51, 52, 102
of union of events, 58–59

Probability density function, 258,
407

Probability distributions.
See Distributions

Probability functions, 88
beta, 835, 837
binomial, 836
bivariate, 224–225
chi-square, 837
conditional discrete, 239
exponential, 837
gamma, 835, 837
geometric, 836
hypergeometric, 836
joint, 225
logarithmic series, 739
marginal, 236
negative binomial, 836
normal, 837
Poisson, 836
unconditional, 288
uniform, 837

Probability-generating functions,
143–146

definition of, 144
geometric random variable, 145
moment-generating functions

and, 144
Probability mass functions, 149
Properties

invariance, 480
memoryless, 189

p-values, 513–518
computing, 515
uses for, 513, 514

Q
Quadratic model, 614
Qualitative variables, 662, 713
Quantity, pivotal, 441
Quantiles, 164
Queuing theory, 143

R
r (test statistic), 599
rs (test statistic), 784, 786
Random assignment, 651–652
Random block effects model, 686
Random errors, 568, 584, 633
Random events, 20
Randomization, importance of, 657
Randomized block design, 654–655

analysis of variance for, 688–695
estimation in, 695–696
Friedman test for, 771–777
linear model approach to, 703
sample size for, 696
statistical model for, 686–687

Randomized design, 652
Randomness test, 777–783
Random number generator, 307
Random number table, 872–875
Random sample, 78

independent, 653, 755–765
simple, 78
size of, 421–424
as sufficient statistic, 461

Random sampling, 77–79
Random variables, 75–77

Bernoulli, 166, 322, 462, 466
beta, 194–196
binomial, 107–108
chi-square, 187–188

conditional density of, 240–241
conditional discrete probability

functions of, 239
continuous, 157–158
covariance of, 264–270
density function of, 161–165
dependent, 247, 564
discrete, 86–87
distribution function of, 158–165
expected values of, 91–100,

170–174, 202–207, 255–258
exponential, 188
factorial moments for, 144
functions of, 296–345
gamma, 187–188
geometric, 116–117
hypergeometric, 126
independent, 247–255, 564
integer-valued, 143–144
jointly continuous, 227, 228
jointly discrete, 227
kth factorial moment of, 138
kth moment of, 138, 202, 472
linear functions of, 270–279
means for, 150
measures of dependence, 264
median of, 164, 747
minimum/maximum of, 333
mixed distribution, 211–212
moment-generating functions of,

138–141
moments of, 138
negative binomial, 122
normal, 181
ordered, 333
Poisson, 132
predicting values of, using

multiple regression,
622–624

predicting values of, using simple
linear regression, 593–598

probability density function for,
161–165, 171–172

probability-generating functions
for, 143–146

standard deviation of, 93
standard normal, 181
t-distributed, compared with

normal, 359–360
testing for independence of,

598–604
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Random variables (Continued )
uncorrelated, 265, 267
uniform, 174–176
univariate, 226
variance, 93
vector, 598
Weibull, 219

Range, 12
Rank, 755–757
Rank correlation coefficient,

783–789
Rank sums, 755–757
Rank-sum test, 755–757, 758

Kruskal–Wallis test and, 768
Mann–Whitney U test and, 758,

762
Rao-Blackwell theorem, 464–472
Rayleigh density, 318, 458
r x c contingency tables, 721–734

degrees of freedom for, 724
fixed row or column totals in,

729–734
Reduced model, 624, 626–628, 629

compared with complete model,
627–630

Regression
multiple linear, 566–567, 569,

609, 615–624
simple linear, 577–583, 589–597

Regression models, 566–567, 634
lack of fit, 634
multiple linear, 566–567, 569,

609, 615–622
simple linear, 566, 569, 589–597

Regularity conditions, 553
Rejection region (RR), 490–491

complement of, 511
form of, 543
F test, 536
graph of, 534
likelihood ratio test, 550, 552
lower-tail, 499
one-tailed, 751
runs test, 778, 781, 782
two-tailed, 499, 500, 584, 751
upper-tail, 497

Relative efficiency, 445–448
Relative frequency distribution, 4, 5
Relative frequency histogram, 4,

371
Reliability functions, 343

Removing Points from Regression
applet, 639

Rescaling independent variables,
628

Research hypothesis, 489–490
See also Alternative hypothesis

Residuals, 634
Response variable, 566
Robust statistical tests, 525
Row-column multiplication, 822–824
Row operations, 829–832
Row probabilities, 722, 724–725,

729–731
Runs, 778, 869
Runs test, 777–783

expected value of, 782
Mann–Whitney U test and, 781
rejection region for, 778,

781, 782
table of runs, 869–870
time series and, 780–781
variance of, 782

S
Sample

definition of, 2
elements affecting information in,

640–641
independent, 645, 653
likelihood of, 460–461
paired, 644–651
random, 78
size of, 421–425

Sample correlation coefficient,
598–599

nonparametric analogue to, 783
Sample mean, formula and notation,

9
Sample median, 445
Sample moments, 472–473
Sample point, 27

as an ordered pair, 41
equiprobable, 38, 120
representations of, 43
simple event and, 27
tools for counting, 40–51

Sample-point method, 35–40
and combinatorial analysis,

40–51
examples of using, 36–37, 38
steps in process of, 36

Sample size
confidence interval, 411–421,

483–484
hypothesis test, 496–507,

520–530
large, 411–415, 496–507, 553
likelihood ratio test, 553
one-way layouts and, 696–698
randomized block design and,

696
selecting, 421–424, 696–698
small, 425–434, 520–530
Z-test, 507–510

Sample Size applet, 352, 373–374
Sample space, 28, 70

discrete, 28, 29
partition of, 70, 71

Sample variance, 10
Sampling

error in repeated, 594
random, 77–79

Sampling Distribution of the Mean
applet, 351

Sampling distributions, 346–389
central limit theorem and,

370–385
chi-square distributions and,

356–358
introductory overview of,

346–349
mean, 347, 351, 364
normal distributions and, 353–369
sum of squares and, 356
unbiased point estimator, 393
variance, 352, 353, 364

Sampling methods, 77
matched-pair, 644–651
random, 77–79
replacement in, 78
simple random, 78

Sampling procedure. See
Experimental design

Sampling with/without replacement,
78

Scale parameter, 185
Second-order models, 628–630
Sensitivity of a test, 73
Series

geometric, 67, 835
logarithmic, 739
Taylor, 835
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Sets, 23–25
complement of, 24
DeMorgan’s laws of, 25
disjoint, 24
distributive laws of, 25
empty, 23
intersection of, 24
mutually exclusive, 24
notation for, 23–26
null or empty, 23
subsets of, 23
union of, 23–24
universal, 23
Venn diagrams and, 23–25

Shape parameter, 185
Shift model, 743
Signed-rank test. See Wilcoxon

signed-rank test
Significance, statistical versus

practical, 518
Significance level, 513–518

attained, 513–518, 745–746
Sign test for a matched-pairs

experiment, 744–750
attained significance levels for,

745–746
Friedman test and, 773
large sample comparisons and,

746–747
Student’s t test compared to,

746–747
usefulness of, 747

Simple events, 27
Simple hypothesis, 541–542
Simple linear regression model,

566, 569, 577–583, 589–597
confidence intervals for, 586, 590,

591, 596–597
correlation and, 598–604
hypothesis tests for, 585, 590
inferences about linear functions

in, 589–593
least-squares estimators for, 571,

577–583, 610
matrices and, 610, 613
predicting values using, 593–597

Simple random sampling, 78
Simultaneous confidence

coefficient, 699–700
Simultaneous system of linear

equations

matrix expression for, 827–829
solving using matrices, 833–834

Single-factor experiment, 652
Size of samples. See Sample size
Slope, estimating, 643
Slutsky’s theorem, 453
Small-sample confidence intervals,

425–434
Summary, 430

Small-sample hypothesis testing,
520–530

for comparing two population
means, 523

for a population mean , 521
Spearman rank correlation

coefficient, 783–789
critical values table, 871
summary of the test, 786

Specificity of a test, 73
SSB. See Sum of squares

for blocks
SSE. See Sum of squares for error
SST. See Sum of squares for

treatments
Standard deviation

confidence bound for, 436
definition of, 10
population, 10
random variable, 93
sampling distribution of, 348
sum of squares of deviations and,

643
Standard errors

paired data and, 645
of point estimators, 397, 399

Standard normal distribution, 318
Standard normal random variable,

181
Statistic, 346–347

kth-order, 336
sufficient. See Sufficient statistic

Statistical models
for one-way layouts, 677–679
for randomized block designs,

686–687
See also Models

Statistical significance, 519
Statistical tests

elements of, 489–495
goodness of, 540, 556
power of, 540–549

reporting results of, 513–518
robustness of, 525, 537
theory of, 518–519
See also Hypothesis tests

Statistics, 347
definition of, 1–2
F, 535–537

and hypothesis testing, 489
kth order, 336–337
minimal sufficient, 465, 467, 471
nonparametric, 742
objective of, 2–3
order, 333–340
parametric, 742
sufficient, 459, 461–462
uses for, 1

Step functions, 159
Stochastic events, 20
Student’s t distribution, 359–361,

523
See also t distribution

Student’s t Probabilities and
Quantiles applet, 361, 366,
522, 525, 526, 586, 601,
605, 619, 647, 700

Subsets, 23
Sufficiency, 459–464

definition of, 460
and likelihood, 460–461

Sufficient statistics, 459, 461–462
confidence intervals and, 468
functions of, 465, 470
minimal, 465, 471
unbiased estimators and, 464–470
uses for, 464–465, 468

Sum of functions, expected value of,
94–95, 170–171, 258–259

Summations, formulas for, 835
Sum of a geometric series, 835
Sum of squares for blocks (SSB),

688
Sum of squares for error (SSE), 570

ANOVA procedure and,
662–663, 668–669

coefficient of determination and,
601

complete model and, 624
formula for, 581, 688
pooled, 666
as portion of total sum of squares,

663
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Sum of squares (Continued )
reduced model and, 624
simple linear regression and, 581,

601
Sum of squares for independent

variables, 356
Sum of squares for treatments

(SST), 664
formula for, 688
rank analogue of, 766, 771

Sum of squares of deviations
additivity of, 679–681
adjusted, 625
complete model and, 624
minimizing, 569
reduced model and, 624
standard deviation and, 643
total sum of squares and, 662

Symmetric difference, 74

T
T (test statistic)

hypothesis tests and, 521, 523,
585

multiple linear regression, 618
simple linear regression, 590
table of critical values of,

867–868
t test and, 521
Wilcoxon signed-rank test and,

751, 867–868
Tables

analysis of variance, 671–677,
689, 690

binomial distribution, 380, 381,
838–840

chi-square distribution, 356,
849–850

contingency, 721–729
critical values of T, 867–868
distribution function of U,

861–866
e−x , 841
F distribution, 363, 851–860
Kruskal–Wallis test, 767
normal curve areas, 847
Poisson distribution, 842–846
random numbers, 872–875
runs distribution, 869–870
Spearman rank correlation, 785,

871

t distribution, 848
three-way, 735

Tables of the Incomplete Beta
Function (Pearson), 194

Tables of the Incomplete Gamma
Function (Pearson), 186

Target parameter, 391
Taylor series expansion, 835
Tchebysheff’s theorem, 18

bounds for probability in, 401
continuous random variables and,

207–210
discrete random variables and,

146–149
error of estimation and, 400–401
formal statement of, 146, 207
point estimators and, 450
uses for, 208, 209

t density function, 360
t distribution, 359–361

degrees of freedom for, 360, 426,
430, 584

density function of, 360, 426
hypothesis testing and, 521
table of percentage points of, 848

Testing hypotheses. See Hypothesis
testing

Test of homogeneity, 731
Test statistic

as element of statistical test, 490
See also specific test statistics

Theoretical models, 161
Theory

hypothesis testing, 518
queuing, 143
reality and, 14

Three-way tables, 735
Ties

in paired experiments, 746,
750–751, 766

in rank correlation, 783–784
Time series, 780–781
Total observed life, 340
Total probability law, 70–75
Total sum of squares, 662–663

partitioning of, 662, 688
Transformation method, 298, 310–318

distribution function method and,
310–311

multivariable, 325–333
summary of, 316

Transpose of a matrix, 827
Treatments, 652, 656, 662

effect of, 678
Latin square design, 655
mean square for, 665, 679–681
randomized block design,

654–655, 686
sum of squares for, 664

Trials, experimental, 100–101
t tests, 521

from the analysis of variance test,
666

using least squares estimators,
565

sign tests vs., 746–747
two-sample, 525, 666–667
usefulness of, 525

Two-sample shift model, 742–743
assumptions for, 743

Two-sample t test, 525, 666–667
Two-sided confidence interval, 407,

426
Two-tailed alternative, 499, 500
Two-tailed rejection region, 499,

500
Two-tailed tests, 499, 584, 751

p-value for, 514–516
when to use, 500, 518

Two-way ANOVA table, 735
Two-way tables, 735
Type I errors, 491, 493–494

probability of, 491, 493
related to type II errors, 493

Type II errors, 491, 493–494
power of tests and, 541
probability of, 491, 493, 507–510
related to type I errors, 493

U
U (test statistic), 758, 759, 762

distribution function table,
861–866

expected value of, 761–762
formula for, 758
variance of, 761–762

Unbiased confidence interval, 443
Unbiased point estimators, 392, 393

consistency of, 450
minimum-variance, 464–472
Rao-Blackwell theorem for,

464–472
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relative efficiency of, 445
sample variance as, 398
sampling distributions for, 393
simple linear regression and, 577
unique minimum-variance, 472

Unconditional probability, 51, 52,
102

Unconditional probability function,
288

Uncorrelated variables, 265, 267
Uniform density function, 175
Uniform distribution, 174–178

mean, 176, 837
median, 176
moment-generating function,

837
probability function, 837
variance, 186, 837

Uniformly most powerful test,
544–546

Uniform prior, 817
Uniform random variable, 174–176
Union of events, 57–58

probability of, 57–58
Union of sets, 23–24
Unique minimum-variance unbiased

estimator (UMVUE), 472
Uniqueness theorem, 318
Universal set, 23
Unrestricted maximum-likelihood

estimator, 551
Upper confidence bound, 412, 426,

434, 512
Upper confidence limit, 406
Upper-tail alternative, 497
Upper-tail rejection region, 497
Upper-tail test, 512

V
Variables

Bernoulli, 166, 322, 462, 466
continuous, 157–158
dependent, 247, 564
discrete, 86–87
dummy, 701
independent, 247–255, 564
indicator, 701

nonrandom, 564
qualitative, 662
random, 75–77
rescaled, 628
response, 566
sum of squares for, 663
uncorrelated, 265, 267

Variance
analysis of, 661–712
beta distribution, 195, 837
binomial distribution, 106–108,

836
chi-square distribution, 837
comparison of, 361–362,

533–535
conditional, 287
confidence intervals and,

434–437, 640
of continuous random variable,

170–171
definition of, 10
discrete random variable, 95–96,

150
exponential distribution, 837
gamma distribution, 186, 837
geometric distribution, 117–118,

836
hypergeometric distribution, 127,

836
hypothesis tests and, 530–540
least-squares estimators, 577–581
linear functions and, 270–279
maximum-likelihood estimator

for, 480
minimum, 465
mixed distribution, 213
negative binomial distribution,

836
normal distribution, 353–354,

837
of point estimators, 393
Poisson distribution, 134–135,

141, 836
pooled estimator for, 428, 523
of random variable, 93
relative efficiency of, 445
runs test and, 782

sample, 398
sampling distribution of, 352, 353
t distribution, 360
unbiased estimator for, 577
uniform distribution, 186, 837
U test statistic and, 761–762
See also Analysis of variance

VarianceSize applet, 353
Variation

coefficient of, 387
measures of, 9

Vector random variable, 598
Venn diagrams, 23–25

W
W (test statistic), 756–757, 758
Weibull density function, 219, 317,

339, 466
Weibull distribution, 202, 219, 468
Weibull random variable, 219
Weighted average, 428
Wilcoxon, Frank, 755
Wilcoxon rank-sum test, 755–757,

758, 762
Wilcoxon signed-rank test,

750–755
critical values of T in, 867
large samples and, 752–753
summary of, 751

Y
Y value, predicting, 593–597,

622–624

Z
Z (test statistic)

hypothesis tests and, 500
large samples and, 500, 747, 752
Mann–Whitney U test and, 762
runs test and, 782
sample size and, 507–510
sign test and, 747
Wilcoxon signed-rank test and,

752–753
Z-test and, 507

Zero covariance, 267–268, 284
Zero probability, 161
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